Non-convex Total Variation Regularization for Convex Denoising of Signals

Total variation (TV) signal denoising is a popular nonlinear filtering method to estimate piecewise constant signals corrupted by additive white Gaussian noise. Following a ‘convex non-convex’ strategy, recent papers have introduced non-convex regularizers for signal denoising that preserve the conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision Jg. 62; H. 6-7; S. 825 - 841
Hauptverfasser: Selesnick, Ivan, Lanza, Alessandro, Morigi, Serena, Sgallari, Fiorella
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2020
Springer Nature B.V
Schlagworte:
ISSN:0924-9907, 1573-7683
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Total variation (TV) signal denoising is a popular nonlinear filtering method to estimate piecewise constant signals corrupted by additive white Gaussian noise. Following a ‘convex non-convex’ strategy, recent papers have introduced non-convex regularizers for signal denoising that preserve the convexity of the cost function to be minimized. In this paper, we propose a non-convex TV regularizer, defined using concepts from convex analysis, that unifies, generalizes, and improves upon these regularizers. In particular, we use the generalized Moreau envelope which, unlike the usual Moreau envelope, incorporates a matrix parameter. We describe a novel approach to set the matrix parameter which is essential for realizing the improvement we demonstrate. Additionally, we describe a new set of algorithms for non-convex TV denoising that elucidate the relationship among them and which build upon fast exact algorithms for classical TV denoising.
AbstractList Total variation (TV) signal denoising is a popular nonlinear filtering method to estimate piecewise constant signals corrupted by additive white Gaussian noise. Following a ‘convex non-convex’ strategy, recent papers have introduced non-convex regularizers for signal denoising that preserve the convexity of the cost function to be minimized. In this paper, we propose a non-convex TV regularizer, defined using concepts from convex analysis, that unifies, generalizes, and improves upon these regularizers. In particular, we use the generalized Moreau envelope which, unlike the usual Moreau envelope, incorporates a matrix parameter. We describe a novel approach to set the matrix parameter which is essential for realizing the improvement we demonstrate. Additionally, we describe a new set of algorithms for non-convex TV denoising that elucidate the relationship among them and which build upon fast exact algorithms for classical TV denoising.
Author Morigi, Serena
Sgallari, Fiorella
Selesnick, Ivan
Lanza, Alessandro
Author_xml – sequence: 1
  givenname: Ivan
  orcidid: 0000-0002-4939-3971
  surname: Selesnick
  fullname: Selesnick, Ivan
  organization: Department of Electrical and Computer Engineering, New York University
– sequence: 2
  givenname: Alessandro
  orcidid: 0000-0002-4904-0682
  surname: Lanza
  fullname: Lanza, Alessandro
  organization: Department of Mathematics, University of Bologna
– sequence: 3
  givenname: Serena
  orcidid: 0000-0001-8334-8798
  surname: Morigi
  fullname: Morigi, Serena
  organization: Department of Mathematics, University of Bologna
– sequence: 4
  givenname: Fiorella
  orcidid: 0000-0002-9166-8879
  surname: Sgallari
  fullname: Sgallari, Fiorella
  email: fiorella.sgallari@unibo.it
  organization: Department of Mathematics, University of Bologna
BookMark eNp9kE9LAzEUxINUsK1-AU8LnqMvye4mOUr9VygKWr2GbJpdUtakJltRP73briB48DQMzO8xbyZo5IO3CJ0SOCcA_CIREAXBQCQGkIzj4gCNScEZ5qVgIzQGSXMsJfAjNElpDQCCEj5G8_vgsQn-3X5ky9DpNnvR0enOBZ892mbb9u5rsHWI2WxIXlkfXHK-yUKdPbnG6zYdo8O6F3vyo1P0fHO9nN3hxcPtfHa5wCanssN5aaqqb1uzyhaVscxSaaqC5CwvoYRCMytX2tRSlCsma2E4sRpKIzRl3BLOpuhsuLuJ4W1rU6fWYRt3DRTNaUmJACb6lBhSJoaUoq2Vcd3-jy5q1yoCajecGoZT_XBqP5wqepT-QTfRver4-T_EBij1Yd_Y-NvqH-ob7aCCeg
CitedBy_id crossref_primary_10_1007_s11760_022_02384_z
crossref_primary_10_1088_1361_6560_ac3842
crossref_primary_10_1016_j_jfranklin_2025_107969
crossref_primary_10_1109_JSTARS_2020_3028104
crossref_primary_10_3390_s23010554
crossref_primary_10_1109_JSEN_2023_3340203
crossref_primary_10_1109_TSP_2022_3145665
crossref_primary_10_1016_j_bspc_2023_105622
crossref_primary_10_1109_TSP_2023_3315449
crossref_primary_10_1016_j_apnum_2024_02_012
crossref_primary_10_1016_j_eswa_2024_124709
crossref_primary_10_3390_rs14102308
crossref_primary_10_1109_JSEN_2025_3558822
crossref_primary_10_1002_mma_8777
crossref_primary_10_1088_2057_1976_abfd81
crossref_primary_10_1007_s11760_023_02876_6
crossref_primary_10_1016_j_bspc_2021_102647
crossref_primary_10_1007_s10957_024_02479_2
crossref_primary_10_1007_s11425_022_2289_0
crossref_primary_10_1080_01630563_2023_2266762
crossref_primary_10_1155_2022_1758996
crossref_primary_10_1109_LSP_2024_3434346
crossref_primary_10_1016_j_isatra_2023_07_042
crossref_primary_10_1109_TGRS_2020_3011631
crossref_primary_10_1109_TSP_2025_3535822
crossref_primary_10_1007_s11760_023_02542_x
crossref_primary_10_1109_TSP_2020_3032231
crossref_primary_10_3390_a18040195
crossref_primary_10_1007_s00034_025_03175_w
crossref_primary_10_1109_TIM_2023_3251408
crossref_primary_10_1007_s40314_024_02959_1
crossref_primary_10_1109_ACCESS_2021_3124600
crossref_primary_10_1007_s00034_023_02357_8
crossref_primary_10_1007_s10915_023_02366_4
crossref_primary_10_1109_TIM_2023_3306829
crossref_primary_10_1016_j_ymssp_2021_108733
crossref_primary_10_1007_s00034_024_02981_y
crossref_primary_10_1016_j_ymssp_2021_108576
crossref_primary_10_1002_mma_9710
crossref_primary_10_1109_TSP_2021_3069677
crossref_primary_10_1049_ipr2_12917
crossref_primary_10_3934_era_2025152
crossref_primary_10_1007_s00521_022_06937_8
crossref_primary_10_1016_j_patrec_2022_02_004
crossref_primary_10_1016_j_camwa_2022_09_012
crossref_primary_10_3390_a16120574
crossref_primary_10_1109_TIP_2024_3403505
Cites_doi 10.1109/LSP.2014.2349356
10.1007/s10851-016-0655-7
10.7551/mitpress/7132.001.0001
10.1109/TIP.2010.2052275
10.1109/LSP.2013.2278339
10.1007/978-1-4419-9467-7
10.1016/0167-2789(92)90242-F
10.1109/ACCESS.2018.2888944
10.1109/TSP.2014.2298839
10.1109/TSP.2017.2711501
10.1109/LSP.2015.2432095
10.1007/s11760-018-1248-2
10.1007/s00211-016-0842-x
10.1016/j.acha.2015.03.001
10.1137/18M1199149
10.1109/JTEHM.2014.2300862
10.1016/j.ymssp.2019.02.053
10.1007/s00211-017-0916-4
10.1109/TSP.2016.2612179
10.1214/08-EJS216
10.1109/TSP.2014.2329263
10.1109/TSP.2017.2715000
10.1007/s10915-015-0129-x
10.1109/LSP.2016.2535227
10.1137/070692285
10.1214/09-AOS729
10.1137/151003714
10.1007/978-1-4419-9569-8_10
10.1016/j.jsv.2018.06.037
10.1137/140976601
10.1007/s00041-008-9045-x
10.1109/ICASSP.2014.6853752
10.1007/s002110050258
10.1198/106186008X285591
10.1098/rspa.2010.0671
10.1109/LSP.2017.2647948
10.1109/LSP.2015.2406314
10.1109/CAMSAP.2015.7383798
10.1016/j.cam.2018.06.048
10.1137/S0036144598336745
10.1109/TSP.2015.2502551
10.1137/11085997X
10.1007/s10957-019-01565-0
10.1007/s10851-015-0624-6
10.1109/83.902288
10.1109/TSP.2016.2572978
10.4310/CMS.2011.v9.n3.a7
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10851-019-00937-5
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1573-7683
EndPage 841
ExternalDocumentID 10_1007_s10851_019_00937_5
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-1525398
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: University of Bologna
  grantid: ex 60%; ex 60%
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Y
Z83
Z88
Z8M
Z8N
Z8R
Z8S
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
ID FETCH-LOGICAL-c429t-46cbb108f3be5bce3e29cb5143460605a3e9dacf986d39f8c71ea06c8a237e173
IEDL.DBID RSV
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551225800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-9907
IngestDate Wed Sep 17 23:55:47 EDT 2025
Tue Nov 18 21:39:38 EST 2025
Sat Nov 29 05:24:03 EST 2025
Fri Feb 21 02:35:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6-7
Keywords Forward-backward splitting algorithm
Signal denoising
Total variation regularization
Convex non-convex regularization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-46cbb108f3be5bce3e29cb5143460605a3e9dacf986d39f8c71ea06c8a237e173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4904-0682
0000-0002-4939-3971
0000-0001-8334-8798
0000-0002-9166-8879
OpenAccessLink https://link.springer.com/article/10.1007/s10851-019-00937-5
PQID 2426218038
PQPubID 2043734
PageCount 17
ParticipantIDs proquest_journals_2426218038
crossref_citationtrail_10_1007_s10851_019_00937_5
crossref_primary_10_1007_s10851_019_00937_5
springer_journals_10_1007_s10851_019_00937_5
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical imaging and vision
PublicationTitleAbbrev J Math Imaging Vis
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References WangSSelesnickIWCaiGDingBChenXSynthesis versus analysis priors via generalized minimax-concave penalty for sparsity-assisted machinery fault diagnosisMech. Syst. Signal Process.2019127202233
BeckerSCombettesPLAn algorithm for splitting parallel sums of linearly composed monotone operators, with applications to signal recoveryJ. Nonlinear Convex Anal.201415113715931573321293.47059
LanzaAMorigiSSgallariFConvex image denoising via non-convex regularization with parameter selectionJ. Math. Imaging Vis.201656219522035350181391.94088
ChanRLanzaAMorigiSSgallariFConvex non-convex image segmentationNumerische Mathematik20171383635680376769706857782
NikolovaMScherzerOEnergy minimization methodsHandbook of Mathematical Methods in Imaging, Chapter 52011BerlinSpringer138186
SetzerSSteidlGTeuberTInfimal convolution regularizations with discrete l1-type functionalsCommun. Math. Sci.20119379782728658051269.49063
FreconJPustelnikNDobigeonNWendtHAbryPBayesian selection for the l2-Potts model regularization parameter: 1D piecewise constant signal denoisingIEEE Trans. Signal Process.201765195215522436942871414.94202
DümbgenLKovacAExtensions of smoothing via taut stringsElectron. J. Stat.20093417524715861326.62087
NikolovaMNgMKTamC-PFast nonconvex nonsmooth minimization methods for image restoration and reconstructionIEEE Trans. Image Process.201019123073308827897051371.94277
SelesnickISparse regularization via convex analysisIEEE Trans. Signal Process.201765174481449436840781414.94545
SelesnickITotal variation denoising via the Moreau envelopeIEEE Signal Process. Lett.20172422162203648091
Malek-MohammadiMRojasCRWahlbergBA class of nonconvex penalties preserving overall convexity in optimization-based mean filteringIEEE Trans. Signal Process.201664246650666435666271414.94398
BurgerMPapafitsorosKPapoutsellisESchönliebC-BInfimal convolution regularisation functionals of BV and Lp spacesJ. Math. Imaging Vis.20165533433691342.49014
CandèsEJWakinMBBoydSEnhancing sparsity by reweighted l1 minimizationJ. Fourier Anal. Appl.200814587790524616111176.94014
StrangGThe discrete cosine transformSIAM Rev.199941113514716697960939.42021
SelesnickIWParekhABayramIConvex 1-D total variation denoising with non-convex regularizationIEEE Signal Process. Lett.2015222141144
ParekhASelesnickIWConvex denoising using non-convex tight frame regularizationIEEE Signal Process. Lett.2015221017861790
SelesnickIWBayramISparse signal estimation by maximally sparse convex optimizationIEEE Trans. Signal Process.20146251078109231681361394.94510
ParksTWBurrusCSDigital Filter Design1987HobokenWiley0632.93001
CondatLA direct algorithm for 1-D total variation denoisingIEEE Signal Process. Lett.2013201110541057
CaiGSelesnickIWWangSDaiWZhuZSparsity-enhanced signal decomposition via generalized minimax-concave penalty for gearbox fault diagnosisJ. Sound Vib.2018432213234
MöllenhoffTStrekalovskiyEMoellerMCremersDThe primal-dual hybrid gradient method for semiconvex splittingsSIAM J. Imag. Sci.20158282785733363021328.68278
SidkyEYChartrandRBooneJMXiaochuanPConstrained TpV minimization for enhanced exploitation of gradient sparsity: application to CT image reconstructionIEEE J. Transl. Eng. Health Med.20142118
FriedrichFKempeALiebscherVWinklerGComplexity penalized M-estimation: fast computationJ. Comput. Graph. Stat.20081712012242424802
RudinLOsherSFatemiENonlinear total variation based noise removal algorithmsPhys. D19926025926833634010780.49028
ChanTFOsherSShenJThe digital TV filter and nonlinear denoisingIEEE Trans. Image Process.20011022312411039.68778
LanzaAMorigiSSgallariFConstrained TVp-l2 model for image restorationJ. Sci. Comput.2016681649135105721344.65025
DingYSelesnickIWArtifact-free wavelet denoising: non-convex sparse regularization, convex optimizationIEEE Signal Process. Lett.201522913641368
Portilla, J., Mancera, L.: L0-based sparse approximation: two alternative methods and some applications. In: Proceedings of SPIE, vol. 6701 (Wavelets XII), San Diego, CA, USA, (2007)
ZouJShenMZhangYLiHLiuGDingSTotal variation denoising with non-convex regularizersIEEE Access2019744224431
NikolovaMNgMZhangSChingWEfficient reconstruction of piecewise constant images using nonsmooth nonconvex minimizationSIAM J. Imag. Sci.20081122524758231207.94017
Carlsson, M.: On convexification/optimization of functionals including an l2-misfit term. arXiv preprint arXiv:1609.09378 (2016)
Castella, M., Pesquet, J.-C.: Optimization of a Geman-McClure like criterion for sparse signal deconvolution. In: IEEE International Workshop on Computational Advances Multi-Sensor Adaptive Processing, pp. 309–312 (2015)
CombettesPLPesquetJ-CBauschkeHHProximal splitting methods in signal processingFixed-Point Algorithms for Inverse Problems in Science and Engineering2011BerlinSpringer1852121242.90160
LanzaAMorigiSSelesnickISgallariFSparsity-inducing nonconvex nonseparable regularization for convex image processingSIAM J. Imag. Sci.2019122109911343968243
HuskaMLanzaAMorigiSSgallariFConvex non-convex segmentation of scalar fields over arbitrary triangulated surfacesJ. Comput. Appl. Math.2019349438451388672607006442
ShenLSuterBWTrippEEStructured sparsity promoting functionsJ. Optim. Theory Appl.2019183238642139983581428.90140
BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2011BerlinSpringer1218.47001
ChouzenouxEJezierskaAPesquetJTalbotHA majorize-minimize subspace approach for ℓ2-ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _2-\ell _0$$\end{document} image regularizationSIAM J. Imag. Sci.2013615635911281.65030
ZhangC-HNearly unbiased variable selection under minimax concave penaltyAnn. Stat.201038289494226047011183.62120
ParekhASelesnickIWEnhanced low-rank matrix approximationIEEE Signal Process. Lett.2016234493497
ShenLXuYZengXWavelet inpainting with the l0 sparse regularizationJ. Appl. Comp. Harm. Anal.201641126531338.65061
Donoho, D., Maleki, A., Shahram, M.: Wavelab 850 (2005). http://www-stat.stanford.edu/%7Ewavelab
LittleMAJonesNSGeneralized methods and solvers for noise removal from piecewise constant signals: part I - background theoryProc. R. Soc. A2011467308831141239.94018
BayramICorrection for On the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penaltyIEEE Trans. Signal Process.201664143822382235496191414.94057
Chartrand, R.: Shrinkage mappings and their induced penalty functions, pp. 1026–1029. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014)
Nikolova, M.: Estimation of binary images by minimizing convex criteria. In: Proceedings of IEEE International Conference on Image Processing (ICIP), vol. 2, pp. 108–112 (1998)
ChambolleALionsP-LImage recovery via total variation minimization and related problemsNumerische Mathematik19977616718814401190874.68299
BlakeAZissermanAVisual Reconstruction1987CambridgeMIT Press
SoubiesEBlanc-FéraudLAubertGA continuous exact ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ell _0 $$\end{document} penalty (CEL0) for least squares regularized problemSIAM J. Imag. Sci.201583160716391325.65086
BayramIOn the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penaltyIEEE Trans. Signal Process.20166461597160835488761412.94018
LanzaAMorigiSSelesnickISgallariFNonconvex nonsmooth optimization via convex-nonconvex majorization-minimizationNumerische Mathematik2017136234338136480911368.65087
DuHLiuYMinmax-concave total variation denoisingSignal Image Video Process.201812610271034
StorathMWeinmannADemaretLJump-sparse and sparse recovery using Potts functionalsIEEE Trans. Signal Process.201462143654366632455731394.94561
I Selesnick (937_CR42) 2017; 24
937_CR39
E Soubies (937_CR49) 2015; 8
S Wang (937_CR52) 2019; 127
A Blake (937_CR5) 1987
937_CR32
A Parekh (937_CR37) 2016; 23
IW Selesnick (937_CR44) 2015; 22
S Becker (937_CR4) 2014; 15
L Rudin (937_CR40) 1992; 60
L Shen (937_CR47) 2016; 41
R Chan (937_CR12) 2017; 138
J Frecon (937_CR22) 2017; 65
M Nikolova (937_CR35) 2010; 19
EJ Candès (937_CR8) 2008; 14
G Strang (937_CR51) 1999; 41
TF Chan (937_CR13) 2001; 10
A Lanza (937_CR26) 2019; 12
I Bayram (937_CR2) 2016; 64
M Nikolova (937_CR33) 2011
IW Selesnick (937_CR43) 2014; 62
F Friedrich (937_CR23) 2008; 17
M Huska (937_CR24) 2019; 349
Y Ding (937_CR18) 2015; 22
937_CR9
L Dümbgen (937_CR21) 2009; 3
T Möllenhoff (937_CR31) 2015; 8
M Malek-Mohammadi (937_CR30) 2016; 64
A Lanza (937_CR27) 2016; 68
937_CR14
A Lanza (937_CR28) 2016; 56
937_CR10
937_CR19
J Zou (937_CR54) 2019; 7
L Shen (937_CR46) 2019; 183
C-H Zhang (937_CR53) 2010; 38
TW Parks (937_CR38) 1987
M Burger (937_CR6) 2016; 55
M Nikolova (937_CR34) 2008; 1
L Condat (937_CR17) 2013; 20
H Du (937_CR20) 2018; 12
I Selesnick (937_CR41) 2017; 65
MA Little (937_CR29) 2011; 467
A Lanza (937_CR25) 2017; 136
G Cai (937_CR7) 2018; 432
A Chambolle (937_CR11) 1997; 76
HH Bauschke (937_CR1) 2011
S Setzer (937_CR45) 2011; 9
EY Sidky (937_CR48) 2014; 2
M Storath (937_CR50) 2014; 62
PL Combettes (937_CR16) 2011
E Chouzenoux (937_CR15) 2013; 6
A Parekh (937_CR36) 2015; 22
I Bayram (937_CR3) 2016; 64
References_xml – reference: CandèsEJWakinMBBoydSEnhancing sparsity by reweighted l1 minimizationJ. Fourier Anal. Appl.200814587790524616111176.94014
– reference: Nikolova, M.: Estimation of binary images by minimizing convex criteria. In: Proceedings of IEEE International Conference on Image Processing (ICIP), vol. 2, pp. 108–112 (1998)
– reference: ShenLSuterBWTrippEEStructured sparsity promoting functionsJ. Optim. Theory Appl.2019183238642139983581428.90140
– reference: BayramIOn the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penaltyIEEE Trans. Signal Process.20166461597160835488761412.94018
– reference: MöllenhoffTStrekalovskiyEMoellerMCremersDThe primal-dual hybrid gradient method for semiconvex splittingsSIAM J. Imag. Sci.20158282785733363021328.68278
– reference: StrangGThe discrete cosine transformSIAM Rev.199941113514716697960939.42021
– reference: StorathMWeinmannADemaretLJump-sparse and sparse recovery using Potts functionalsIEEE Trans. Signal Process.201462143654366632455731394.94561
– reference: LanzaAMorigiSSelesnickISgallariFSparsity-inducing nonconvex nonseparable regularization for convex image processingSIAM J. Imag. Sci.2019122109911343968243
– reference: NikolovaMNgMZhangSChingWEfficient reconstruction of piecewise constant images using nonsmooth nonconvex minimizationSIAM J. Imag. Sci.20081122524758231207.94017
– reference: ParksTWBurrusCSDigital Filter Design1987HobokenWiley0632.93001
– reference: DuHLiuYMinmax-concave total variation denoisingSignal Image Video Process.201812610271034
– reference: ParekhASelesnickIWEnhanced low-rank matrix approximationIEEE Signal Process. Lett.2016234493497
– reference: SelesnickISparse regularization via convex analysisIEEE Trans. Signal Process.201765174481449436840781414.94545
– reference: BurgerMPapafitsorosKPapoutsellisESchönliebC-BInfimal convolution regularisation functionals of BV and Lp spacesJ. Math. Imaging Vis.20165533433691342.49014
– reference: Castella, M., Pesquet, J.-C.: Optimization of a Geman-McClure like criterion for sparse signal deconvolution. In: IEEE International Workshop on Computational Advances Multi-Sensor Adaptive Processing, pp. 309–312 (2015)
– reference: ShenLXuYZengXWavelet inpainting with the l0 sparse regularizationJ. Appl. Comp. Harm. Anal.201641126531338.65061
– reference: ChanRLanzaAMorigiSSgallariFConvex non-convex image segmentationNumerische Mathematik20171383635680376769706857782
– reference: FreconJPustelnikNDobigeonNWendtHAbryPBayesian selection for the l2-Potts model regularization parameter: 1D piecewise constant signal denoisingIEEE Trans. Signal Process.201765195215522436942871414.94202
– reference: Chartrand, R.: Shrinkage mappings and their induced penalty functions, pp. 1026–1029. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014)
– reference: LanzaAMorigiSSgallariFConstrained TVp-l2 model for image restorationJ. Sci. Comput.2016681649135105721344.65025
– reference: BlakeAZissermanAVisual Reconstruction1987CambridgeMIT Press
– reference: FriedrichFKempeALiebscherVWinklerGComplexity penalized M-estimation: fast computationJ. Comput. Graph. Stat.20081712012242424802
– reference: RudinLOsherSFatemiENonlinear total variation based noise removal algorithmsPhys. D19926025926833634010780.49028
– reference: SetzerSSteidlGTeuberTInfimal convolution regularizations with discrete l1-type functionalsCommun. Math. Sci.20119379782728658051269.49063
– reference: SelesnickIWParekhABayramIConvex 1-D total variation denoising with non-convex regularizationIEEE Signal Process. Lett.2015222141144
– reference: NikolovaMNgMKTamC-PFast nonconvex nonsmooth minimization methods for image restoration and reconstructionIEEE Trans. Image Process.201019123073308827897051371.94277
– reference: ZhangC-HNearly unbiased variable selection under minimax concave penaltyAnn. Stat.201038289494226047011183.62120
– reference: ParekhASelesnickIWConvex denoising using non-convex tight frame regularizationIEEE Signal Process. Lett.2015221017861790
– reference: LanzaAMorigiSSgallariFConvex image denoising via non-convex regularization with parameter selectionJ. Math. Imaging Vis.201656219522035350181391.94088
– reference: SoubiesEBlanc-FéraudLAubertGA continuous exact ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ell _0 $$\end{document} penalty (CEL0) for least squares regularized problemSIAM J. Imag. Sci.201583160716391325.65086
– reference: BayramICorrection for On the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penaltyIEEE Trans. Signal Process.201664143822382235496191414.94057
– reference: DümbgenLKovacAExtensions of smoothing via taut stringsElectron. J. Stat.20093417524715861326.62087
– reference: CombettesPLPesquetJ-CBauschkeHHProximal splitting methods in signal processingFixed-Point Algorithms for Inverse Problems in Science and Engineering2011BerlinSpringer1852121242.90160
– reference: SidkyEYChartrandRBooneJMXiaochuanPConstrained TpV minimization for enhanced exploitation of gradient sparsity: application to CT image reconstructionIEEE J. Transl. Eng. Health Med.20142118
– reference: CaiGSelesnickIWWangSDaiWZhuZSparsity-enhanced signal decomposition via generalized minimax-concave penalty for gearbox fault diagnosisJ. Sound Vib.2018432213234
– reference: WangSSelesnickIWCaiGDingBChenXSynthesis versus analysis priors via generalized minimax-concave penalty for sparsity-assisted machinery fault diagnosisMech. Syst. Signal Process.2019127202233
– reference: Donoho, D., Maleki, A., Shahram, M.: Wavelab 850 (2005). http://www-stat.stanford.edu/%7Ewavelab/
– reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2011BerlinSpringer1218.47001
– reference: BeckerSCombettesPLAn algorithm for splitting parallel sums of linearly composed monotone operators, with applications to signal recoveryJ. Nonlinear Convex Anal.201415113715931573321293.47059
– reference: NikolovaMScherzerOEnergy minimization methodsHandbook of Mathematical Methods in Imaging, Chapter 52011BerlinSpringer138186
– reference: ChanTFOsherSShenJThe digital TV filter and nonlinear denoisingIEEE Trans. Image Process.20011022312411039.68778
– reference: ChambolleALionsP-LImage recovery via total variation minimization and related problemsNumerische Mathematik19977616718814401190874.68299
– reference: SelesnickIWBayramISparse signal estimation by maximally sparse convex optimizationIEEE Trans. Signal Process.20146251078109231681361394.94510
– reference: CondatLA direct algorithm for 1-D total variation denoisingIEEE Signal Process. Lett.2013201110541057
– reference: Portilla, J., Mancera, L.: L0-based sparse approximation: two alternative methods and some applications. In: Proceedings of SPIE, vol. 6701 (Wavelets XII), San Diego, CA, USA, (2007)
– reference: LanzaAMorigiSSelesnickISgallariFNonconvex nonsmooth optimization via convex-nonconvex majorization-minimizationNumerische Mathematik2017136234338136480911368.65087
– reference: HuskaMLanzaAMorigiSSgallariFConvex non-convex segmentation of scalar fields over arbitrary triangulated surfacesJ. Comput. Appl. Math.2019349438451388672607006442
– reference: Malek-MohammadiMRojasCRWahlbergBA class of nonconvex penalties preserving overall convexity in optimization-based mean filteringIEEE Trans. Signal Process.201664246650666435666271414.94398
– reference: ChouzenouxEJezierskaAPesquetJTalbotHA majorize-minimize subspace approach for ℓ2-ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _2-\ell _0$$\end{document} image regularizationSIAM J. Imag. Sci.2013615635911281.65030
– reference: SelesnickITotal variation denoising via the Moreau envelopeIEEE Signal Process. Lett.20172422162203648091
– reference: Carlsson, M.: On convexification/optimization of functionals including an l2-misfit term. arXiv preprint arXiv:1609.09378 (2016)
– reference: ZouJShenMZhangYLiHLiuGDingSTotal variation denoising with non-convex regularizersIEEE Access2019744224431
– reference: LittleMAJonesNSGeneralized methods and solvers for noise removal from piecewise constant signals: part I - background theoryProc. R. Soc. A2011467308831141239.94018
– reference: DingYSelesnickIWArtifact-free wavelet denoising: non-convex sparse regularization, convex optimizationIEEE Signal Process. Lett.201522913641368
– volume: 22
  start-page: 141
  issue: 2
  year: 2015
  ident: 937_CR44
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2349356
– ident: 937_CR19
– volume: 56
  start-page: 195
  issue: 2
  year: 2016
  ident: 937_CR28
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-016-0655-7
– ident: 937_CR9
– volume-title: Visual Reconstruction
  year: 1987
  ident: 937_CR5
  doi: 10.7551/mitpress/7132.001.0001
– volume: 19
  start-page: 3073
  issue: 12
  year: 2010
  ident: 937_CR35
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2052275
– volume: 20
  start-page: 1054
  issue: 11
  year: 2013
  ident: 937_CR17
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2013.2278339
– volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  year: 2011
  ident: 937_CR1
  doi: 10.1007/978-1-4419-9467-7
– volume: 60
  start-page: 259
  year: 1992
  ident: 937_CR40
  publication-title: Phys. D
  doi: 10.1016/0167-2789(92)90242-F
– volume: 7
  start-page: 4422
  year: 2019
  ident: 937_CR54
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888944
– volume: 62
  start-page: 1078
  issue: 5
  year: 2014
  ident: 937_CR43
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2298839
– volume: 65
  start-page: 4481
  issue: 17
  year: 2017
  ident: 937_CR41
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2711501
– ident: 937_CR39
– volume: 22
  start-page: 1786
  issue: 10
  year: 2015
  ident: 937_CR36
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2015.2432095
– volume: 12
  start-page: 1027
  issue: 6
  year: 2018
  ident: 937_CR20
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-018-1248-2
– volume: 136
  start-page: 343
  issue: 2
  year: 2017
  ident: 937_CR25
  publication-title: Numerische Mathematik
  doi: 10.1007/s00211-016-0842-x
– volume: 41
  start-page: 26
  issue: 1
  year: 2016
  ident: 937_CR47
  publication-title: J. Appl. Comp. Harm. Anal.
  doi: 10.1016/j.acha.2015.03.001
– volume: 12
  start-page: 1099
  issue: 2
  year: 2019
  ident: 937_CR26
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/18M1199149
– volume: 2
  start-page: 1
  year: 2014
  ident: 937_CR48
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2014.2300862
– volume: 127
  start-page: 202
  year: 2019
  ident: 937_CR52
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.02.053
– start-page: 138
  volume-title: Handbook of Mathematical Methods in Imaging, Chapter 5
  year: 2011
  ident: 937_CR33
– volume: 138
  start-page: 635
  issue: 3
  year: 2017
  ident: 937_CR12
  publication-title: Numerische Mathematik
  doi: 10.1007/s00211-017-0916-4
– volume: 64
  start-page: 6650
  issue: 24
  year: 2016
  ident: 937_CR30
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2612179
– volume: 3
  start-page: 41
  year: 2009
  ident: 937_CR21
  publication-title: Electron. J. Stat.
  doi: 10.1214/08-EJS216
– volume: 62
  start-page: 3654
  issue: 14
  year: 2014
  ident: 937_CR50
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2329263
– volume: 65
  start-page: 5215
  issue: 19
  year: 2017
  ident: 937_CR22
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2715000
– volume: 68
  start-page: 64
  issue: 1
  year: 2016
  ident: 937_CR27
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-015-0129-x
– volume: 23
  start-page: 493
  issue: 4
  year: 2016
  ident: 937_CR37
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2535227
– volume: 1
  start-page: 2
  issue: 1
  year: 2008
  ident: 937_CR34
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/070692285
– volume: 38
  start-page: 894
  issue: 2
  year: 2010
  ident: 937_CR53
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS729
– volume: 8
  start-page: 1607
  issue: 3
  year: 2015
  ident: 937_CR49
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/151003714
– start-page: 185
  volume-title: Fixed-Point Algorithms for Inverse Problems in Science and Engineering
  year: 2011
  ident: 937_CR16
  doi: 10.1007/978-1-4419-9569-8_10
– ident: 937_CR32
– volume: 15
  start-page: 137
  issue: 1
  year: 2014
  ident: 937_CR4
  publication-title: J. Nonlinear Convex Anal.
– volume: 432
  start-page: 213
  year: 2018
  ident: 937_CR7
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.06.037
– volume: 8
  start-page: 827
  issue: 2
  year: 2015
  ident: 937_CR31
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/140976601
– volume: 14
  start-page: 877
  issue: 5
  year: 2008
  ident: 937_CR8
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9045-x
– ident: 937_CR14
  doi: 10.1109/ICASSP.2014.6853752
– volume: 76
  start-page: 167
  year: 1997
  ident: 937_CR11
  publication-title: Numerische Mathematik
  doi: 10.1007/s002110050258
– volume: 17
  start-page: 201
  issue: 1
  year: 2008
  ident: 937_CR23
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186008X285591
– volume: 467
  start-page: 3088
  year: 2011
  ident: 937_CR29
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2010.0671
– volume: 24
  start-page: 216
  issue: 2
  year: 2017
  ident: 937_CR42
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2017.2647948
– volume: 22
  start-page: 1364
  issue: 9
  year: 2015
  ident: 937_CR18
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2015.2406314
– ident: 937_CR10
  doi: 10.1109/CAMSAP.2015.7383798
– volume: 349
  start-page: 438
  year: 2019
  ident: 937_CR24
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.06.048
– volume: 41
  start-page: 135
  issue: 1
  year: 1999
  ident: 937_CR51
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144598336745
– volume: 64
  start-page: 1597
  issue: 6
  year: 2016
  ident: 937_CR3
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2015.2502551
– volume: 6
  start-page: 563
  issue: 1
  year: 2013
  ident: 937_CR15
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/11085997X
– volume: 183
  start-page: 386
  issue: 2
  year: 2019
  ident: 937_CR46
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-019-01565-0
– volume: 55
  start-page: 343
  issue: 3
  year: 2016
  ident: 937_CR6
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-015-0624-6
– volume: 10
  start-page: 231
  issue: 2
  year: 2001
  ident: 937_CR13
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.902288
– volume: 64
  start-page: 3822
  issue: 14
  year: 2016
  ident: 937_CR2
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2572978
– volume-title: Digital Filter Design
  year: 1987
  ident: 937_CR38
– volume: 9
  start-page: 797
  issue: 3
  year: 2011
  ident: 937_CR45
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2011.v9.n3.a7
SSID ssj0008217
Score 2.5231717
Snippet Total variation (TV) signal denoising is a popular nonlinear filtering method to estimate piecewise constant signals corrupted by additive white Gaussian...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 825
SubjectTerms Algorithms
Applications of Mathematics
Computer Science
Convexity
Cost function
Image Processing and Computer Vision
Mathematical Methods in Physics
Noise reduction
Parameters
Random noise
Regularization
Signal,Image and Speech Processing
Title Non-convex Total Variation Regularization for Convex Denoising of Signals
URI https://link.springer.com/article/10.1007/s10851-019-00937-5
https://www.proquest.com/docview/2426218038
Volume 62
WOSCitedRecordID wos000551225800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7683
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0008217
  issn: 0924-9907
  databaseCode: P5Z
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7683
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0008217
  issn: 0924-9907
  databaseCode: K7-
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-7683
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0008217
  issn: 0924-9907
  databaseCode: M7S
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7683
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0008217
  issn: 0924-9907
  databaseCode: BENPR
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-7683
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008217
  issn: 0924-9907
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbWZof20G5Zi6aPQIfdOgGKHVvSsY8ELbYZQZIGxS6GLMtFgMIu4mzYzx-lyElXbAPWiw8yLdikRH60-AD4WAiNlpTnVBV5TPsyEFQUklHdi2OeKWvxnKS_8CQR9_dy5JPC6ibavTmSdJr6WbIbogN0fSW1bjin0Ra00NwJux3Hk9la_4rA9dll6FlQ1LXcp8r8eY7fzdEGY744FnXWZrj_uvd8B3seXZKL1XJ4D29M2YZ9jzSJ38c1DjXNHJqxNux-XRdwrT_AbVKV1EWk_yTTCgE6maFT7aRIxq59_cIncBJEveRqRXltympufz6QqiCT-YOtzXwAd8PB9OqG-q4LVKNtWtJ-rLMMv6EIMxNl2oQmkDqzuKqPzg6LVGhkrnQhRZyHEmXNe0axWAsVhNz0eHgI22VVmiMgAYuyWMUKtWqBQKUvhdRaMJ5zzrKcqQ70Guan2pckt50xHtNNMWXLzBSZmTpmplEHztfPPK0KcvyT-rSRaeo3Z51aVILIhoWiA58aGW5u_3224_8jP4GdwHrnLrj3FLaXi-_mDN7qH8t5vehC63KQjMZd2PrMadfGnE7wOoq-dd1y_gWs3uhU
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8xQBo8DOhAlHXDD7wxS86n7UcEQ6CVCpWC-hY5joMqoQQ1Be3P39l1WkAb0vbqXKzkzr77nX0fAEel0GhJeUFVWaQ0lqGgopSM6iBNea6sxXOS7vPBQIzH8tonhTVttHt7Jek09YtkN0QH6PpKat1wTpMPsBajxbKBfMObu4X-FaHrs8vQs6Coa7lPlfnzHK_N0RJjvrkWddbmfOv_vnMbPnl0SU7my2EHVkzVgS2PNInfxw0Otc0c2rEObF4tCrg2n-FyUFfURaT_IqMaATq5Q6faSZEMXfv6qU_gJIh6yemc8sxU9cQePpC6JDeTe1ubeRduz3-MTi-o77pANdqmGY1Tnef4D2WUmyTXJjKh1LnFVTE6OyxRkZGF0qUUaRFJlDUPjGKpFiqMuAl4tAerVV2ZfSAhS_JUpQq1aolAJZZCai0YLzhnecFUF4KW-Zn2JcltZ4yHbFlM2TIzQ2ZmjplZ0oXjxTuP84Ic71L3WplmfnM2mUUliGxYJLrwvZXh8vHfZzv4N_JD-Hgxuupn_cvBzy-wEVpP3QX69mB1Nn0yX2FdP88mzfSbW8C_AQZd5tY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8QvTBb3E6NQ--aTDrV5JHUYeijuFUfCtpmspAWtmm-Od7ydptigria5qGNne5-_2S3B3AQSY0elKeUpWlEQ2kJ6jIJKO6EUU8UdbjOUlf81ZLPD7K9kQUv7vtXh1JDmMabJamfHD8kmbHE4FviBSQBktqKTmn4TTMBrZokOXrnYeRLRaeq7nLkGVQtLu8DJv5fozPrmmMN78ckTrP01z-_zevwFKJOsnJUE1WYcrka7BcIlBSru8-NlVFHqq2NVi8GSV27a_DZavIqbup_k7uCgTu5AHJtpMuuXVl7XtlYCdBNExOhz3PTF507aYEKTLS6T7ZnM0bcN88vzu9oGU1BqrRZw1oEOkkwX_I_MSEiTa-8aROLN4KkASxUPlGpkpnUkSpL1EHeMMoFmmhPJ-bBvc3YSYvcrMFxGNhEqlIobXNEMAEUkitBeMp5yxJmapBoxJErMtU5bZixnM8TrJsJzPGyYzdZMZhDQ5H77wME3X82rteyTcuF20_tmgFEQ_zRQ2OKnmOH_882vbfuu_DfPusGV9ftq52YMGzBN7d_63DzKD3anZhTr8Nuv3entPlD1SJ77o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-convex+Total+Variation+Regularization+for+Convex+Denoising+of+Signals&rft.jtitle=Journal+of+mathematical+imaging+and+vision&rft.au=Selesnick%2C+Ivan&rft.au=Lanza+Alessandro&rft.au=Morigi+Serena&rft.au=Sgallari+Fiorella&rft.date=2020-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-9907&rft.eissn=1573-7683&rft.volume=62&rft.issue=6-7&rft.spage=825&rft.epage=841&rft_id=info:doi/10.1007%2Fs10851-019-00937-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-9907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-9907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-9907&client=summon