Non-convex Total Variation Regularization for Convex Denoising of Signals
Total variation (TV) signal denoising is a popular nonlinear filtering method to estimate piecewise constant signals corrupted by additive white Gaussian noise. Following a ‘convex non-convex’ strategy, recent papers have introduced non-convex regularizers for signal denoising that preserve the conv...
Gespeichert in:
| Veröffentlicht in: | Journal of mathematical imaging and vision Jg. 62; H. 6-7; S. 825 - 841 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.07.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0924-9907, 1573-7683 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Total variation (TV) signal denoising is a popular nonlinear filtering method to estimate piecewise constant signals corrupted by additive white Gaussian noise. Following a ‘convex non-convex’ strategy, recent papers have introduced non-convex regularizers for signal denoising that preserve the convexity of the cost function to be minimized. In this paper, we propose a non-convex TV regularizer, defined using concepts from convex analysis, that unifies, generalizes, and improves upon these regularizers. In particular, we use the generalized Moreau envelope which, unlike the usual Moreau envelope, incorporates a matrix parameter. We describe a novel approach to set the matrix parameter which is essential for realizing the improvement we demonstrate. Additionally, we describe a new set of algorithms for non-convex TV denoising that elucidate the relationship among them and which build upon fast exact algorithms for classical TV denoising. |
|---|---|
| AbstractList | Total variation (TV) signal denoising is a popular nonlinear filtering method to estimate piecewise constant signals corrupted by additive white Gaussian noise. Following a ‘convex non-convex’ strategy, recent papers have introduced non-convex regularizers for signal denoising that preserve the convexity of the cost function to be minimized. In this paper, we propose a non-convex TV regularizer, defined using concepts from convex analysis, that unifies, generalizes, and improves upon these regularizers. In particular, we use the generalized Moreau envelope which, unlike the usual Moreau envelope, incorporates a matrix parameter. We describe a novel approach to set the matrix parameter which is essential for realizing the improvement we demonstrate. Additionally, we describe a new set of algorithms for non-convex TV denoising that elucidate the relationship among them and which build upon fast exact algorithms for classical TV denoising. |
| Author | Morigi, Serena Sgallari, Fiorella Selesnick, Ivan Lanza, Alessandro |
| Author_xml | – sequence: 1 givenname: Ivan orcidid: 0000-0002-4939-3971 surname: Selesnick fullname: Selesnick, Ivan organization: Department of Electrical and Computer Engineering, New York University – sequence: 2 givenname: Alessandro orcidid: 0000-0002-4904-0682 surname: Lanza fullname: Lanza, Alessandro organization: Department of Mathematics, University of Bologna – sequence: 3 givenname: Serena orcidid: 0000-0001-8334-8798 surname: Morigi fullname: Morigi, Serena organization: Department of Mathematics, University of Bologna – sequence: 4 givenname: Fiorella orcidid: 0000-0002-9166-8879 surname: Sgallari fullname: Sgallari, Fiorella email: fiorella.sgallari@unibo.it organization: Department of Mathematics, University of Bologna |
| BookMark | eNp9kE9LAzEUxINUsK1-AU8LnqMvye4mOUr9VygKWr2GbJpdUtakJltRP73briB48DQMzO8xbyZo5IO3CJ0SOCcA_CIREAXBQCQGkIzj4gCNScEZ5qVgIzQGSXMsJfAjNElpDQCCEj5G8_vgsQn-3X5ky9DpNnvR0enOBZ892mbb9u5rsHWI2WxIXlkfXHK-yUKdPbnG6zYdo8O6F3vyo1P0fHO9nN3hxcPtfHa5wCanssN5aaqqb1uzyhaVscxSaaqC5CwvoYRCMytX2tRSlCsma2E4sRpKIzRl3BLOpuhsuLuJ4W1rU6fWYRt3DRTNaUmJACb6lBhSJoaUoq2Vcd3-jy5q1yoCajecGoZT_XBqP5wqepT-QTfRver4-T_EBij1Yd_Y-NvqH-ob7aCCeg |
| CitedBy_id | crossref_primary_10_1007_s11760_022_02384_z crossref_primary_10_1088_1361_6560_ac3842 crossref_primary_10_1016_j_jfranklin_2025_107969 crossref_primary_10_1109_JSTARS_2020_3028104 crossref_primary_10_3390_s23010554 crossref_primary_10_1109_JSEN_2023_3340203 crossref_primary_10_1109_TSP_2022_3145665 crossref_primary_10_1016_j_bspc_2023_105622 crossref_primary_10_1109_TSP_2023_3315449 crossref_primary_10_1016_j_apnum_2024_02_012 crossref_primary_10_1016_j_eswa_2024_124709 crossref_primary_10_3390_rs14102308 crossref_primary_10_1109_JSEN_2025_3558822 crossref_primary_10_1002_mma_8777 crossref_primary_10_1088_2057_1976_abfd81 crossref_primary_10_1007_s11760_023_02876_6 crossref_primary_10_1016_j_bspc_2021_102647 crossref_primary_10_1007_s10957_024_02479_2 crossref_primary_10_1007_s11425_022_2289_0 crossref_primary_10_1080_01630563_2023_2266762 crossref_primary_10_1155_2022_1758996 crossref_primary_10_1109_LSP_2024_3434346 crossref_primary_10_1016_j_isatra_2023_07_042 crossref_primary_10_1109_TGRS_2020_3011631 crossref_primary_10_1109_TSP_2025_3535822 crossref_primary_10_1007_s11760_023_02542_x crossref_primary_10_1109_TSP_2020_3032231 crossref_primary_10_3390_a18040195 crossref_primary_10_1007_s00034_025_03175_w crossref_primary_10_1109_TIM_2023_3251408 crossref_primary_10_1007_s40314_024_02959_1 crossref_primary_10_1109_ACCESS_2021_3124600 crossref_primary_10_1007_s00034_023_02357_8 crossref_primary_10_1007_s10915_023_02366_4 crossref_primary_10_1109_TIM_2023_3306829 crossref_primary_10_1016_j_ymssp_2021_108733 crossref_primary_10_1007_s00034_024_02981_y crossref_primary_10_1016_j_ymssp_2021_108576 crossref_primary_10_1002_mma_9710 crossref_primary_10_1109_TSP_2021_3069677 crossref_primary_10_1049_ipr2_12917 crossref_primary_10_3934_era_2025152 crossref_primary_10_1007_s00521_022_06937_8 crossref_primary_10_1016_j_patrec_2022_02_004 crossref_primary_10_1016_j_camwa_2022_09_012 crossref_primary_10_3390_a16120574 crossref_primary_10_1109_TIP_2024_3403505 |
| Cites_doi | 10.1109/LSP.2014.2349356 10.1007/s10851-016-0655-7 10.7551/mitpress/7132.001.0001 10.1109/TIP.2010.2052275 10.1109/LSP.2013.2278339 10.1007/978-1-4419-9467-7 10.1016/0167-2789(92)90242-F 10.1109/ACCESS.2018.2888944 10.1109/TSP.2014.2298839 10.1109/TSP.2017.2711501 10.1109/LSP.2015.2432095 10.1007/s11760-018-1248-2 10.1007/s00211-016-0842-x 10.1016/j.acha.2015.03.001 10.1137/18M1199149 10.1109/JTEHM.2014.2300862 10.1016/j.ymssp.2019.02.053 10.1007/s00211-017-0916-4 10.1109/TSP.2016.2612179 10.1214/08-EJS216 10.1109/TSP.2014.2329263 10.1109/TSP.2017.2715000 10.1007/s10915-015-0129-x 10.1109/LSP.2016.2535227 10.1137/070692285 10.1214/09-AOS729 10.1137/151003714 10.1007/978-1-4419-9569-8_10 10.1016/j.jsv.2018.06.037 10.1137/140976601 10.1007/s00041-008-9045-x 10.1109/ICASSP.2014.6853752 10.1007/s002110050258 10.1198/106186008X285591 10.1098/rspa.2010.0671 10.1109/LSP.2017.2647948 10.1109/LSP.2015.2406314 10.1109/CAMSAP.2015.7383798 10.1016/j.cam.2018.06.048 10.1137/S0036144598336745 10.1109/TSP.2015.2502551 10.1137/11085997X 10.1007/s10957-019-01565-0 10.1007/s10851-015-0624-6 10.1109/83.902288 10.1109/TSP.2016.2572978 10.4310/CMS.2011.v9.n3.a7 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10851-019-00937-5 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1573-7683 |
| EndPage | 841 |
| ExternalDocumentID | 10_1007_s10851_019_00937_5 |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-1525398 funderid: http://dx.doi.org/10.13039/100000001 – fundername: University of Bologna grantid: ex 60%; ex 60% |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z83 Z88 Z8M Z8N Z8R Z8S Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c429t-46cbb108f3be5bce3e29cb5143460605a3e9dacf986d39f8c71ea06c8a237e173 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551225800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-9907 |
| IngestDate | Wed Sep 17 23:55:47 EDT 2025 Tue Nov 18 21:39:38 EST 2025 Sat Nov 29 05:24:03 EST 2025 Fri Feb 21 02:35:34 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6-7 |
| Keywords | Forward-backward splitting algorithm Signal denoising Total variation regularization Convex non-convex regularization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-46cbb108f3be5bce3e29cb5143460605a3e9dacf986d39f8c71ea06c8a237e173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4904-0682 0000-0002-4939-3971 0000-0001-8334-8798 0000-0002-9166-8879 |
| OpenAccessLink | https://link.springer.com/article/10.1007/s10851-019-00937-5 |
| PQID | 2426218038 |
| PQPubID | 2043734 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2426218038 crossref_citationtrail_10_1007_s10851_019_00937_5 crossref_primary_10_1007_s10851_019_00937_5 springer_journals_10_1007_s10851_019_00937_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-01 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of mathematical imaging and vision |
| PublicationTitleAbbrev | J Math Imaging Vis |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | WangSSelesnickIWCaiGDingBChenXSynthesis versus analysis priors via generalized minimax-concave penalty for sparsity-assisted machinery fault diagnosisMech. Syst. Signal Process.2019127202233 BeckerSCombettesPLAn algorithm for splitting parallel sums of linearly composed monotone operators, with applications to signal recoveryJ. Nonlinear Convex Anal.201415113715931573321293.47059 LanzaAMorigiSSgallariFConvex image denoising via non-convex regularization with parameter selectionJ. Math. Imaging Vis.201656219522035350181391.94088 ChanRLanzaAMorigiSSgallariFConvex non-convex image segmentationNumerische Mathematik20171383635680376769706857782 NikolovaMScherzerOEnergy minimization methodsHandbook of Mathematical Methods in Imaging, Chapter 52011BerlinSpringer138186 SetzerSSteidlGTeuberTInfimal convolution regularizations with discrete l1-type functionalsCommun. Math. Sci.20119379782728658051269.49063 FreconJPustelnikNDobigeonNWendtHAbryPBayesian selection for the l2-Potts model regularization parameter: 1D piecewise constant signal denoisingIEEE Trans. Signal Process.201765195215522436942871414.94202 DümbgenLKovacAExtensions of smoothing via taut stringsElectron. J. Stat.20093417524715861326.62087 NikolovaMNgMKTamC-PFast nonconvex nonsmooth minimization methods for image restoration and reconstructionIEEE Trans. Image Process.201019123073308827897051371.94277 SelesnickISparse regularization via convex analysisIEEE Trans. Signal Process.201765174481449436840781414.94545 SelesnickITotal variation denoising via the Moreau envelopeIEEE Signal Process. Lett.20172422162203648091 Malek-MohammadiMRojasCRWahlbergBA class of nonconvex penalties preserving overall convexity in optimization-based mean filteringIEEE Trans. Signal Process.201664246650666435666271414.94398 BurgerMPapafitsorosKPapoutsellisESchönliebC-BInfimal convolution regularisation functionals of BV and Lp spacesJ. Math. Imaging Vis.20165533433691342.49014 CandèsEJWakinMBBoydSEnhancing sparsity by reweighted l1 minimizationJ. Fourier Anal. Appl.200814587790524616111176.94014 StrangGThe discrete cosine transformSIAM Rev.199941113514716697960939.42021 SelesnickIWParekhABayramIConvex 1-D total variation denoising with non-convex regularizationIEEE Signal Process. Lett.2015222141144 ParekhASelesnickIWConvex denoising using non-convex tight frame regularizationIEEE Signal Process. Lett.2015221017861790 SelesnickIWBayramISparse signal estimation by maximally sparse convex optimizationIEEE Trans. Signal Process.20146251078109231681361394.94510 ParksTWBurrusCSDigital Filter Design1987HobokenWiley0632.93001 CondatLA direct algorithm for 1-D total variation denoisingIEEE Signal Process. Lett.2013201110541057 CaiGSelesnickIWWangSDaiWZhuZSparsity-enhanced signal decomposition via generalized minimax-concave penalty for gearbox fault diagnosisJ. Sound Vib.2018432213234 MöllenhoffTStrekalovskiyEMoellerMCremersDThe primal-dual hybrid gradient method for semiconvex splittingsSIAM J. Imag. Sci.20158282785733363021328.68278 SidkyEYChartrandRBooneJMXiaochuanPConstrained TpV minimization for enhanced exploitation of gradient sparsity: application to CT image reconstructionIEEE J. Transl. Eng. Health Med.20142118 FriedrichFKempeALiebscherVWinklerGComplexity penalized M-estimation: fast computationJ. Comput. Graph. Stat.20081712012242424802 RudinLOsherSFatemiENonlinear total variation based noise removal algorithmsPhys. D19926025926833634010780.49028 ChanTFOsherSShenJThe digital TV filter and nonlinear denoisingIEEE Trans. Image Process.20011022312411039.68778 LanzaAMorigiSSgallariFConstrained TVp-l2 model for image restorationJ. Sci. Comput.2016681649135105721344.65025 DingYSelesnickIWArtifact-free wavelet denoising: non-convex sparse regularization, convex optimizationIEEE Signal Process. Lett.201522913641368 Portilla, J., Mancera, L.: L0-based sparse approximation: two alternative methods and some applications. In: Proceedings of SPIE, vol. 6701 (Wavelets XII), San Diego, CA, USA, (2007) ZouJShenMZhangYLiHLiuGDingSTotal variation denoising with non-convex regularizersIEEE Access2019744224431 NikolovaMNgMZhangSChingWEfficient reconstruction of piecewise constant images using nonsmooth nonconvex minimizationSIAM J. Imag. Sci.20081122524758231207.94017 Carlsson, M.: On convexification/optimization of functionals including an l2-misfit term. arXiv preprint arXiv:1609.09378 (2016) Castella, M., Pesquet, J.-C.: Optimization of a Geman-McClure like criterion for sparse signal deconvolution. In: IEEE International Workshop on Computational Advances Multi-Sensor Adaptive Processing, pp. 309–312 (2015) CombettesPLPesquetJ-CBauschkeHHProximal splitting methods in signal processingFixed-Point Algorithms for Inverse Problems in Science and Engineering2011BerlinSpringer1852121242.90160 LanzaAMorigiSSelesnickISgallariFSparsity-inducing nonconvex nonseparable regularization for convex image processingSIAM J. Imag. Sci.2019122109911343968243 HuskaMLanzaAMorigiSSgallariFConvex non-convex segmentation of scalar fields over arbitrary triangulated surfacesJ. Comput. Appl. Math.2019349438451388672607006442 ShenLSuterBWTrippEEStructured sparsity promoting functionsJ. Optim. Theory Appl.2019183238642139983581428.90140 BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2011BerlinSpringer1218.47001 ChouzenouxEJezierskaAPesquetJTalbotHA majorize-minimize subspace approach for ℓ2-ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _2-\ell _0$$\end{document} image regularizationSIAM J. Imag. Sci.2013615635911281.65030 ZhangC-HNearly unbiased variable selection under minimax concave penaltyAnn. Stat.201038289494226047011183.62120 ParekhASelesnickIWEnhanced low-rank matrix approximationIEEE Signal Process. Lett.2016234493497 ShenLXuYZengXWavelet inpainting with the l0 sparse regularizationJ. Appl. Comp. Harm. Anal.201641126531338.65061 Donoho, D., Maleki, A., Shahram, M.: Wavelab 850 (2005). http://www-stat.stanford.edu/%7Ewavelab LittleMAJonesNSGeneralized methods and solvers for noise removal from piecewise constant signals: part I - background theoryProc. R. Soc. A2011467308831141239.94018 BayramICorrection for On the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penaltyIEEE Trans. Signal Process.201664143822382235496191414.94057 Chartrand, R.: Shrinkage mappings and their induced penalty functions, pp. 1026–1029. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014) Nikolova, M.: Estimation of binary images by minimizing convex criteria. In: Proceedings of IEEE International Conference on Image Processing (ICIP), vol. 2, pp. 108–112 (1998) ChambolleALionsP-LImage recovery via total variation minimization and related problemsNumerische Mathematik19977616718814401190874.68299 BlakeAZissermanAVisual Reconstruction1987CambridgeMIT Press SoubiesEBlanc-FéraudLAubertGA continuous exact ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ell _0 $$\end{document} penalty (CEL0) for least squares regularized problemSIAM J. Imag. Sci.201583160716391325.65086 BayramIOn the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penaltyIEEE Trans. Signal Process.20166461597160835488761412.94018 LanzaAMorigiSSelesnickISgallariFNonconvex nonsmooth optimization via convex-nonconvex majorization-minimizationNumerische Mathematik2017136234338136480911368.65087 DuHLiuYMinmax-concave total variation denoisingSignal Image Video Process.201812610271034 StorathMWeinmannADemaretLJump-sparse and sparse recovery using Potts functionalsIEEE Trans. Signal Process.201462143654366632455731394.94561 I Selesnick (937_CR42) 2017; 24 937_CR39 E Soubies (937_CR49) 2015; 8 S Wang (937_CR52) 2019; 127 A Blake (937_CR5) 1987 937_CR32 A Parekh (937_CR37) 2016; 23 IW Selesnick (937_CR44) 2015; 22 S Becker (937_CR4) 2014; 15 L Rudin (937_CR40) 1992; 60 L Shen (937_CR47) 2016; 41 R Chan (937_CR12) 2017; 138 J Frecon (937_CR22) 2017; 65 M Nikolova (937_CR35) 2010; 19 EJ Candès (937_CR8) 2008; 14 G Strang (937_CR51) 1999; 41 TF Chan (937_CR13) 2001; 10 A Lanza (937_CR26) 2019; 12 I Bayram (937_CR2) 2016; 64 M Nikolova (937_CR33) 2011 IW Selesnick (937_CR43) 2014; 62 F Friedrich (937_CR23) 2008; 17 M Huska (937_CR24) 2019; 349 Y Ding (937_CR18) 2015; 22 937_CR9 L Dümbgen (937_CR21) 2009; 3 T Möllenhoff (937_CR31) 2015; 8 M Malek-Mohammadi (937_CR30) 2016; 64 A Lanza (937_CR27) 2016; 68 937_CR14 A Lanza (937_CR28) 2016; 56 937_CR10 937_CR19 J Zou (937_CR54) 2019; 7 L Shen (937_CR46) 2019; 183 C-H Zhang (937_CR53) 2010; 38 TW Parks (937_CR38) 1987 M Burger (937_CR6) 2016; 55 M Nikolova (937_CR34) 2008; 1 L Condat (937_CR17) 2013; 20 H Du (937_CR20) 2018; 12 I Selesnick (937_CR41) 2017; 65 MA Little (937_CR29) 2011; 467 A Lanza (937_CR25) 2017; 136 G Cai (937_CR7) 2018; 432 A Chambolle (937_CR11) 1997; 76 HH Bauschke (937_CR1) 2011 S Setzer (937_CR45) 2011; 9 EY Sidky (937_CR48) 2014; 2 M Storath (937_CR50) 2014; 62 PL Combettes (937_CR16) 2011 E Chouzenoux (937_CR15) 2013; 6 A Parekh (937_CR36) 2015; 22 I Bayram (937_CR3) 2016; 64 |
| References_xml | – reference: CandèsEJWakinMBBoydSEnhancing sparsity by reweighted l1 minimizationJ. Fourier Anal. Appl.200814587790524616111176.94014 – reference: Nikolova, M.: Estimation of binary images by minimizing convex criteria. In: Proceedings of IEEE International Conference on Image Processing (ICIP), vol. 2, pp. 108–112 (1998) – reference: ShenLSuterBWTrippEEStructured sparsity promoting functionsJ. Optim. Theory Appl.2019183238642139983581428.90140 – reference: BayramIOn the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penaltyIEEE Trans. Signal Process.20166461597160835488761412.94018 – reference: MöllenhoffTStrekalovskiyEMoellerMCremersDThe primal-dual hybrid gradient method for semiconvex splittingsSIAM J. Imag. Sci.20158282785733363021328.68278 – reference: StrangGThe discrete cosine transformSIAM Rev.199941113514716697960939.42021 – reference: StorathMWeinmannADemaretLJump-sparse and sparse recovery using Potts functionalsIEEE Trans. Signal Process.201462143654366632455731394.94561 – reference: LanzaAMorigiSSelesnickISgallariFSparsity-inducing nonconvex nonseparable regularization for convex image processingSIAM J. Imag. Sci.2019122109911343968243 – reference: NikolovaMNgMZhangSChingWEfficient reconstruction of piecewise constant images using nonsmooth nonconvex minimizationSIAM J. Imag. Sci.20081122524758231207.94017 – reference: ParksTWBurrusCSDigital Filter Design1987HobokenWiley0632.93001 – reference: DuHLiuYMinmax-concave total variation denoisingSignal Image Video Process.201812610271034 – reference: ParekhASelesnickIWEnhanced low-rank matrix approximationIEEE Signal Process. Lett.2016234493497 – reference: SelesnickISparse regularization via convex analysisIEEE Trans. Signal Process.201765174481449436840781414.94545 – reference: BurgerMPapafitsorosKPapoutsellisESchönliebC-BInfimal convolution regularisation functionals of BV and Lp spacesJ. Math. Imaging Vis.20165533433691342.49014 – reference: Castella, M., Pesquet, J.-C.: Optimization of a Geman-McClure like criterion for sparse signal deconvolution. In: IEEE International Workshop on Computational Advances Multi-Sensor Adaptive Processing, pp. 309–312 (2015) – reference: ShenLXuYZengXWavelet inpainting with the l0 sparse regularizationJ. Appl. Comp. Harm. Anal.201641126531338.65061 – reference: ChanRLanzaAMorigiSSgallariFConvex non-convex image segmentationNumerische Mathematik20171383635680376769706857782 – reference: FreconJPustelnikNDobigeonNWendtHAbryPBayesian selection for the l2-Potts model regularization parameter: 1D piecewise constant signal denoisingIEEE Trans. Signal Process.201765195215522436942871414.94202 – reference: Chartrand, R.: Shrinkage mappings and their induced penalty functions, pp. 1026–1029. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014) – reference: LanzaAMorigiSSgallariFConstrained TVp-l2 model for image restorationJ. Sci. Comput.2016681649135105721344.65025 – reference: BlakeAZissermanAVisual Reconstruction1987CambridgeMIT Press – reference: FriedrichFKempeALiebscherVWinklerGComplexity penalized M-estimation: fast computationJ. Comput. Graph. Stat.20081712012242424802 – reference: RudinLOsherSFatemiENonlinear total variation based noise removal algorithmsPhys. D19926025926833634010780.49028 – reference: SetzerSSteidlGTeuberTInfimal convolution regularizations with discrete l1-type functionalsCommun. Math. Sci.20119379782728658051269.49063 – reference: SelesnickIWParekhABayramIConvex 1-D total variation denoising with non-convex regularizationIEEE Signal Process. Lett.2015222141144 – reference: NikolovaMNgMKTamC-PFast nonconvex nonsmooth minimization methods for image restoration and reconstructionIEEE Trans. Image Process.201019123073308827897051371.94277 – reference: ZhangC-HNearly unbiased variable selection under minimax concave penaltyAnn. Stat.201038289494226047011183.62120 – reference: ParekhASelesnickIWConvex denoising using non-convex tight frame regularizationIEEE Signal Process. Lett.2015221017861790 – reference: LanzaAMorigiSSgallariFConvex image denoising via non-convex regularization with parameter selectionJ. Math. Imaging Vis.201656219522035350181391.94088 – reference: SoubiesEBlanc-FéraudLAubertGA continuous exact ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \ell _0 $$\end{document} penalty (CEL0) for least squares regularized problemSIAM J. Imag. Sci.201583160716391325.65086 – reference: BayramICorrection for On the convergence of the iterative shrinkage/thresholding algorithm with a weakly convex penaltyIEEE Trans. Signal Process.201664143822382235496191414.94057 – reference: DümbgenLKovacAExtensions of smoothing via taut stringsElectron. J. Stat.20093417524715861326.62087 – reference: CombettesPLPesquetJ-CBauschkeHHProximal splitting methods in signal processingFixed-Point Algorithms for Inverse Problems in Science and Engineering2011BerlinSpringer1852121242.90160 – reference: SidkyEYChartrandRBooneJMXiaochuanPConstrained TpV minimization for enhanced exploitation of gradient sparsity: application to CT image reconstructionIEEE J. Transl. Eng. Health Med.20142118 – reference: CaiGSelesnickIWWangSDaiWZhuZSparsity-enhanced signal decomposition via generalized minimax-concave penalty for gearbox fault diagnosisJ. Sound Vib.2018432213234 – reference: WangSSelesnickIWCaiGDingBChenXSynthesis versus analysis priors via generalized minimax-concave penalty for sparsity-assisted machinery fault diagnosisMech. Syst. Signal Process.2019127202233 – reference: Donoho, D., Maleki, A., Shahram, M.: Wavelab 850 (2005). http://www-stat.stanford.edu/%7Ewavelab/ – reference: BauschkeHHCombettesPLConvex Analysis and Monotone Operator Theory in Hilbert Spaces2011BerlinSpringer1218.47001 – reference: BeckerSCombettesPLAn algorithm for splitting parallel sums of linearly composed monotone operators, with applications to signal recoveryJ. Nonlinear Convex Anal.201415113715931573321293.47059 – reference: NikolovaMScherzerOEnergy minimization methodsHandbook of Mathematical Methods in Imaging, Chapter 52011BerlinSpringer138186 – reference: ChanTFOsherSShenJThe digital TV filter and nonlinear denoisingIEEE Trans. Image Process.20011022312411039.68778 – reference: ChambolleALionsP-LImage recovery via total variation minimization and related problemsNumerische Mathematik19977616718814401190874.68299 – reference: SelesnickIWBayramISparse signal estimation by maximally sparse convex optimizationIEEE Trans. Signal Process.20146251078109231681361394.94510 – reference: CondatLA direct algorithm for 1-D total variation denoisingIEEE Signal Process. Lett.2013201110541057 – reference: Portilla, J., Mancera, L.: L0-based sparse approximation: two alternative methods and some applications. In: Proceedings of SPIE, vol. 6701 (Wavelets XII), San Diego, CA, USA, (2007) – reference: LanzaAMorigiSSelesnickISgallariFNonconvex nonsmooth optimization via convex-nonconvex majorization-minimizationNumerische Mathematik2017136234338136480911368.65087 – reference: HuskaMLanzaAMorigiSSgallariFConvex non-convex segmentation of scalar fields over arbitrary triangulated surfacesJ. Comput. Appl. Math.2019349438451388672607006442 – reference: Malek-MohammadiMRojasCRWahlbergBA class of nonconvex penalties preserving overall convexity in optimization-based mean filteringIEEE Trans. Signal Process.201664246650666435666271414.94398 – reference: ChouzenouxEJezierskaAPesquetJTalbotHA majorize-minimize subspace approach for ℓ2-ℓ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _2-\ell _0$$\end{document} image regularizationSIAM J. Imag. Sci.2013615635911281.65030 – reference: SelesnickITotal variation denoising via the Moreau envelopeIEEE Signal Process. Lett.20172422162203648091 – reference: Carlsson, M.: On convexification/optimization of functionals including an l2-misfit term. arXiv preprint arXiv:1609.09378 (2016) – reference: ZouJShenMZhangYLiHLiuGDingSTotal variation denoising with non-convex regularizersIEEE Access2019744224431 – reference: LittleMAJonesNSGeneralized methods and solvers for noise removal from piecewise constant signals: part I - background theoryProc. R. Soc. A2011467308831141239.94018 – reference: DingYSelesnickIWArtifact-free wavelet denoising: non-convex sparse regularization, convex optimizationIEEE Signal Process. Lett.201522913641368 – volume: 22 start-page: 141 issue: 2 year: 2015 ident: 937_CR44 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2349356 – ident: 937_CR19 – volume: 56 start-page: 195 issue: 2 year: 2016 ident: 937_CR28 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-016-0655-7 – ident: 937_CR9 – volume-title: Visual Reconstruction year: 1987 ident: 937_CR5 doi: 10.7551/mitpress/7132.001.0001 – volume: 19 start-page: 3073 issue: 12 year: 2010 ident: 937_CR35 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2052275 – volume: 20 start-page: 1054 issue: 11 year: 2013 ident: 937_CR17 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2013.2278339 – volume-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces year: 2011 ident: 937_CR1 doi: 10.1007/978-1-4419-9467-7 – volume: 60 start-page: 259 year: 1992 ident: 937_CR40 publication-title: Phys. D doi: 10.1016/0167-2789(92)90242-F – volume: 7 start-page: 4422 year: 2019 ident: 937_CR54 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2888944 – volume: 62 start-page: 1078 issue: 5 year: 2014 ident: 937_CR43 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2298839 – volume: 65 start-page: 4481 issue: 17 year: 2017 ident: 937_CR41 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2711501 – ident: 937_CR39 – volume: 22 start-page: 1786 issue: 10 year: 2015 ident: 937_CR36 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2015.2432095 – volume: 12 start-page: 1027 issue: 6 year: 2018 ident: 937_CR20 publication-title: Signal Image Video Process. doi: 10.1007/s11760-018-1248-2 – volume: 136 start-page: 343 issue: 2 year: 2017 ident: 937_CR25 publication-title: Numerische Mathematik doi: 10.1007/s00211-016-0842-x – volume: 41 start-page: 26 issue: 1 year: 2016 ident: 937_CR47 publication-title: J. Appl. Comp. Harm. Anal. doi: 10.1016/j.acha.2015.03.001 – volume: 12 start-page: 1099 issue: 2 year: 2019 ident: 937_CR26 publication-title: SIAM J. Imag. Sci. doi: 10.1137/18M1199149 – volume: 2 start-page: 1 year: 2014 ident: 937_CR48 publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2014.2300862 – volume: 127 start-page: 202 year: 2019 ident: 937_CR52 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.02.053 – start-page: 138 volume-title: Handbook of Mathematical Methods in Imaging, Chapter 5 year: 2011 ident: 937_CR33 – volume: 138 start-page: 635 issue: 3 year: 2017 ident: 937_CR12 publication-title: Numerische Mathematik doi: 10.1007/s00211-017-0916-4 – volume: 64 start-page: 6650 issue: 24 year: 2016 ident: 937_CR30 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2612179 – volume: 3 start-page: 41 year: 2009 ident: 937_CR21 publication-title: Electron. J. Stat. doi: 10.1214/08-EJS216 – volume: 62 start-page: 3654 issue: 14 year: 2014 ident: 937_CR50 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2329263 – volume: 65 start-page: 5215 issue: 19 year: 2017 ident: 937_CR22 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2715000 – volume: 68 start-page: 64 issue: 1 year: 2016 ident: 937_CR27 publication-title: J. Sci. Comput. doi: 10.1007/s10915-015-0129-x – volume: 23 start-page: 493 issue: 4 year: 2016 ident: 937_CR37 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2535227 – volume: 1 start-page: 2 issue: 1 year: 2008 ident: 937_CR34 publication-title: SIAM J. Imag. Sci. doi: 10.1137/070692285 – volume: 38 start-page: 894 issue: 2 year: 2010 ident: 937_CR53 publication-title: Ann. Stat. doi: 10.1214/09-AOS729 – volume: 8 start-page: 1607 issue: 3 year: 2015 ident: 937_CR49 publication-title: SIAM J. Imag. Sci. doi: 10.1137/151003714 – start-page: 185 volume-title: Fixed-Point Algorithms for Inverse Problems in Science and Engineering year: 2011 ident: 937_CR16 doi: 10.1007/978-1-4419-9569-8_10 – ident: 937_CR32 – volume: 15 start-page: 137 issue: 1 year: 2014 ident: 937_CR4 publication-title: J. Nonlinear Convex Anal. – volume: 432 start-page: 213 year: 2018 ident: 937_CR7 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2018.06.037 – volume: 8 start-page: 827 issue: 2 year: 2015 ident: 937_CR31 publication-title: SIAM J. Imag. Sci. doi: 10.1137/140976601 – volume: 14 start-page: 877 issue: 5 year: 2008 ident: 937_CR8 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9045-x – ident: 937_CR14 doi: 10.1109/ICASSP.2014.6853752 – volume: 76 start-page: 167 year: 1997 ident: 937_CR11 publication-title: Numerische Mathematik doi: 10.1007/s002110050258 – volume: 17 start-page: 201 issue: 1 year: 2008 ident: 937_CR23 publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186008X285591 – volume: 467 start-page: 3088 year: 2011 ident: 937_CR29 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2010.0671 – volume: 24 start-page: 216 issue: 2 year: 2017 ident: 937_CR42 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2017.2647948 – volume: 22 start-page: 1364 issue: 9 year: 2015 ident: 937_CR18 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2015.2406314 – ident: 937_CR10 doi: 10.1109/CAMSAP.2015.7383798 – volume: 349 start-page: 438 year: 2019 ident: 937_CR24 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.06.048 – volume: 41 start-page: 135 issue: 1 year: 1999 ident: 937_CR51 publication-title: SIAM Rev. doi: 10.1137/S0036144598336745 – volume: 64 start-page: 1597 issue: 6 year: 2016 ident: 937_CR3 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2015.2502551 – volume: 6 start-page: 563 issue: 1 year: 2013 ident: 937_CR15 publication-title: SIAM J. Imag. Sci. doi: 10.1137/11085997X – volume: 183 start-page: 386 issue: 2 year: 2019 ident: 937_CR46 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-019-01565-0 – volume: 55 start-page: 343 issue: 3 year: 2016 ident: 937_CR6 publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-015-0624-6 – volume: 10 start-page: 231 issue: 2 year: 2001 ident: 937_CR13 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.902288 – volume: 64 start-page: 3822 issue: 14 year: 2016 ident: 937_CR2 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2572978 – volume-title: Digital Filter Design year: 1987 ident: 937_CR38 – volume: 9 start-page: 797 issue: 3 year: 2011 ident: 937_CR45 publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2011.v9.n3.a7 |
| SSID | ssj0008217 |
| Score | 2.5236845 |
| Snippet | Total variation (TV) signal denoising is a popular nonlinear filtering method to estimate piecewise constant signals corrupted by additive white Gaussian... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 825 |
| SubjectTerms | Algorithms Applications of Mathematics Computer Science Convexity Cost function Image Processing and Computer Vision Mathematical Methods in Physics Noise reduction Parameters Random noise Regularization Signal,Image and Speech Processing |
| Title | Non-convex Total Variation Regularization for Convex Denoising of Signals |
| URI | https://link.springer.com/article/10.1007/s10851-019-00937-5 https://www.proquest.com/docview/2426218038 |
| Volume | 62 |
| WOSCitedRecordID | wos000551225800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7683 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0008217 issn: 0924-9907 databaseCode: P5Z dateStart: 20180101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7683 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0008217 issn: 0924-9907 databaseCode: K7- dateStart: 20180101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-7683 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0008217 issn: 0924-9907 databaseCode: M7S dateStart: 20180101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7683 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0008217 issn: 0924-9907 databaseCode: BENPR dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1573-7683 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008217 issn: 0924-9907 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5R8KAHUdSI4tKDN20yVsq2oyJEYyQEkBAvy9Z1hsRshqHxz_e1dKBGTfSyQ9c123tt3_et7wfAKYKKRPohp42kiQSFI4aLGI9p6PE45G5DhlGsi024vZ43mfh9ExSWF97uxZGk3qk_BLshOkDq61NFw13K16GM5s5Ty3EwHC_3X8_RdXZtZBYU91rXhMp8P8Znc7TCmF-ORbW16Vb-9547sG3QJblYTIddWJNpFSoGaRKzjnNsKoo5FG1V2LpbJnDN9-Cml6VUe6S_kVGGAJ2MkVRrLZKBLl8_MwGcBFEvaS96Xsk0m6qfDyRLyHD6qHIz78N9tzNqX1NTdYEKtE1z2myJKMJvSFgkeSQkk44vIoWrmkh2bB4y6cehSHyvFaOiPaEUareEFzrMlQ2XHUApzVJ5CMRmTVv4CUsiRBEumkUnRv4k4hA5aIzEtQaNQviBMCnJVWWMp2CVTFkJM0BhBlqYAa_B2fKZ50VCjl971wudBmZx5oFCJYhsbObV4LzQ4er2z6Md_a37MWw6ip1r5946lOazF3kCG-J1Ps1nFpQvO73-wIL1W5dayud0iNc-f7D0dH4H4aHomg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH5RNFEPoqgRRe3BmzYZ68q2o0GJRCAGkHBbtq4zJGYzDI1_vq-lAzVqoteua7b32r7va98PgHMEFYn0Q07riYMEhSOGixiPaejxOORuXYZRrItNuL2eNx779yYoLC-83YsrSb1Tfwh2Q3SA1Nenioa7lK_CmoMWSzny9Qejxf7r2brOroXMguJe65pQme_H-GyOlhjzy7Wotjat8v--cwe2DbokV_PpsAsrMq1A2SBNYtZxjk1FMYeirQJb3UUC13wP2r0spdoj_Y0MMwToZISkWmuR9HX5-qkJ4CSIeklz3vNaptlEHT6QLCGDyaPKzbwPD62bYfOWmqoLVKBtmlGnIaII_yFhkeSRkEzavogUrnKQ7Fg8ZNKPQ5H4XiNGRXtCKdRqCC-0mSvrLjuAUpql8hCIxRxL-AlLIkQRLppFO0b-JOIQOWiMxLUK9UL4gTApyVVljKdgmUxZCTNAYQZamAGvwsXined5Qo5fe9cKnQZmceaBQiWIbCzmVeGy0OHy8c-jHf2t-xls3A67naDT7t0dw6atmLp29K1BaTZ9kSewLl5nk3x6qifwOzdM5xw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT8IwFH5RNEYPoqgRRe3BmzaOdWXb0YBEohIiSLgtW9sZErMRQOPP97VsgEZNjNeua7a-tu_72r73AZwjqIiVH3JajR0kKBwxXMS4pKHHZcjdqgojacQm3HbbGwz8zlIUv7ntnh9JzmIadJamZHo1kvHVUuAbIgWkwT7VlNylfBXWHC0apPl6tz9fiz3baO5ayDIorrtuFjbzfRufXdMCb345IjWep1n8_zfvwHaGOsn1bJjswopKSlDMECjJ5vcEi3KRh7ysBFsP88Sukz1otdOEmpvq76SXInAnfSTbxrrk0cjaj7PAToJomNRnNRsqSYd6U4KkMekOn3XO5n14at706rc0U2OgAn3WlDo1EUX4DzGLFI-EYsr2RaTxloMkyOIhU74MRex7NYkDwBPa0FZNeKHNXFV12QEUkjRRh0As5ljCj1kcIbpw0V3aEnmVkCFyU4mEtgzV3BCByFKVa8WMl2CRZFl3ZoCdGZjODHgZLubvjGaJOn6tXcntG2STdhJotIKIx2JeGS5zey4e_9za0d-qn8FGp9EM7lvtu2PYtDWBN_d_K1CYjl_VCayLt-lwMj41Y_kDkCrwAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-convex+Total+Variation+Regularization+for+Convex+Denoising+of+Signals&rft.jtitle=Journal+of+mathematical+imaging+and+vision&rft.au=Selesnick%2C+Ivan&rft.au=Lanza%2C+Alessandro&rft.au=Morigi%2C+Serena&rft.au=Sgallari%2C+Fiorella&rft.date=2020-07-01&rft.pub=Springer+US&rft.issn=0924-9907&rft.eissn=1573-7683&rft.volume=62&rft.issue=6-7&rft.spage=825&rft.epage=841&rft_id=info:doi/10.1007%2Fs10851-019-00937-5&rft.externalDocID=10_1007_s10851_019_00937_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-9907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-9907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-9907&client=summon |