Total completion time minimization on multiple machines subject to machine availability and makespan constraints
•We study bi-criteria scheduling with limited machine availability.•Our goal is to minimize ∑Cj subject to the condition that Cmax ≤ T.•We show the problem, Pm(t)|m(t + Δ) ≥ m(t) − 1, r − a, prmt|∑Cj/Cmax ≤ T, 0 ≤ Δ < ce: paraid = "para0005" > is in P. This paper studies preemptive...
Uloženo v:
| Vydáno v: | European journal of operational research Ročník 243; číslo 2; s. 547 - 554 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.06.2015
Elsevier Sequoia S.A |
| Témata: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •We study bi-criteria scheduling with limited machine availability.•Our goal is to minimize ∑Cj subject to the condition that Cmax ≤ T.•We show the problem, Pm(t)|m(t + Δ) ≥ m(t) − 1, r − a, prmt|∑Cj/Cmax ≤ T, 0 ≤ Δ < ce: paraid = "para0005" > is in P.
This paper studies preemptive bi-criteria scheduling on m parallel machines with machine unavailable intervals. The goal is to minimize the total completion time subject to the constraint that the makespan is at most a constant T. We study the unavailability model such that the number of available machines cannot go down by 2 within any period of pmax where pmax is the maximum processing time among all jobs. We show that there is an optimal polynomial time algorithm. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0377-2217 1872-6860 |
| DOI: | 10.1016/j.ejor.2014.12.012 |