An attractive numerical algorithm for solving nonlinear Caputo–Fabrizio fractional Abel differential equation in a Hilbert space
Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize th...
Gespeichert in:
| Veröffentlicht in: | Advances in difference equations Jg. 2021; H. 1; S. 1 - 18 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
26.05.2021
Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 1687-1847, 1687-1839, 1687-1847 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space
H
2
[
a
,
b
]
. We investigate and discuss stability and convergence of the proposed method. The
n
-term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences. |
|---|---|
| AbstractList | Abstract Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space H 2 [ a , b ] $\mathcal{H}^{2}[a,b]$ . We investigate and discuss stability and convergence of the proposed method. The n-term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences. Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space H 2 [ a , b ] . We investigate and discuss stability and convergence of the proposed method. The n -term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences. Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space $\mathcal{H}^{2}[a,b]$ H 2 [ a , b ] . We investigate and discuss stability and convergence of the proposed method. The n -term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences. Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space H2[a,b]. We investigate and discuss stability and convergence of the proposed method. The n-term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences. |
| ArticleNumber | 271 |
| Author | Araci, Serkan Momani, Shaher Al-Omari, Shrideh Al-Smadi, Mohammed Djeddi, Nadir |
| Author_xml | – sequence: 1 givenname: Mohammed surname: Al-Smadi fullname: Al-Smadi, Mohammed organization: Department of Applied Science, Ajloun College, Al-Balqa Applied University, Nonlinear Dynamics Research Center (NDRC), Ajman University – sequence: 2 givenname: Nadir surname: Djeddi fullname: Djeddi, Nadir organization: Department of Mathematics, Faculty of Science, The University of Jordan – sequence: 3 givenname: Shaher surname: Momani fullname: Momani, Shaher organization: Nonlinear Dynamics Research Center (NDRC), Ajman University, Department of Mathematics, Faculty of Science, The University of Jordan – sequence: 4 givenname: Shrideh orcidid: 0000-0001-8955-5552 surname: Al-Omari fullname: Al-Omari, Shrideh email: shridehalomari@bau.edu.jo, s.k.q.alomari@fet.edu.jo organization: Department of Mathematics, Faculty of Science, Al Balqa Applied University – sequence: 5 givenname: Serkan surname: Araci fullname: Araci, Serkan organization: Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University |
| BookMark | eNp9Uc1u1DAYtFCRaAsvwMkS50D8E8c5rlaUVqrEBc7WF-fz4pU33tpOJTghXqFvyJPgbkAgDj3Z-jwz33jmgpzNcUZCXrP2LWNavctMKMWblrOmFZLrRjwj50zpvmFa9mf_3F-Qi5z3bcsHqfU5-bGZKZSSwBZ_j3ReDpi8hUAh7GLy5cuBuphojuHezzta1wY_IyS6heNS4s_vD1cwJv_NR-pOInGu5M2IgU7eOUw4F18neLfA4yP1dR-99mHEVGg-gsWX5LmDkPHV7_OSfL56_2l73dx-_HCz3dw2VvKhNNKKTiO6adIdunbqlWIdt1Ko3uEgRsY5aNZbC103jKrFnlk5dZPj1YZSSlySm1V3irA3x-QPkL6aCN6cBjHtDKTibUAj1TC2NTEheiuBwzi4SYwDVFXnBtFVrTer1jHFuwVzMfu4pPr1bHgnuOScC15RekXZFHNO6Iz15RRDDdwHw1rz2J5Z2zO1PXNqz4hK5f9R_xh-kiRWUq7geYfpr6snWL8AnFiyGw |
| CitedBy_id | crossref_primary_10_1186_s13662_022_03726_4 crossref_primary_10_32604_cmes_2023_026313 crossref_primary_10_3390_fractalfract7080584 crossref_primary_10_1007_s40314_022_01857_8 crossref_primary_10_3390_fractalfract6040210 crossref_primary_10_3390_sym14040804 crossref_primary_10_1016_j_apnum_2021_08_005 crossref_primary_10_3390_fractalfract8090533 crossref_primary_10_1038_s41598_023_43630_9 crossref_primary_10_1038_s41598_024_55059_9 crossref_primary_10_1155_2021_3230272 crossref_primary_10_3390_sym14081725 crossref_primary_10_3390_e23121646 crossref_primary_10_1016_j_chaos_2022_111915 crossref_primary_10_1515_phys_2023_0161 crossref_primary_10_3390_math9222868 crossref_primary_10_1016_j_enganabound_2023_10_014 crossref_primary_10_1016_j_sciaf_2022_e01385 crossref_primary_10_3390_sym15071296 crossref_primary_10_32604_cmes_2022_017010 crossref_primary_10_1186_s13662_021_03669_2 crossref_primary_10_3390_fractalfract7070506 crossref_primary_10_1007_s40435_022_00961_1 crossref_primary_10_1002_mma_7833 crossref_primary_10_1007_s40995_022_01404_4 crossref_primary_10_1186_s13662_021_03628_x crossref_primary_10_1155_2022_4422186 |
| Cites_doi | 10.1016/S0034-4877(17)30059-9 10.1016/j.chaos.2021.110891 10.1088/1572-9494/ab8a29 10.1016/j.camwa.2011.10.071 10.1155/2013/832074 10.1007/s11253-018-1526-8 10.1080/00207160.2016.1154950 10.1007/s13226-014-0057-8 10.1088/1402-4896/abb420 10.1007/s40096-020-00337-6 10.1016/j.amc.2016.06.002 10.1088/1402-4896/abb739 10.1007/s00033-019-1130-2 10.1016/j.apnum.2020.01.008 10.1063/1.4935299 10.1016/j.apm.2014.02.001 10.1016/j.cam.2012.11.002 10.1515/nleng-2018-0095 10.1016/S0898-1221(01)00274-7 10.1155/2014/135465 10.4153/S0008414X20000267 10.1016/j.cnsns.2017.12.003 10.2298/TSCI160111018A 10.1002/mma.6998 10.1142/S0129183112500568 10.1166/jctn.2016.5780 10.1016/j.jmaa.2019.123551 10.1515/math-2015-0081 10.1186/s13661-018-1008-9 10.1016/j.amc.2015.04.057 10.1016/j.chaos.2020.110506 10.1016/j.asej.2017.04.006 10.1016/S0304-0208(06)80001-0 10.1007/s40819-019-0720-1 10.2298/FIL1902583A 10.1016/j.aej.2020.09.041 10.1016/j.amc.2014.10.002 10.1016/j.amc.2018.09.020 10.1016/j.chaos.2020.109624 10.1088/1402-4896/ab96e0 10.1142/S0219876217500293 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
| DOI | 10.1186/s13662-021-03428-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1687-1847 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_469b0687337c4a2ab9fd3b9a60eff935 10_1186_s13662_021_03428_3 |
| GroupedDBID | -A0 23M 2WC 3V. 4.4 40G 5GY 5VS 6J9 8FE 8FG 8R4 8R5 AAFWJ AAYZJ ABDBF ABJCF ABUWG ACGFO ACGFS ACIPV ACIWK ACUHS ADBBV ADINQ AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DWQXO EBS ESX GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M0N M7S M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A UPT ~8M AAYXX CITATION OVT 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c429t-4c358eefdd85ef0d766152c4367fe93b122a817cca559b60e71c4d5df2ffe6663 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000657700100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-1847 1687-1839 |
| IngestDate | Tue Oct 14 19:00:11 EDT 2025 Tue Sep 30 18:38:33 EDT 2025 Sat Nov 29 01:43:51 EST 2025 Tue Nov 18 21:52:01 EST 2025 Fri Feb 21 02:49:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Abel-type differential equation Caputo–Fabrizio fractional derivative Error analysis Reproducing kernel algorithm Numerical solution |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-4c358eefdd85ef0d766152c4367fe93b122a817cca559b60e71c4d5df2ffe6663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8955-5552 |
| OpenAccessLink | https://doaj.org/article/469b0687337c4a2ab9fd3b9a60eff935 |
| PQID | 2532422232 |
| PQPubID | 237355 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_469b0687337c4a2ab9fd3b9a60eff935 proquest_journals_2532422232 crossref_citationtrail_10_1186_s13662_021_03428_3 crossref_primary_10_1186_s13662_021_03428_3 springer_journals_10_1186_s13662_021_03428_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-26 |
| PublicationDateYYYYMMDD | 2021-05-26 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | Advances in difference equations |
| PublicationTitleAbbrev | Adv Differ Equ |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.4500310.1016/S0304-0208(06)80001-0 ParandK.NikaryaM.New numerical method based on generalized Bessel function to solve nonlinear Abel fractional differential equation of the first kindNonlinear Eng.2019843844810.1515/nleng-2018-0095 MakM.K.HarkoT.New method for generating general solution of Abel differential equationComput. Math. Appl.200243919418732441007.3400110.1016/S0898-1221(01)00274-7 GumahG.MoaddyK.Al-SmadiM.HashimI.Solutions to uncertain Volterra integral equations by fitted reproducing kernel Hilbert space methodJ. Funct. Spaces2016201635287391347.65194 Al-SmadiM.Abu ArqubO.HadidS.An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivativeCommun. Theor. Phys.202072841277941451.3524710.1088/1572-9494/ab8a29 LiT.ViglialoroG.Boundedness for a nonlocal reaction chemotaxis model even in the attraction dominated regimeDiffer. Integral Equ.2021345/6315336 LiT.PintusN.ViglialoroG.Properties of solutions to porous medium problems with different sources and boundary conditionsZ. Angew. Math. Phys.201970339526871415.3515610.1007/s00033-019-1130-2 DjeddiN.HasanS.Al-SmadiM.MomaniS.Modified analytical approach for generalized quadratic and cubic logistic models with Caputo–Fabrizio fractional derivativeAlex. Eng. J.20205965111512210.1016/j.aej.2020.09.041 Al-SmadiM.Abu ArqubO.MomaniS.Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sensePhys. Scr.202095710.1088/1402-4896/ab96e0 AydoganM.S.BaleanuD.MousalouA.RezapourS.On high order fractional integro-differential equations including the Caputo–Fabrizio derivativeBound. Value Probl.2018201838087381422.3401910.1186/s13661-018-1008-9 GengF.Z.Numerical methods for solving Schrödinger equations in complex reproducing kernel Hilbert spacesMath. Sci.202014293299416620510.1007/s40096-020-00337-6 AlabedalhadiM.Al-SmadiM.Al-OmariS.BaleanuD.MomaniS.Structure of optical soliton solution for nonlinear resonant space-time Schrödinger equation in conformable sense with full nonlinearity termPhys. Scr.2020951010.1088/1402-4896/abb739 HarkoT.MakM.K.Exact travelling wave solutions of non-linear reaction–convection–diffusion equations—an Abel equation based approachJ. Math. Phys.20155634217991328.3509610.1063/1.4935299 YamaleevR.M.RussiaD.Solutions of Riccati–Abel equation in terms of third order trigonometric functionsIndian J. Pure Appl. Math.201445216518431973821322.3400610.1007/s13226-014-0057-8 CaputoM.FabrizioM.A new definition of fractional derivative without singular kernelProg. Fract. Differ. Appl.2015127385 XuY.HeZ.The short memory principle for solving Abel differential equation of fractional orderComput. Math. Appl.2011624796480528556241236.3400810.1016/j.camwa.2011.10.071 Al-SmadiM.Abu ArqubO.GaithM.Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel frameworkMath. Methods Appl. Sci.202010.1002/mma.6998 ViglialoroG.GonzálezÁ.MurciaJ.A mixed finite-element finite-difference method to solve the equilibrium equations of a prestressed membrane having boundary cablesInt. J. Comput. Math.201794593394536252071371.3507010.1080/00207160.2016.1154950 GumahG.NaserM.Al-SmadiM.Al-OmariS.K.Q.BaleanuD.Numerical solutions of hybrid fuzzy differential equations in a Hilbert spaceAppl. Numer. Math.202015140241240541511451.6510210.1016/j.apnum.2020.01.008 Al-SmadiM.Abu ArqubO.Computational algorithm for solving Fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimatesAppl. Math. Comput.201934228029438641271429.6530410.1016/j.amc.2018.09.020 Al-SmadiM.Abu ArqubO.ShawagfehN.MomaniS.Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel methodAppl. Math. Comput.201629113714835343921410.3405410.1016/j.amc.2016.06.002 BaleanuD.FernandezA.On some new properties of fractional derivatives with Mittag-Leffler kernelCommun. Nonlinear Sci. Numer. Simul.201859944446237584020726335710.1016/j.cnsns.2017.12.003 HasanS.Al-SmadiM.El-AjouA.MomaniS.HadidS.Al-ZhourZ.Numerical approach in the Hilbert space to solve a fuzzy Atangana–Baleanu fractional hybrid systemChaos Solitons Fractals2021143419197410.1016/j.chaos.2020.110506 Al-SmadiM.Reliable numerical algorithm for handling fuzzy integral equations of second kind in Hilbert spacesFilomat2019332583597393997510.2298/FIL1902583A RigiF.TajadodiH.Numerical approach of fractional Abel differential equation by Genocchi polynomialsInt. J. Appl. Comput. Math.2019540107390712794210.1007/s40819-019-0720-1 Al-SmadiM.Abu ArqubO.ZeidanD.Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: theorems and applicationsChaos Solitons Fractals2021146424155810.1016/j.chaos.2021.110891 GengF.QianS.P.A new reproducing kernel method for linear non local boundary value problemsAppl. Math. Comput.201424842142532766941338.6519510.1016/j.amc.2014.10.002 Al-SmadiM.Abu ArqubO.HadidS.Approximate solutions of nonlinear fractional Kundu–Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series methodPhys. Scr.2020951010.1088/1402-4896/abb420 AtanganaA.BaleanuD.AlsaediA.New properties of conformable derivativeOpen Math.20151388989834309341354.2600810.1515/math-2015-0081 Al-SmadiM.FreihatA.KhalilH.MomaniS.KhanR.A.Numerical multistep approach for solving fractional partial differential equationsInt. J. Comput. Methods20171436350771404.6521010.1142/S0219876217500293 BülbülB.SezerM.A numerical approach for solving generalized Abel-type nonlinear differential equationsAppl. Math. Comput.201526216917733465321410.6524410.1016/j.amc.2015.04.057 Al-SmadiM.Abu ArqubO.El-AjouA.A numerical iterative method for solving systems of first-order periodic boundary value problemsJ. Appl. Math.2014201431911041406.6505010.1155/2014/135465 AbdeljawadT.BaleanuD.On fractional derivatives with exponential kernel and their discrete versionsRep. Math. Phys.201780112736898931384.2602510.1016/S0034-4877(17)30059-9 AneddaC.CuccuF.FrassuS.Steiner symmetry in the minimization of the first eigenvalue of a fractional eigenvalue problem with indefinite weightCan. J. Math.202010.4153/S0008414X200002671–23 AtanganaA.BaleanuD.New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer modelTherm. Sci.20162076376910.2298/TSCI160111018A LiX.WuB.Error estimation for the reproducing kernel method to solve linear boundary value problemsJ. Comput. Appl. Math.2013243101530033691261.6508510.1016/j.cam.2012.11.002 HasanS.El-AjouA.HadidS.Al-SmadiM.MomaniS.Atangana–Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics systemChaos Solitons Fractals2020133405506410.1016/j.chaos.2020.109624 MillerK.S.RossB.An Introduction to the Fractional Calculus and Fractional Differential Equations1993New YorkWiley0789.26002 LosadaJ.NietoJ.J.Properties of a new fractional derivative without singular kernelProg. Fract. Differ. Appl.2015128792 AltawallbehZ.Al-SmadiM.KomashynskaI.AteiwiA.Numerical solutions of fractional systems of two-point BVPs by using the iterative reproducing kernel algorithmUkr. Math. J.20187056877011417.6518310.1007/s11253-018-1526-8 Al-SmadiM.Abu ArqubO.MomaniS.A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equationsMath. Probl. Eng.2013201330497541299.6529710.1155/2013/832074 ParandK.NikaryaM.Application of Bessel functions for solving differential and integro-differential equations of the fractional orderAppl. Math. Model.2014384137414732338341429.6517210.1016/j.apm.2014.02.001 InfusinoM.KinaT.The full moment problem on subsets of probabilities and point configurationsJ. Math. Anal. Appl.2020483140198101425.6005010.1016/j.jmaa.2019.123551 JafariH.SayevandK.TajadodiH.BaleanuD.Homotopy analysis method for solving Abel differential equation of fractional orderCent. Eur. J. Phys.20131115231527 MukherjeeS.GoswamiD.RoyB.Solution of higher-order Abel equations by differential transform methodInt. J. Mod. Phys. C2012239298166410.1142/S0129183112500568 Al-SmadiM.Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimationAin Shams Eng. J.2018942517252510.1016/j.asej.2017.04.006 Al-SmadiM.FreihatA.Abu HammadM.MomaniS.Abu ArqubO.Analytical approximations of partial differential equations of fractional order with multistep approachJ. Comput. Theor. Nanosci.20161311779378011364.3536910.1166/jctn.2016.5780 K.S. Miller (3428_CR1) 1993 M. Al-Smadi (3428_CR42) 2016; 291 S. Hasan (3428_CR17) 2020; 133 M. Al-Smadi (3428_CR44) 2020 D. Baleanu (3428_CR9) 2018; 59 M. Al-Smadi (3428_CR40) 2016; 13 M. Al-Smadi (3428_CR4) 2020; 95 T. Harko (3428_CR25) 2015; 56 M. Al-Smadi (3428_CR5) 2020; 95 K. Parand (3428_CR30) 2014; 38 G. Gumah (3428_CR45) 2016; 2016 N. Djeddi (3428_CR14) 2020; 59 M. Al-Smadi (3428_CR39) 2013; 2013 X. Li (3428_CR47) 2013; 243 M. Al-Smadi (3428_CR8) 2017; 14 B. Bülbül (3428_CR19) 2015; 262 K. Parand (3428_CR29) 2019; 8 M. Infusino (3428_CR22) 2020; 483 M.K. Mak (3428_CR32) 2002; 43 A. Atangana (3428_CR13) 2016; 20 T. Abdeljawad (3428_CR12) 2017; 80 C. Anedda (3428_CR21) 2020 F. Rigi (3428_CR27) 2019; 5 Y. Xu (3428_CR28) 2011; 62 A.A. Kilbas (3428_CR2) 2006 M.S. Aydogan (3428_CR16) 2018; 2018 M. Al-Smadi (3428_CR3) 2020; 72 T. Li (3428_CR23) 2021; 34 F. Geng (3428_CR46) 2014; 248 J. Losada (3428_CR11) 2015; 1 G. Gumah (3428_CR43) 2020; 151 R.M. Yamaleev (3428_CR31) 2014; 45 M. Al-Smadi (3428_CR34) 2014; 2014 M. Al-Smadi (3428_CR35) 2019; 342 Z. Altawallbeh (3428_CR37) 2018; 70 F.Z. Geng (3428_CR36) 2020; 14 S. Hasan (3428_CR18) 2021; 143 H. Jafari (3428_CR26) 2013; 11 M. Al-Smadi (3428_CR38) 2018; 9 M. Caputo (3428_CR10) 2015; 1 G. Viglialoro (3428_CR24) 2017; 94 A. Atangana (3428_CR7) 2015; 13 M. Al-Smadi (3428_CR41) 2019; 33 M. Alabedalhadi (3428_CR6) 2020; 95 S. Mukherjee (3428_CR33) 2012; 23 M. Al-Smadi (3428_CR15) 2021; 146 T. Li (3428_CR20) 2019; 70 |
| References_xml | – reference: CaputoM.FabrizioM.A new definition of fractional derivative without singular kernelProg. Fract. Differ. Appl.2015127385 – reference: LiT.PintusN.ViglialoroG.Properties of solutions to porous medium problems with different sources and boundary conditionsZ. Angew. Math. Phys.201970339526871415.3515610.1007/s00033-019-1130-2 – reference: Al-SmadiM.Abu ArqubO.Computational algorithm for solving Fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimatesAppl. Math. Comput.201934228029438641271429.6530410.1016/j.amc.2018.09.020 – reference: LiT.ViglialoroG.Boundedness for a nonlocal reaction chemotaxis model even in the attraction dominated regimeDiffer. Integral Equ.2021345/6315336 – reference: JafariH.SayevandK.TajadodiH.BaleanuD.Homotopy analysis method for solving Abel differential equation of fractional orderCent. Eur. J. Phys.20131115231527 – reference: AtanganaA.BaleanuD.New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer modelTherm. Sci.20162076376910.2298/TSCI160111018A – reference: Al-SmadiM.FreihatA.KhalilH.MomaniS.KhanR.A.Numerical multistep approach for solving fractional partial differential equationsInt. J. Comput. Methods20171436350771404.6521010.1142/S0219876217500293 – reference: DjeddiN.HasanS.Al-SmadiM.MomaniS.Modified analytical approach for generalized quadratic and cubic logistic models with Caputo–Fabrizio fractional derivativeAlex. Eng. J.20205965111512210.1016/j.aej.2020.09.041 – reference: GumahG.NaserM.Al-SmadiM.Al-OmariS.K.Q.BaleanuD.Numerical solutions of hybrid fuzzy differential equations in a Hilbert spaceAppl. Numer. Math.202015140241240541511451.6510210.1016/j.apnum.2020.01.008 – reference: KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.4500310.1016/S0304-0208(06)80001-0 – reference: AlabedalhadiM.Al-SmadiM.Al-OmariS.BaleanuD.MomaniS.Structure of optical soliton solution for nonlinear resonant space-time Schrödinger equation in conformable sense with full nonlinearity termPhys. Scr.2020951010.1088/1402-4896/abb739 – reference: Al-SmadiM.Abu ArqubO.MomaniS.A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equationsMath. Probl. Eng.2013201330497541299.6529710.1155/2013/832074 – reference: HasanS.El-AjouA.HadidS.Al-SmadiM.MomaniS.Atangana–Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics systemChaos Solitons Fractals2020133405506410.1016/j.chaos.2020.109624 – reference: Al-SmadiM.Reliable numerical algorithm for handling fuzzy integral equations of second kind in Hilbert spacesFilomat2019332583597393997510.2298/FIL1902583A – reference: ParandK.NikaryaM.New numerical method based on generalized Bessel function to solve nonlinear Abel fractional differential equation of the first kindNonlinear Eng.2019843844810.1515/nleng-2018-0095 – reference: GumahG.MoaddyK.Al-SmadiM.HashimI.Solutions to uncertain Volterra integral equations by fitted reproducing kernel Hilbert space methodJ. Funct. Spaces2016201635287391347.65194 – reference: Al-SmadiM.Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimationAin Shams Eng. J.2018942517252510.1016/j.asej.2017.04.006 – reference: Al-SmadiM.Abu ArqubO.ZeidanD.Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: theorems and applicationsChaos Solitons Fractals2021146424155810.1016/j.chaos.2021.110891 – reference: Al-SmadiM.Abu ArqubO.GaithM.Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel frameworkMath. Methods Appl. Sci.202010.1002/mma.6998 – reference: Al-SmadiM.Abu ArqubO.HadidS.An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivativeCommun. Theor. Phys.202072841277941451.3524710.1088/1572-9494/ab8a29 – reference: AneddaC.CuccuF.FrassuS.Steiner symmetry in the minimization of the first eigenvalue of a fractional eigenvalue problem with indefinite weightCan. J. Math.202010.4153/S0008414X200002671–23 – reference: ParandK.NikaryaM.Application of Bessel functions for solving differential and integro-differential equations of the fractional orderAppl. Math. Model.2014384137414732338341429.6517210.1016/j.apm.2014.02.001 – reference: ViglialoroG.GonzálezÁ.MurciaJ.A mixed finite-element finite-difference method to solve the equilibrium equations of a prestressed membrane having boundary cablesInt. J. Comput. Math.201794593394536252071371.3507010.1080/00207160.2016.1154950 – reference: RigiF.TajadodiH.Numerical approach of fractional Abel differential equation by Genocchi polynomialsInt. J. Appl. Comput. Math.2019540107390712794210.1007/s40819-019-0720-1 – reference: MakM.K.HarkoT.New method for generating general solution of Abel differential equationComput. Math. Appl.200243919418732441007.3400110.1016/S0898-1221(01)00274-7 – reference: AltawallbehZ.Al-SmadiM.KomashynskaI.AteiwiA.Numerical solutions of fractional systems of two-point BVPs by using the iterative reproducing kernel algorithmUkr. Math. J.20187056877011417.6518310.1007/s11253-018-1526-8 – reference: Al-SmadiM.Abu ArqubO.HadidS.Approximate solutions of nonlinear fractional Kundu–Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series methodPhys. Scr.2020951010.1088/1402-4896/abb420 – reference: AydoganM.S.BaleanuD.MousalouA.RezapourS.On high order fractional integro-differential equations including the Caputo–Fabrizio derivativeBound. Value Probl.2018201838087381422.3401910.1186/s13661-018-1008-9 – reference: Al-SmadiM.Abu ArqubO.MomaniS.Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sensePhys. Scr.202095710.1088/1402-4896/ab96e0 – reference: Al-SmadiM.Abu ArqubO.ShawagfehN.MomaniS.Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel methodAppl. Math. Comput.201629113714835343921410.3405410.1016/j.amc.2016.06.002 – reference: LosadaJ.NietoJ.J.Properties of a new fractional derivative without singular kernelProg. Fract. Differ. Appl.2015128792 – reference: AbdeljawadT.BaleanuD.On fractional derivatives with exponential kernel and their discrete versionsRep. Math. Phys.201780112736898931384.2602510.1016/S0034-4877(17)30059-9 – reference: MukherjeeS.GoswamiD.RoyB.Solution of higher-order Abel equations by differential transform methodInt. J. Mod. Phys. C2012239298166410.1142/S0129183112500568 – reference: GengF.Z.Numerical methods for solving Schrödinger equations in complex reproducing kernel Hilbert spacesMath. Sci.202014293299416620510.1007/s40096-020-00337-6 – reference: YamaleevR.M.RussiaD.Solutions of Riccati–Abel equation in terms of third order trigonometric functionsIndian J. Pure Appl. Math.201445216518431973821322.3400610.1007/s13226-014-0057-8 – reference: AtanganaA.BaleanuD.AlsaediA.New properties of conformable derivativeOpen Math.20151388989834309341354.2600810.1515/math-2015-0081 – reference: InfusinoM.KinaT.The full moment problem on subsets of probabilities and point configurationsJ. Math. Anal. Appl.2020483140198101425.6005010.1016/j.jmaa.2019.123551 – reference: HarkoT.MakM.K.Exact travelling wave solutions of non-linear reaction–convection–diffusion equations—an Abel equation based approachJ. Math. Phys.20155634217991328.3509610.1063/1.4935299 – reference: MillerK.S.RossB.An Introduction to the Fractional Calculus and Fractional Differential Equations1993New YorkWiley0789.26002 – reference: LiX.WuB.Error estimation for the reproducing kernel method to solve linear boundary value problemsJ. Comput. Appl. Math.2013243101530033691261.6508510.1016/j.cam.2012.11.002 – reference: Al-SmadiM.FreihatA.Abu HammadM.MomaniS.Abu ArqubO.Analytical approximations of partial differential equations of fractional order with multistep approachJ. Comput. Theor. Nanosci.20161311779378011364.3536910.1166/jctn.2016.5780 – reference: BülbülB.SezerM.A numerical approach for solving generalized Abel-type nonlinear differential equationsAppl. Math. Comput.201526216917733465321410.6524410.1016/j.amc.2015.04.057 – reference: XuY.HeZ.The short memory principle for solving Abel differential equation of fractional orderComput. Math. Appl.2011624796480528556241236.3400810.1016/j.camwa.2011.10.071 – reference: HasanS.Al-SmadiM.El-AjouA.MomaniS.HadidS.Al-ZhourZ.Numerical approach in the Hilbert space to solve a fuzzy Atangana–Baleanu fractional hybrid systemChaos Solitons Fractals2021143419197410.1016/j.chaos.2020.110506 – reference: GengF.QianS.P.A new reproducing kernel method for linear non local boundary value problemsAppl. Math. Comput.201424842142532766941338.6519510.1016/j.amc.2014.10.002 – reference: BaleanuD.FernandezA.On some new properties of fractional derivatives with Mittag-Leffler kernelCommun. Nonlinear Sci. Numer. Simul.201859944446237584020726335710.1016/j.cnsns.2017.12.003 – reference: Al-SmadiM.Abu ArqubO.El-AjouA.A numerical iterative method for solving systems of first-order periodic boundary value problemsJ. Appl. Math.2014201431911041406.6505010.1155/2014/135465 – volume: 80 start-page: 11 year: 2017 ident: 3428_CR12 publication-title: Rep. Math. Phys. doi: 10.1016/S0034-4877(17)30059-9 – volume: 146 year: 2021 ident: 3428_CR15 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.110891 – volume: 72 issue: 8 year: 2020 ident: 3428_CR3 publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/ab8a29 – volume: 62 start-page: 4796 year: 2011 ident: 3428_CR28 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.10.071 – volume: 2013 year: 2013 ident: 3428_CR39 publication-title: Math. Probl. Eng. doi: 10.1155/2013/832074 – volume: 70 start-page: 687 issue: 5 year: 2018 ident: 3428_CR37 publication-title: Ukr. Math. J. doi: 10.1007/s11253-018-1526-8 – volume: 94 start-page: 933 issue: 5 year: 2017 ident: 3428_CR24 publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2016.1154950 – volume: 45 start-page: 165 issue: 2 year: 2014 ident: 3428_CR31 publication-title: Indian J. Pure Appl. Math. doi: 10.1007/s13226-014-0057-8 – volume-title: An Introduction to the Fractional Calculus and Fractional Differential Equations year: 1993 ident: 3428_CR1 – volume: 95 issue: 10 year: 2020 ident: 3428_CR4 publication-title: Phys. Scr. doi: 10.1088/1402-4896/abb420 – volume: 2016 year: 2016 ident: 3428_CR45 publication-title: J. Funct. Spaces – volume: 14 start-page: 293 year: 2020 ident: 3428_CR36 publication-title: Math. Sci. doi: 10.1007/s40096-020-00337-6 – volume: 291 start-page: 137 year: 2016 ident: 3428_CR42 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2016.06.002 – volume: 95 issue: 10 year: 2020 ident: 3428_CR6 publication-title: Phys. Scr. doi: 10.1088/1402-4896/abb739 – volume: 70 issue: 3 year: 2019 ident: 3428_CR20 publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-019-1130-2 – volume: 151 start-page: 402 year: 2020 ident: 3428_CR43 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2020.01.008 – volume: 56 year: 2015 ident: 3428_CR25 publication-title: J. Math. Phys. doi: 10.1063/1.4935299 – volume: 38 start-page: 4137 year: 2014 ident: 3428_CR30 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.02.001 – volume: 243 start-page: 10 year: 2013 ident: 3428_CR47 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2012.11.002 – volume: 8 start-page: 438 year: 2019 ident: 3428_CR29 publication-title: Nonlinear Eng. doi: 10.1515/nleng-2018-0095 – volume: 1 start-page: 73 issue: 2 year: 2015 ident: 3428_CR10 publication-title: Prog. Fract. Differ. Appl. – volume: 43 start-page: 91 year: 2002 ident: 3428_CR32 publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(01)00274-7 – volume: 2014 year: 2014 ident: 3428_CR34 publication-title: J. Appl. Math. doi: 10.1155/2014/135465 – year: 2020 ident: 3428_CR21 publication-title: Can. J. Math. doi: 10.4153/S0008414X20000267 – volume: 59 start-page: 444 issue: 9 year: 2018 ident: 3428_CR9 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2017.12.003 – volume: 20 start-page: 763 year: 2016 ident: 3428_CR13 publication-title: Therm. Sci. doi: 10.2298/TSCI160111018A – year: 2020 ident: 3428_CR44 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.6998 – volume: 23 issue: 9 year: 2012 ident: 3428_CR33 publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183112500568 – volume: 13 start-page: 7793 issue: 11 year: 2016 ident: 3428_CR40 publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2016.5780 – volume: 483 issue: 1 year: 2020 ident: 3428_CR22 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2019.123551 – volume: 13 start-page: 889 year: 2015 ident: 3428_CR7 publication-title: Open Math. doi: 10.1515/math-2015-0081 – volume: 2018 year: 2018 ident: 3428_CR16 publication-title: Bound. Value Probl. doi: 10.1186/s13661-018-1008-9 – volume: 262 start-page: 169 year: 2015 ident: 3428_CR19 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.04.057 – volume: 143 year: 2021 ident: 3428_CR18 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110506 – volume: 9 start-page: 2517 issue: 4 year: 2018 ident: 3428_CR38 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2017.04.006 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 3428_CR2 doi: 10.1016/S0304-0208(06)80001-0 – volume: 5 year: 2019 ident: 3428_CR27 publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-019-0720-1 – volume: 33 start-page: 583 issue: 2 year: 2019 ident: 3428_CR41 publication-title: Filomat doi: 10.2298/FIL1902583A – volume: 59 start-page: 5111 issue: 6 year: 2020 ident: 3428_CR14 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2020.09.041 – volume: 248 start-page: 421 year: 2014 ident: 3428_CR46 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.10.002 – volume: 342 start-page: 280 year: 2019 ident: 3428_CR35 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2018.09.020 – volume: 133 year: 2020 ident: 3428_CR17 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109624 – volume: 34 start-page: 315 issue: 5/6 year: 2021 ident: 3428_CR23 publication-title: Differ. Integral Equ. – volume: 1 start-page: 87 issue: 2 year: 2015 ident: 3428_CR11 publication-title: Prog. Fract. Differ. Appl. – volume: 11 start-page: 1523 year: 2013 ident: 3428_CR26 publication-title: Cent. Eur. J. Phys. – volume: 95 issue: 7 year: 2020 ident: 3428_CR5 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab96e0 – volume: 14 year: 2017 ident: 3428_CR8 publication-title: Int. J. Comput. Methods doi: 10.1142/S0219876217500293 |
| SSID | ssj0029488 |
| Score | 2.4292374 |
| Snippet | Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based... Abstract Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Abel-type differential equation Algorithms Analysis Caputo–Fabrizio fractional derivative Convergence Difference and Functional Equations Differential equations Error analysis Exact solutions Functional Analysis Hilbert space Kernels Mathematical models Mathematics Mathematics and Statistics Numerical analysis Numerical solution Ordinary Differential Equations Partial Differential Equations Reproducing kernel algorithm |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgsIAFb8RAQV6wA6vxI469QqViVAmpYgFSd5bjR4mUzkwzmS5YVf0F_pAv4dpJphSJbtgmju3oHN_r68e5CL1l2gKwNpDoqCfCak80c5Eoy2IpRQxUuZxsojo6UsfH-su44LYej1VONjEbar90aY18j5XJ9YMzYx9WZyRljUq7q2MKjdvoDmWMJp5_rsg24NIi552kEgZSmglMl2aU3FtTLiUj6YBCEsFThF9zTFm__9qk86990ux-5g__t-OP0INx4on3B6Y8RrfC4gm6_4cc4VN0ub_Atu_zvanzgBebYTenxbY9gRr776cYprgY2JpWIfBiUNmwHT6wq02__HXxc27rrvnRLHHshgsTqcU6tHjKwwL2pMXhbNAXxw20hw-bJLPVYzBtLjxD3-afvh4ckjFHA3HgyXoiHC9VCNF7VYZY-Ar8fcmc4LKKQfMaYLGKVsATCF1qWYSKOuFLHxk0C6ETf452oLvhBcJSFd7LSofKMREAk6L0NJbUc-8iBM8zRCeAjBsFzFMejdbkQEZJM4BqAFSTQTV8ht5tv1kN8h03lv6YcN-WTNLb-cGyOzHjSDZC6roARnFeOWGZrXX0vNYW_i1GzcsZ2p14YEZ7sDZXJJih9xOTrl7_u0svb67tFbrHMofTUcVdtNN3m_Aa3XXnfbPu3uTR8BuwLhGt priority: 102 providerName: ProQuest |
| Title | An attractive numerical algorithm for solving nonlinear Caputo–Fabrizio fractional Abel differential equation in a Hilbert space |
| URI | https://link.springer.com/article/10.1186/s13662-021-03428-3 https://www.proquest.com/docview/2532422232 https://doaj.org/article/469b0687337c4a2ab9fd3b9a60eff935 |
| Volume | 2021 |
| WOSCitedRecordID | wos000657700100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-1847 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0029488 issn: 1687-1847 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ4QAHxFMslJUP3MBqYid-HNuqqyLEKuIhFS6W4wdECrslm-2BE-Iv8A_5JYydpLRIwIWLD7EjWzOfMzPx-BuEnlBlQLHGk2BzRwqjHFHUBiINDSUvgs-lTcUmxHIpT05UdaHUV8wJG-iBB8HtQfhWZ1wKxoQtDDW1Co7VyvDMh6BYYi8Fr2cKpsZQSwEupysyku9tcsY5JTEdIVLeScIumaHE1n_JxfztVDQZm8UtdHP0EvH-sLrb6Ipf3UE3LnAH3kXf9lfY9H265HTm8Wo7HL202LQf1hDxf_yEwR_FAK34ywCvBkoM0-FDc7rt1z--fl-Yumu-NGscuuF2Q5yx9i2eiqbA5m-x_zyQgeMG5sPHTeTE6jF8h6y_h94ujt4cHpOxoAKxYHZ6UlhWSu-Dc7L0IXMCjHNJbcG4CF6xOqfUyFyAUiHOqEHCIreFK12gMC3EOew-2oHl-gcIc5k5x4XywtLCg0iz0uWhzB1zNkCkO0P5JF9tR7bxWPSi1SnqkFwPOtGgE510otkMPT1_53Tg2vjr6IOotvORkSc7PQD06BE9-l_omaHdSel63LwbTcvoZYLfRGfo2QSEX91_XtLD_7GkR-g6TUCN2Ye7aKfvtv4xumbP-mbTzdHVg6Nl9Wqe4A7tC0HmMV_1NbRV-R76q-cvq3c_Acj2CGs |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhMxGLZKQQIO7KiBAj7ACUbN2B4vB4RKIUqVEnEoUm_G46VESpN0MimCE-IVeA8eiifhtyeTUiR664HrLF6_f_Hyfz9CT4kyMLHGZ8HmLmNGuUwRGzJpSCg4Cz6XNiWbEMOhPDhQ79fQzzYWJl6rbHViUtRuauMe-RYpoukHY0ZezY6zmDUqnq62KTQaWAz8l8-wZJu_3H0D8_uMkN7b_Z1-tswqkFnQvXXGLC2k98E5WfjQdQIsVEEso1wEr2iZE2JkLqBn4GyXvOtFbpkrXCAheHD2KZR7CV1mVIrI1T8Q2WqBp1jKc5lzENzoebRBOpJvzXPKOcnihYhIuiczesYQpnwBZ5zcv85lk7nr3fzfBuoWurF0rPF2Iwm30Zqf3EHX_6BbvIu-b0-wqesUF3bi8WTRnFaNsRkfQg_qT0cYXHgM0hh3WfCkYRExFd4xs0U9_fXtR8-U1ejraIpD1QSExBpLP8ZtnhnQl2Psjxv-dDyC-nB_FGnEagyq2_p76MOFDMJ9tA7N9RsIc9l1jgvlhSXMAwa6hctDkTvqbCCCdVDeAkLbJUF7zBMy1mmhJrluQKQBRDqBSNMOer76Z9bQk5z79euIs9WXkVo8PZhWh3qpqTTjquwCgikVlhliShUcLZWBvoWgaNFBmy3u9FLfzfUp6DroRYvc09f_btKD80t7gq7299_t6b3d4eAhukaS_MRrmZtova4W_hG6Yk_q0bx6nCQRo48XjejfdbFvvw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQQgWPIsYaMELWIE1iZ048QKhPhi1GjTqAqTujONHiRRmpplMEawQv8Df8Dl8CddOMqVIdNcF2zz8PPdh-_pchJ5RoWBilSVOx4YkShgiqHYkV9SlPHE2znVINpFNJvnRkThcQz_7uzA-rLLXiUFRm5n2e-RDmnrTD8aMDl0XFnG4N3o9PyE-g5Q_ae3TabQQGdsvn2H5tnh1sAdz_ZzS0Zt3u_ukyzBANOjhhiSapbm1zpg8tS4yGVirlOqE8cxZwYqYUpXHGfQSHO-CRzaLdWJS46hzFhx_BuVeQVfBCqdexsYZWS32RBJyXsYchNh7If2FnZwPFzHjnBIfHOEJ-HLCzhnFkDvgnMP71xltMH2j2__zoN1BtzqHG2-3EnIXrdnpPXTzDxrG--j79hSrpgn3xU4tni7bU6wKq-oYetB8_ITBtccgpX73BU9bdhFV4101XzazX99-jFRRl1_LGXZ1e1HE11jYCvf5Z0CPVtietLzquIT68H7p6cUaDCpd2w30_lIG4QFah-bahwjzPDKGZ8JmmiYW8BClJnZpbJjRjmbJAMU9OKTuiNt9_pBKhgVczmULKAmAkgFQkg3Qi9U_85a25MKvdzzmVl96yvHwYFYfy06DyYSLIgI0M5bpRFFVCGdYIRT0zTnB0gHa7DEoOz24kGcAHKCXPYrPXv-7SY8uLu0pug5Alm8PJuPH6AYNouSjNTfRelMv7Ra6pk-bclE_CUKJ0YfLBvRvW5R4eQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+attractive+numerical+algorithm+for+solving+nonlinear+Caputo%E2%80%93Fabrizio+fractional+Abel+differential+equation+in+a+Hilbert+space&rft.jtitle=Advances+in+difference+equations&rft.au=Al-Smadi%2C+Mohammed&rft.au=Djeddi%2C+Nadir&rft.au=Momani%2C+Shaher&rft.au=Al-Omari%2C+Shrideh&rft.date=2021-05-26&rft.issn=1687-1847&rft.eissn=1687-1847&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-021-03428-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13662_021_03428_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon |