An attractive numerical algorithm for solving nonlinear Caputo–Fabrizio fractional Abel differential equation in a Hilbert space

Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations Jg. 2021; H. 1; S. 1 - 18
Hauptverfasser: Al-Smadi, Mohammed, Djeddi, Nadir, Momani, Shaher, Al-Omari, Shrideh, Araci, Serkan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 26.05.2021
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1687-1847, 1687-1839, 1687-1847
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space H 2 [ a , b ] . We investigate and discuss stability and convergence of the proposed method. The n -term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences.
AbstractList Abstract Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space H 2 [ a , b ] $\mathcal{H}^{2}[a,b]$ . We investigate and discuss stability and convergence of the proposed method. The n-term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences.
Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space H 2 [ a , b ] . We investigate and discuss stability and convergence of the proposed method. The n -term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences.
Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space $\mathcal{H}^{2}[a,b]$ H 2 [ a , b ] . We investigate and discuss stability and convergence of the proposed method. The n -term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences.
Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space H2[a,b]. We investigate and discuss stability and convergence of the proposed method. The n-term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences.
ArticleNumber 271
Author Araci, Serkan
Momani, Shaher
Al-Omari, Shrideh
Al-Smadi, Mohammed
Djeddi, Nadir
Author_xml – sequence: 1
  givenname: Mohammed
  surname: Al-Smadi
  fullname: Al-Smadi, Mohammed
  organization: Department of Applied Science, Ajloun College, Al-Balqa Applied University, Nonlinear Dynamics Research Center (NDRC), Ajman University
– sequence: 2
  givenname: Nadir
  surname: Djeddi
  fullname: Djeddi, Nadir
  organization: Department of Mathematics, Faculty of Science, The University of Jordan
– sequence: 3
  givenname: Shaher
  surname: Momani
  fullname: Momani, Shaher
  organization: Nonlinear Dynamics Research Center (NDRC), Ajman University, Department of Mathematics, Faculty of Science, The University of Jordan
– sequence: 4
  givenname: Shrideh
  orcidid: 0000-0001-8955-5552
  surname: Al-Omari
  fullname: Al-Omari, Shrideh
  email: shridehalomari@bau.edu.jo, s.k.q.alomari@fet.edu.jo
  organization: Department of Mathematics, Faculty of Science, Al Balqa Applied University
– sequence: 5
  givenname: Serkan
  surname: Araci
  fullname: Araci, Serkan
  organization: Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University
BookMark eNp9Uc1u1DAYtFCRaAsvwMkS50D8E8c5rlaUVqrEBc7WF-fz4pU33tpOJTghXqFvyJPgbkAgDj3Z-jwz33jmgpzNcUZCXrP2LWNavctMKMWblrOmFZLrRjwj50zpvmFa9mf_3F-Qi5z3bcsHqfU5-bGZKZSSwBZ_j3ReDpi8hUAh7GLy5cuBuphojuHezzta1wY_IyS6heNS4s_vD1cwJv_NR-pOInGu5M2IgU7eOUw4F18neLfA4yP1dR-99mHEVGg-gsWX5LmDkPHV7_OSfL56_2l73dx-_HCz3dw2VvKhNNKKTiO6adIdunbqlWIdt1Ko3uEgRsY5aNZbC103jKrFnlk5dZPj1YZSSlySm1V3irA3x-QPkL6aCN6cBjHtDKTibUAj1TC2NTEheiuBwzi4SYwDVFXnBtFVrTer1jHFuwVzMfu4pPr1bHgnuOScC15RekXZFHNO6Iz15RRDDdwHw1rz2J5Z2zO1PXNqz4hK5f9R_xh-kiRWUq7geYfpr6snWL8AnFiyGw
CitedBy_id crossref_primary_10_1186_s13662_022_03726_4
crossref_primary_10_32604_cmes_2023_026313
crossref_primary_10_3390_fractalfract7080584
crossref_primary_10_1007_s40314_022_01857_8
crossref_primary_10_3390_fractalfract6040210
crossref_primary_10_3390_sym14040804
crossref_primary_10_1016_j_apnum_2021_08_005
crossref_primary_10_3390_fractalfract8090533
crossref_primary_10_1038_s41598_023_43630_9
crossref_primary_10_1038_s41598_024_55059_9
crossref_primary_10_1155_2021_3230272
crossref_primary_10_3390_sym14081725
crossref_primary_10_3390_e23121646
crossref_primary_10_1016_j_chaos_2022_111915
crossref_primary_10_1515_phys_2023_0161
crossref_primary_10_3390_math9222868
crossref_primary_10_1016_j_enganabound_2023_10_014
crossref_primary_10_1016_j_sciaf_2022_e01385
crossref_primary_10_3390_sym15071296
crossref_primary_10_32604_cmes_2022_017010
crossref_primary_10_1186_s13662_021_03669_2
crossref_primary_10_3390_fractalfract7070506
crossref_primary_10_1007_s40435_022_00961_1
crossref_primary_10_1002_mma_7833
crossref_primary_10_1007_s40995_022_01404_4
crossref_primary_10_1186_s13662_021_03628_x
crossref_primary_10_1155_2022_4422186
Cites_doi 10.1016/S0034-4877(17)30059-9
10.1016/j.chaos.2021.110891
10.1088/1572-9494/ab8a29
10.1016/j.camwa.2011.10.071
10.1155/2013/832074
10.1007/s11253-018-1526-8
10.1080/00207160.2016.1154950
10.1007/s13226-014-0057-8
10.1088/1402-4896/abb420
10.1007/s40096-020-00337-6
10.1016/j.amc.2016.06.002
10.1088/1402-4896/abb739
10.1007/s00033-019-1130-2
10.1016/j.apnum.2020.01.008
10.1063/1.4935299
10.1016/j.apm.2014.02.001
10.1016/j.cam.2012.11.002
10.1515/nleng-2018-0095
10.1016/S0898-1221(01)00274-7
10.1155/2014/135465
10.4153/S0008414X20000267
10.1016/j.cnsns.2017.12.003
10.2298/TSCI160111018A
10.1002/mma.6998
10.1142/S0129183112500568
10.1166/jctn.2016.5780
10.1016/j.jmaa.2019.123551
10.1515/math-2015-0081
10.1186/s13661-018-1008-9
10.1016/j.amc.2015.04.057
10.1016/j.chaos.2020.110506
10.1016/j.asej.2017.04.006
10.1016/S0304-0208(06)80001-0
10.1007/s40819-019-0720-1
10.2298/FIL1902583A
10.1016/j.aej.2020.09.041
10.1016/j.amc.2014.10.002
10.1016/j.amc.2018.09.020
10.1016/j.chaos.2020.109624
10.1088/1402-4896/ab96e0
10.1142/S0219876217500293
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1186/s13662-021-03428-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 18
ExternalDocumentID oai_doaj_org_article_469b0687337c4a2ab9fd3b9a60eff935
10_1186_s13662_021_03428_3
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c429t-4c358eefdd85ef0d766152c4367fe93b122a817cca559b60e71c4d5df2ffe6663
IEDL.DBID DOA
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000657700100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1847
1687-1839
IngestDate Tue Oct 14 19:00:11 EDT 2025
Tue Sep 30 18:38:33 EDT 2025
Sat Nov 29 01:43:51 EST 2025
Tue Nov 18 21:52:01 EST 2025
Fri Feb 21 02:49:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Abel-type differential equation
Caputo–Fabrizio fractional derivative
Error analysis
Reproducing kernel algorithm
Numerical solution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-4c358eefdd85ef0d766152c4367fe93b122a817cca559b60e71c4d5df2ffe6663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8955-5552
OpenAccessLink https://doaj.org/article/469b0687337c4a2ab9fd3b9a60eff935
PQID 2532422232
PQPubID 237355
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_469b0687337c4a2ab9fd3b9a60eff935
proquest_journals_2532422232
crossref_citationtrail_10_1186_s13662_021_03428_3
crossref_primary_10_1186_s13662_021_03428_3
springer_journals_10_1186_s13662_021_03428_3
PublicationCentury 2000
PublicationDate 2021-05-26
PublicationDateYYYYMMDD 2021-05-26
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-26
  day: 26
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.4500310.1016/S0304-0208(06)80001-0
ParandK.NikaryaM.New numerical method based on generalized Bessel function to solve nonlinear Abel fractional differential equation of the first kindNonlinear Eng.2019843844810.1515/nleng-2018-0095
MakM.K.HarkoT.New method for generating general solution of Abel differential equationComput. Math. Appl.200243919418732441007.3400110.1016/S0898-1221(01)00274-7
GumahG.MoaddyK.Al-SmadiM.HashimI.Solutions to uncertain Volterra integral equations by fitted reproducing kernel Hilbert space methodJ. Funct. Spaces2016201635287391347.65194
Al-SmadiM.Abu ArqubO.HadidS.An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivativeCommun. Theor. Phys.202072841277941451.3524710.1088/1572-9494/ab8a29
LiT.ViglialoroG.Boundedness for a nonlocal reaction chemotaxis model even in the attraction dominated regimeDiffer. Integral Equ.2021345/6315336
LiT.PintusN.ViglialoroG.Properties of solutions to porous medium problems with different sources and boundary conditionsZ. Angew. Math. Phys.201970339526871415.3515610.1007/s00033-019-1130-2
DjeddiN.HasanS.Al-SmadiM.MomaniS.Modified analytical approach for generalized quadratic and cubic logistic models with Caputo–Fabrizio fractional derivativeAlex. Eng. J.20205965111512210.1016/j.aej.2020.09.041
Al-SmadiM.Abu ArqubO.MomaniS.Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sensePhys. Scr.202095710.1088/1402-4896/ab96e0
AydoganM.S.BaleanuD.MousalouA.RezapourS.On high order fractional integro-differential equations including the Caputo–Fabrizio derivativeBound. Value Probl.2018201838087381422.3401910.1186/s13661-018-1008-9
GengF.Z.Numerical methods for solving Schrödinger equations in complex reproducing kernel Hilbert spacesMath. Sci.202014293299416620510.1007/s40096-020-00337-6
AlabedalhadiM.Al-SmadiM.Al-OmariS.BaleanuD.MomaniS.Structure of optical soliton solution for nonlinear resonant space-time Schrödinger equation in conformable sense with full nonlinearity termPhys. Scr.2020951010.1088/1402-4896/abb739
HarkoT.MakM.K.Exact travelling wave solutions of non-linear reaction–convection–diffusion equations—an Abel equation based approachJ. Math. Phys.20155634217991328.3509610.1063/1.4935299
YamaleevR.M.RussiaD.Solutions of Riccati–Abel equation in terms of third order trigonometric functionsIndian J. Pure Appl. Math.201445216518431973821322.3400610.1007/s13226-014-0057-8
CaputoM.FabrizioM.A new definition of fractional derivative without singular kernelProg. Fract. Differ. Appl.2015127385
XuY.HeZ.The short memory principle for solving Abel differential equation of fractional orderComput. Math. Appl.2011624796480528556241236.3400810.1016/j.camwa.2011.10.071
Al-SmadiM.Abu ArqubO.GaithM.Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel frameworkMath. Methods Appl. Sci.202010.1002/mma.6998
ViglialoroG.GonzálezÁ.MurciaJ.A mixed finite-element finite-difference method to solve the equilibrium equations of a prestressed membrane having boundary cablesInt. J. Comput. Math.201794593394536252071371.3507010.1080/00207160.2016.1154950
GumahG.NaserM.Al-SmadiM.Al-OmariS.K.Q.BaleanuD.Numerical solutions of hybrid fuzzy differential equations in a Hilbert spaceAppl. Numer. Math.202015140241240541511451.6510210.1016/j.apnum.2020.01.008
Al-SmadiM.Abu ArqubO.Computational algorithm for solving Fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimatesAppl. Math. Comput.201934228029438641271429.6530410.1016/j.amc.2018.09.020
Al-SmadiM.Abu ArqubO.ShawagfehN.MomaniS.Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel methodAppl. Math. Comput.201629113714835343921410.3405410.1016/j.amc.2016.06.002
BaleanuD.FernandezA.On some new properties of fractional derivatives with Mittag-Leffler kernelCommun. Nonlinear Sci. Numer. Simul.201859944446237584020726335710.1016/j.cnsns.2017.12.003
HasanS.Al-SmadiM.El-AjouA.MomaniS.HadidS.Al-ZhourZ.Numerical approach in the Hilbert space to solve a fuzzy Atangana–Baleanu fractional hybrid systemChaos Solitons Fractals2021143419197410.1016/j.chaos.2020.110506
Al-SmadiM.Reliable numerical algorithm for handling fuzzy integral equations of second kind in Hilbert spacesFilomat2019332583597393997510.2298/FIL1902583A
RigiF.TajadodiH.Numerical approach of fractional Abel differential equation by Genocchi polynomialsInt. J. Appl. Comput. Math.2019540107390712794210.1007/s40819-019-0720-1
Al-SmadiM.Abu ArqubO.ZeidanD.Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: theorems and applicationsChaos Solitons Fractals2021146424155810.1016/j.chaos.2021.110891
GengF.QianS.P.A new reproducing kernel method for linear non local boundary value problemsAppl. Math. Comput.201424842142532766941338.6519510.1016/j.amc.2014.10.002
Al-SmadiM.Abu ArqubO.HadidS.Approximate solutions of nonlinear fractional Kundu–Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series methodPhys. Scr.2020951010.1088/1402-4896/abb420
AtanganaA.BaleanuD.AlsaediA.New properties of conformable derivativeOpen Math.20151388989834309341354.2600810.1515/math-2015-0081
Al-SmadiM.FreihatA.KhalilH.MomaniS.KhanR.A.Numerical multistep approach for solving fractional partial differential equationsInt. J. Comput. Methods20171436350771404.6521010.1142/S0219876217500293
BülbülB.SezerM.A numerical approach for solving generalized Abel-type nonlinear differential equationsAppl. Math. Comput.201526216917733465321410.6524410.1016/j.amc.2015.04.057
Al-SmadiM.Abu ArqubO.El-AjouA.A numerical iterative method for solving systems of first-order periodic boundary value problemsJ. Appl. Math.2014201431911041406.6505010.1155/2014/135465
AbdeljawadT.BaleanuD.On fractional derivatives with exponential kernel and their discrete versionsRep. Math. Phys.201780112736898931384.2602510.1016/S0034-4877(17)30059-9
AneddaC.CuccuF.FrassuS.Steiner symmetry in the minimization of the first eigenvalue of a fractional eigenvalue problem with indefinite weightCan. J. Math.202010.4153/S0008414X200002671–23
AtanganaA.BaleanuD.New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer modelTherm. Sci.20162076376910.2298/TSCI160111018A
LiX.WuB.Error estimation for the reproducing kernel method to solve linear boundary value problemsJ. Comput. Appl. Math.2013243101530033691261.6508510.1016/j.cam.2012.11.002
HasanS.El-AjouA.HadidS.Al-SmadiM.MomaniS.Atangana–Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics systemChaos Solitons Fractals2020133405506410.1016/j.chaos.2020.109624
MillerK.S.RossB.An Introduction to the Fractional Calculus and Fractional Differential Equations1993New YorkWiley0789.26002
LosadaJ.NietoJ.J.Properties of a new fractional derivative without singular kernelProg. Fract. Differ. Appl.2015128792
AltawallbehZ.Al-SmadiM.KomashynskaI.AteiwiA.Numerical solutions of fractional systems of two-point BVPs by using the iterative reproducing kernel algorithmUkr. Math. J.20187056877011417.6518310.1007/s11253-018-1526-8
Al-SmadiM.Abu ArqubO.MomaniS.A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equationsMath. Probl. Eng.2013201330497541299.6529710.1155/2013/832074
ParandK.NikaryaM.Application of Bessel functions for solving differential and integro-differential equations of the fractional orderAppl. Math. Model.2014384137414732338341429.6517210.1016/j.apm.2014.02.001
InfusinoM.KinaT.The full moment problem on subsets of probabilities and point configurationsJ. Math. Anal. Appl.2020483140198101425.6005010.1016/j.jmaa.2019.123551
JafariH.SayevandK.TajadodiH.BaleanuD.Homotopy analysis method for solving Abel differential equation of fractional orderCent. Eur. J. Phys.20131115231527
MukherjeeS.GoswamiD.RoyB.Solution of higher-order Abel equations by differential transform methodInt. J. Mod. Phys. C2012239298166410.1142/S0129183112500568
Al-SmadiM.Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimationAin Shams Eng. J.2018942517252510.1016/j.asej.2017.04.006
Al-SmadiM.FreihatA.Abu HammadM.MomaniS.Abu ArqubO.Analytical approximations of partial differential equations of fractional order with multistep approachJ. Comput. Theor. Nanosci.20161311779378011364.3536910.1166/jctn.2016.5780
K.S. Miller (3428_CR1) 1993
M. Al-Smadi (3428_CR42) 2016; 291
S. Hasan (3428_CR17) 2020; 133
M. Al-Smadi (3428_CR44) 2020
D. Baleanu (3428_CR9) 2018; 59
M. Al-Smadi (3428_CR40) 2016; 13
M. Al-Smadi (3428_CR4) 2020; 95
T. Harko (3428_CR25) 2015; 56
M. Al-Smadi (3428_CR5) 2020; 95
K. Parand (3428_CR30) 2014; 38
G. Gumah (3428_CR45) 2016; 2016
N. Djeddi (3428_CR14) 2020; 59
M. Al-Smadi (3428_CR39) 2013; 2013
X. Li (3428_CR47) 2013; 243
M. Al-Smadi (3428_CR8) 2017; 14
B. Bülbül (3428_CR19) 2015; 262
K. Parand (3428_CR29) 2019; 8
M. Infusino (3428_CR22) 2020; 483
M.K. Mak (3428_CR32) 2002; 43
A. Atangana (3428_CR13) 2016; 20
T. Abdeljawad (3428_CR12) 2017; 80
C. Anedda (3428_CR21) 2020
F. Rigi (3428_CR27) 2019; 5
Y. Xu (3428_CR28) 2011; 62
A.A. Kilbas (3428_CR2) 2006
M.S. Aydogan (3428_CR16) 2018; 2018
M. Al-Smadi (3428_CR3) 2020; 72
T. Li (3428_CR23) 2021; 34
F. Geng (3428_CR46) 2014; 248
J. Losada (3428_CR11) 2015; 1
G. Gumah (3428_CR43) 2020; 151
R.M. Yamaleev (3428_CR31) 2014; 45
M. Al-Smadi (3428_CR34) 2014; 2014
M. Al-Smadi (3428_CR35) 2019; 342
Z. Altawallbeh (3428_CR37) 2018; 70
F.Z. Geng (3428_CR36) 2020; 14
S. Hasan (3428_CR18) 2021; 143
H. Jafari (3428_CR26) 2013; 11
M. Al-Smadi (3428_CR38) 2018; 9
M. Caputo (3428_CR10) 2015; 1
G. Viglialoro (3428_CR24) 2017; 94
A. Atangana (3428_CR7) 2015; 13
M. Al-Smadi (3428_CR41) 2019; 33
M. Alabedalhadi (3428_CR6) 2020; 95
S. Mukherjee (3428_CR33) 2012; 23
M. Al-Smadi (3428_CR15) 2021; 146
T. Li (3428_CR20) 2019; 70
References_xml – reference: CaputoM.FabrizioM.A new definition of fractional derivative without singular kernelProg. Fract. Differ. Appl.2015127385
– reference: LiT.PintusN.ViglialoroG.Properties of solutions to porous medium problems with different sources and boundary conditionsZ. Angew. Math. Phys.201970339526871415.3515610.1007/s00033-019-1130-2
– reference: Al-SmadiM.Abu ArqubO.Computational algorithm for solving Fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimatesAppl. Math. Comput.201934228029438641271429.6530410.1016/j.amc.2018.09.020
– reference: LiT.ViglialoroG.Boundedness for a nonlocal reaction chemotaxis model even in the attraction dominated regimeDiffer. Integral Equ.2021345/6315336
– reference: JafariH.SayevandK.TajadodiH.BaleanuD.Homotopy analysis method for solving Abel differential equation of fractional orderCent. Eur. J. Phys.20131115231527
– reference: AtanganaA.BaleanuD.New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer modelTherm. Sci.20162076376910.2298/TSCI160111018A
– reference: Al-SmadiM.FreihatA.KhalilH.MomaniS.KhanR.A.Numerical multistep approach for solving fractional partial differential equationsInt. J. Comput. Methods20171436350771404.6521010.1142/S0219876217500293
– reference: DjeddiN.HasanS.Al-SmadiM.MomaniS.Modified analytical approach for generalized quadratic and cubic logistic models with Caputo–Fabrizio fractional derivativeAlex. Eng. J.20205965111512210.1016/j.aej.2020.09.041
– reference: GumahG.NaserM.Al-SmadiM.Al-OmariS.K.Q.BaleanuD.Numerical solutions of hybrid fuzzy differential equations in a Hilbert spaceAppl. Numer. Math.202015140241240541511451.6510210.1016/j.apnum.2020.01.008
– reference: KilbasA.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.4500310.1016/S0304-0208(06)80001-0
– reference: AlabedalhadiM.Al-SmadiM.Al-OmariS.BaleanuD.MomaniS.Structure of optical soliton solution for nonlinear resonant space-time Schrödinger equation in conformable sense with full nonlinearity termPhys. Scr.2020951010.1088/1402-4896/abb739
– reference: Al-SmadiM.Abu ArqubO.MomaniS.A computational method for two-point boundary value problems of fourth-order mixed integrodifferential equationsMath. Probl. Eng.2013201330497541299.6529710.1155/2013/832074
– reference: HasanS.El-AjouA.HadidS.Al-SmadiM.MomaniS.Atangana–Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics systemChaos Solitons Fractals2020133405506410.1016/j.chaos.2020.109624
– reference: Al-SmadiM.Reliable numerical algorithm for handling fuzzy integral equations of second kind in Hilbert spacesFilomat2019332583597393997510.2298/FIL1902583A
– reference: ParandK.NikaryaM.New numerical method based on generalized Bessel function to solve nonlinear Abel fractional differential equation of the first kindNonlinear Eng.2019843844810.1515/nleng-2018-0095
– reference: GumahG.MoaddyK.Al-SmadiM.HashimI.Solutions to uncertain Volterra integral equations by fitted reproducing kernel Hilbert space methodJ. Funct. Spaces2016201635287391347.65194
– reference: Al-SmadiM.Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimationAin Shams Eng. J.2018942517252510.1016/j.asej.2017.04.006
– reference: Al-SmadiM.Abu ArqubO.ZeidanD.Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: theorems and applicationsChaos Solitons Fractals2021146424155810.1016/j.chaos.2021.110891
– reference: Al-SmadiM.Abu ArqubO.GaithM.Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel frameworkMath. Methods Appl. Sci.202010.1002/mma.6998
– reference: Al-SmadiM.Abu ArqubO.HadidS.An attractive analytical technique for coupled system of fractional partial differential equations in shallow water waves with conformable derivativeCommun. Theor. Phys.202072841277941451.3524710.1088/1572-9494/ab8a29
– reference: AneddaC.CuccuF.FrassuS.Steiner symmetry in the minimization of the first eigenvalue of a fractional eigenvalue problem with indefinite weightCan. J. Math.202010.4153/S0008414X200002671–23
– reference: ParandK.NikaryaM.Application of Bessel functions for solving differential and integro-differential equations of the fractional orderAppl. Math. Model.2014384137414732338341429.6517210.1016/j.apm.2014.02.001
– reference: ViglialoroG.GonzálezÁ.MurciaJ.A mixed finite-element finite-difference method to solve the equilibrium equations of a prestressed membrane having boundary cablesInt. J. Comput. Math.201794593394536252071371.3507010.1080/00207160.2016.1154950
– reference: RigiF.TajadodiH.Numerical approach of fractional Abel differential equation by Genocchi polynomialsInt. J. Appl. Comput. Math.2019540107390712794210.1007/s40819-019-0720-1
– reference: MakM.K.HarkoT.New method for generating general solution of Abel differential equationComput. Math. Appl.200243919418732441007.3400110.1016/S0898-1221(01)00274-7
– reference: AltawallbehZ.Al-SmadiM.KomashynskaI.AteiwiA.Numerical solutions of fractional systems of two-point BVPs by using the iterative reproducing kernel algorithmUkr. Math. J.20187056877011417.6518310.1007/s11253-018-1526-8
– reference: Al-SmadiM.Abu ArqubO.HadidS.Approximate solutions of nonlinear fractional Kundu–Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series methodPhys. Scr.2020951010.1088/1402-4896/abb420
– reference: AydoganM.S.BaleanuD.MousalouA.RezapourS.On high order fractional integro-differential equations including the Caputo–Fabrizio derivativeBound. Value Probl.2018201838087381422.3401910.1186/s13661-018-1008-9
– reference: Al-SmadiM.Abu ArqubO.MomaniS.Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sensePhys. Scr.202095710.1088/1402-4896/ab96e0
– reference: Al-SmadiM.Abu ArqubO.ShawagfehN.MomaniS.Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel methodAppl. Math. Comput.201629113714835343921410.3405410.1016/j.amc.2016.06.002
– reference: LosadaJ.NietoJ.J.Properties of a new fractional derivative without singular kernelProg. Fract. Differ. Appl.2015128792
– reference: AbdeljawadT.BaleanuD.On fractional derivatives with exponential kernel and their discrete versionsRep. Math. Phys.201780112736898931384.2602510.1016/S0034-4877(17)30059-9
– reference: MukherjeeS.GoswamiD.RoyB.Solution of higher-order Abel equations by differential transform methodInt. J. Mod. Phys. C2012239298166410.1142/S0129183112500568
– reference: GengF.Z.Numerical methods for solving Schrödinger equations in complex reproducing kernel Hilbert spacesMath. Sci.202014293299416620510.1007/s40096-020-00337-6
– reference: YamaleevR.M.RussiaD.Solutions of Riccati–Abel equation in terms of third order trigonometric functionsIndian J. Pure Appl. Math.201445216518431973821322.3400610.1007/s13226-014-0057-8
– reference: AtanganaA.BaleanuD.AlsaediA.New properties of conformable derivativeOpen Math.20151388989834309341354.2600810.1515/math-2015-0081
– reference: InfusinoM.KinaT.The full moment problem on subsets of probabilities and point configurationsJ. Math. Anal. Appl.2020483140198101425.6005010.1016/j.jmaa.2019.123551
– reference: HarkoT.MakM.K.Exact travelling wave solutions of non-linear reaction–convection–diffusion equations—an Abel equation based approachJ. Math. Phys.20155634217991328.3509610.1063/1.4935299
– reference: MillerK.S.RossB.An Introduction to the Fractional Calculus and Fractional Differential Equations1993New YorkWiley0789.26002
– reference: LiX.WuB.Error estimation for the reproducing kernel method to solve linear boundary value problemsJ. Comput. Appl. Math.2013243101530033691261.6508510.1016/j.cam.2012.11.002
– reference: Al-SmadiM.FreihatA.Abu HammadM.MomaniS.Abu ArqubO.Analytical approximations of partial differential equations of fractional order with multistep approachJ. Comput. Theor. Nanosci.20161311779378011364.3536910.1166/jctn.2016.5780
– reference: BülbülB.SezerM.A numerical approach for solving generalized Abel-type nonlinear differential equationsAppl. Math. Comput.201526216917733465321410.6524410.1016/j.amc.2015.04.057
– reference: XuY.HeZ.The short memory principle for solving Abel differential equation of fractional orderComput. Math. Appl.2011624796480528556241236.3400810.1016/j.camwa.2011.10.071
– reference: HasanS.Al-SmadiM.El-AjouA.MomaniS.HadidS.Al-ZhourZ.Numerical approach in the Hilbert space to solve a fuzzy Atangana–Baleanu fractional hybrid systemChaos Solitons Fractals2021143419197410.1016/j.chaos.2020.110506
– reference: GengF.QianS.P.A new reproducing kernel method for linear non local boundary value problemsAppl. Math. Comput.201424842142532766941338.6519510.1016/j.amc.2014.10.002
– reference: BaleanuD.FernandezA.On some new properties of fractional derivatives with Mittag-Leffler kernelCommun. Nonlinear Sci. Numer. Simul.201859944446237584020726335710.1016/j.cnsns.2017.12.003
– reference: Al-SmadiM.Abu ArqubO.El-AjouA.A numerical iterative method for solving systems of first-order periodic boundary value problemsJ. Appl. Math.2014201431911041406.6505010.1155/2014/135465
– volume: 80
  start-page: 11
  year: 2017
  ident: 3428_CR12
  publication-title: Rep. Math. Phys.
  doi: 10.1016/S0034-4877(17)30059-9
– volume: 146
  year: 2021
  ident: 3428_CR15
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.110891
– volume: 72
  issue: 8
  year: 2020
  ident: 3428_CR3
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/ab8a29
– volume: 62
  start-page: 4796
  year: 2011
  ident: 3428_CR28
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.10.071
– volume: 2013
  year: 2013
  ident: 3428_CR39
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2013/832074
– volume: 70
  start-page: 687
  issue: 5
  year: 2018
  ident: 3428_CR37
  publication-title: Ukr. Math. J.
  doi: 10.1007/s11253-018-1526-8
– volume: 94
  start-page: 933
  issue: 5
  year: 2017
  ident: 3428_CR24
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2016.1154950
– volume: 45
  start-page: 165
  issue: 2
  year: 2014
  ident: 3428_CR31
  publication-title: Indian J. Pure Appl. Math.
  doi: 10.1007/s13226-014-0057-8
– volume-title: An Introduction to the Fractional Calculus and Fractional Differential Equations
  year: 1993
  ident: 3428_CR1
– volume: 95
  issue: 10
  year: 2020
  ident: 3428_CR4
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abb420
– volume: 2016
  year: 2016
  ident: 3428_CR45
  publication-title: J. Funct. Spaces
– volume: 14
  start-page: 293
  year: 2020
  ident: 3428_CR36
  publication-title: Math. Sci.
  doi: 10.1007/s40096-020-00337-6
– volume: 291
  start-page: 137
  year: 2016
  ident: 3428_CR42
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2016.06.002
– volume: 95
  issue: 10
  year: 2020
  ident: 3428_CR6
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abb739
– volume: 70
  issue: 3
  year: 2019
  ident: 3428_CR20
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-019-1130-2
– volume: 151
  start-page: 402
  year: 2020
  ident: 3428_CR43
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2020.01.008
– volume: 56
  year: 2015
  ident: 3428_CR25
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4935299
– volume: 38
  start-page: 4137
  year: 2014
  ident: 3428_CR30
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2014.02.001
– volume: 243
  start-page: 10
  year: 2013
  ident: 3428_CR47
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.11.002
– volume: 8
  start-page: 438
  year: 2019
  ident: 3428_CR29
  publication-title: Nonlinear Eng.
  doi: 10.1515/nleng-2018-0095
– volume: 1
  start-page: 73
  issue: 2
  year: 2015
  ident: 3428_CR10
  publication-title: Prog. Fract. Differ. Appl.
– volume: 43
  start-page: 91
  year: 2002
  ident: 3428_CR32
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(01)00274-7
– volume: 2014
  year: 2014
  ident: 3428_CR34
  publication-title: J. Appl. Math.
  doi: 10.1155/2014/135465
– year: 2020
  ident: 3428_CR21
  publication-title: Can. J. Math.
  doi: 10.4153/S0008414X20000267
– volume: 59
  start-page: 444
  issue: 9
  year: 2018
  ident: 3428_CR9
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.12.003
– volume: 20
  start-page: 763
  year: 2016
  ident: 3428_CR13
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI160111018A
– year: 2020
  ident: 3428_CR44
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6998
– volume: 23
  issue: 9
  year: 2012
  ident: 3428_CR33
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183112500568
– volume: 13
  start-page: 7793
  issue: 11
  year: 2016
  ident: 3428_CR40
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2016.5780
– volume: 483
  issue: 1
  year: 2020
  ident: 3428_CR22
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.123551
– volume: 13
  start-page: 889
  year: 2015
  ident: 3428_CR7
  publication-title: Open Math.
  doi: 10.1515/math-2015-0081
– volume: 2018
  year: 2018
  ident: 3428_CR16
  publication-title: Bound. Value Probl.
  doi: 10.1186/s13661-018-1008-9
– volume: 262
  start-page: 169
  year: 2015
  ident: 3428_CR19
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.04.057
– volume: 143
  year: 2021
  ident: 3428_CR18
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110506
– volume: 9
  start-page: 2517
  issue: 4
  year: 2018
  ident: 3428_CR38
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2017.04.006
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 3428_CR2
  doi: 10.1016/S0304-0208(06)80001-0
– volume: 5
  year: 2019
  ident: 3428_CR27
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-019-0720-1
– volume: 33
  start-page: 583
  issue: 2
  year: 2019
  ident: 3428_CR41
  publication-title: Filomat
  doi: 10.2298/FIL1902583A
– volume: 59
  start-page: 5111
  issue: 6
  year: 2020
  ident: 3428_CR14
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2020.09.041
– volume: 248
  start-page: 421
  year: 2014
  ident: 3428_CR46
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.10.002
– volume: 342
  start-page: 280
  year: 2019
  ident: 3428_CR35
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2018.09.020
– volume: 133
  year: 2020
  ident: 3428_CR17
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109624
– volume: 34
  start-page: 315
  issue: 5/6
  year: 2021
  ident: 3428_CR23
  publication-title: Differ. Integral Equ.
– volume: 1
  start-page: 87
  issue: 2
  year: 2015
  ident: 3428_CR11
  publication-title: Prog. Fract. Differ. Appl.
– volume: 11
  start-page: 1523
  year: 2013
  ident: 3428_CR26
  publication-title: Cent. Eur. J. Phys.
– volume: 95
  issue: 7
  year: 2020
  ident: 3428_CR5
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab96e0
– volume: 14
  year: 2017
  ident: 3428_CR8
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S0219876217500293
SSID ssj0029488
Score 2.4292374
Snippet Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based...
Abstract Our aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Abel-type differential equation
Algorithms
Analysis
Caputo–Fabrizio fractional derivative
Convergence
Difference and Functional Equations
Differential equations
Error analysis
Exact solutions
Functional Analysis
Hilbert space
Kernels
Mathematical models
Mathematics
Mathematics and Statistics
Numerical analysis
Numerical solution
Ordinary Differential Equations
Partial Differential Equations
Reproducing kernel algorithm
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgsIAFb8RAQV6wA6vxI469QqViVAmpYgFSd5bjR4mUzkwzmS5YVf0F_pAv4dpJphSJbtgmju3oHN_r68e5CL1l2gKwNpDoqCfCak80c5Eoy2IpRQxUuZxsojo6UsfH-su44LYej1VONjEbar90aY18j5XJ9YMzYx9WZyRljUq7q2MKjdvoDmWMJp5_rsg24NIi552kEgZSmglMl2aU3FtTLiUj6YBCEsFThF9zTFm__9qk86990ux-5g__t-OP0INx4on3B6Y8RrfC4gm6_4cc4VN0ub_Atu_zvanzgBebYTenxbY9gRr776cYprgY2JpWIfBiUNmwHT6wq02__HXxc27rrvnRLHHshgsTqcU6tHjKwwL2pMXhbNAXxw20hw-bJLPVYzBtLjxD3-afvh4ckjFHA3HgyXoiHC9VCNF7VYZY-Ar8fcmc4LKKQfMaYLGKVsATCF1qWYSKOuFLHxk0C6ETf452oLvhBcJSFd7LSofKMREAk6L0NJbUc-8iBM8zRCeAjBsFzFMejdbkQEZJM4BqAFSTQTV8ht5tv1kN8h03lv6YcN-WTNLb-cGyOzHjSDZC6roARnFeOWGZrXX0vNYW_i1GzcsZ2p14YEZ7sDZXJJih9xOTrl7_u0svb67tFbrHMofTUcVdtNN3m_Aa3XXnfbPu3uTR8BuwLhGt
  priority: 102
  providerName: ProQuest
Title An attractive numerical algorithm for solving nonlinear Caputo–Fabrizio fractional Abel differential equation in a Hilbert space
URI https://link.springer.com/article/10.1186/s13662-021-03428-3
https://www.proquest.com/docview/2532422232
https://doaj.org/article/469b0687337c4a2ab9fd3b9a60eff935
Volume 2021
WOSCitedRecordID wos000657700100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ4QAHxFMslJUP3MBqYid-HNuqqyLEKuIhFS6W4wdECrslm-2BE-Iv8A_5JYydpLRIwIWLD7EjWzOfMzPx-BuEnlBlQLHGk2BzRwqjHFHUBiINDSUvgs-lTcUmxHIpT05UdaHUV8wJG-iBB8HtQfhWZ1wKxoQtDDW1Co7VyvDMh6BYYi8Fr2cKpsZQSwEupysyku9tcsY5JTEdIVLeScIumaHE1n_JxfztVDQZm8UtdHP0EvH-sLrb6Ipf3UE3LnAH3kXf9lfY9H265HTm8Wo7HL202LQf1hDxf_yEwR_FAK34ywCvBkoM0-FDc7rt1z--fl-Yumu-NGscuuF2Q5yx9i2eiqbA5m-x_zyQgeMG5sPHTeTE6jF8h6y_h94ujt4cHpOxoAKxYHZ6UlhWSu-Dc7L0IXMCjHNJbcG4CF6xOqfUyFyAUiHOqEHCIreFK12gMC3EOew-2oHl-gcIc5k5x4XywtLCg0iz0uWhzB1zNkCkO0P5JF9tR7bxWPSi1SnqkFwPOtGgE510otkMPT1_53Tg2vjr6IOotvORkSc7PQD06BE9-l_omaHdSel63LwbTcvoZYLfRGfo2QSEX91_XtLD_7GkR-g6TUCN2Ye7aKfvtv4xumbP-mbTzdHVg6Nl9Wqe4A7tC0HmMV_1NbRV-R76q-cvq3c_Acj2CGs
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbhMxGLZKQQIO7KiBAj7ACUbN2B4vB4RKIUqVEnEoUm_G46VESpN0MimCE-IVeA8eiifhtyeTUiR664HrLF6_f_Hyfz9CT4kyMLHGZ8HmLmNGuUwRGzJpSCg4Cz6XNiWbEMOhPDhQ79fQzzYWJl6rbHViUtRuauMe-RYpoukHY0ZezY6zmDUqnq62KTQaWAz8l8-wZJu_3H0D8_uMkN7b_Z1-tswqkFnQvXXGLC2k98E5WfjQdQIsVEEso1wEr2iZE2JkLqBn4GyXvOtFbpkrXCAheHD2KZR7CV1mVIrI1T8Q2WqBp1jKc5lzENzoebRBOpJvzXPKOcnihYhIuiczesYQpnwBZ5zcv85lk7nr3fzfBuoWurF0rPF2Iwm30Zqf3EHX_6BbvIu-b0-wqesUF3bi8WTRnFaNsRkfQg_qT0cYXHgM0hh3WfCkYRExFd4xs0U9_fXtR8-U1ejraIpD1QSExBpLP8ZtnhnQl2Psjxv-dDyC-nB_FGnEagyq2_p76MOFDMJ9tA7N9RsIc9l1jgvlhSXMAwa6hctDkTvqbCCCdVDeAkLbJUF7zBMy1mmhJrluQKQBRDqBSNMOer76Z9bQk5z79euIs9WXkVo8PZhWh3qpqTTjquwCgikVlhliShUcLZWBvoWgaNFBmy3u9FLfzfUp6DroRYvc09f_btKD80t7gq7299_t6b3d4eAhukaS_MRrmZtova4W_hG6Yk_q0bx6nCQRo48XjejfdbFvvw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLVKQQgWPIsYaMELWIE1iZ048QKhPhi1GjTqAqTujONHiRRmpplMEawQv8Df8Dl8CddOMqVIdNcF2zz8PPdh-_pchJ5RoWBilSVOx4YkShgiqHYkV9SlPHE2znVINpFNJvnRkThcQz_7uzA-rLLXiUFRm5n2e-RDmnrTD8aMDl0XFnG4N3o9PyE-g5Q_ae3TabQQGdsvn2H5tnh1sAdz_ZzS0Zt3u_ukyzBANOjhhiSapbm1zpg8tS4yGVirlOqE8cxZwYqYUpXHGfQSHO-CRzaLdWJS46hzFhx_BuVeQVfBCqdexsYZWS32RBJyXsYchNh7If2FnZwPFzHjnBIfHOEJ-HLCzhnFkDvgnMP71xltMH2j2__zoN1BtzqHG2-3EnIXrdnpPXTzDxrG--j79hSrpgn3xU4tni7bU6wKq-oYetB8_ITBtccgpX73BU9bdhFV4101XzazX99-jFRRl1_LGXZ1e1HE11jYCvf5Z0CPVtietLzquIT68H7p6cUaDCpd2w30_lIG4QFah-bahwjzPDKGZ8JmmiYW8BClJnZpbJjRjmbJAMU9OKTuiNt9_pBKhgVczmULKAmAkgFQkg3Qi9U_85a25MKvdzzmVl96yvHwYFYfy06DyYSLIgI0M5bpRFFVCGdYIRT0zTnB0gHa7DEoOz24kGcAHKCXPYrPXv-7SY8uLu0pug5Alm8PJuPH6AYNouSjNTfRelMv7Ra6pk-bclE_CUKJ0YfLBvRvW5R4eQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+attractive+numerical+algorithm+for+solving+nonlinear+Caputo%E2%80%93Fabrizio+fractional+Abel+differential+equation+in+a+Hilbert+space&rft.jtitle=Advances+in+difference+equations&rft.au=Al-Smadi%2C+Mohammed&rft.au=Djeddi%2C+Nadir&rft.au=Momani%2C+Shaher&rft.au=Al-Omari%2C+Shrideh&rft.date=2021-05-26&rft.issn=1687-1847&rft.eissn=1687-1847&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-021-03428-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13662_021_03428_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon