Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review
Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution inclu...
Saved in:
| Published in: | RSC advances Vol. 13; no. 26; pp. 17595 - 1761 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Royal Society of Chemistry
09.06.2023
The Royal Society of Chemistry |
| Subjects: | |
| ISSN: | 2046-2069, 2046-2069 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered.
An overview of the sources of heavy metal pollution, the related health risks, and cost-effective methods for removing them from wastewater. |
|---|---|
| AbstractList | Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered. Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered. An overview of the sources of heavy metal pollution, the related health risks, and cost-effective methods for removing them from wastewater. Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered.Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered. Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered. An overview of the sources of heavy metal pollution, the related health risks, and cost-effective methods for removing them from wastewater. |
| Author | Omer, Khalid M Hama Aziz, Kosar Hikmat Hamarawf, Rebaz Fayaq Mustafa, Fryad S Hama, Sarkawt Rahman, Kaiwan Othman |
| AuthorAffiliation | Department of Chemistry College of Science Razga Company College of health sciences University of Sulaimani Medical Laboratory Analysis Department Cihan University-Sulaimaniya |
| AuthorAffiliation_xml | – sequence: 0 name: Department of Chemistry – sequence: 0 name: College of health sciences – sequence: 0 name: University of Sulaimani – sequence: 0 name: Razga Company – sequence: 0 name: Cihan University-Sulaimaniya – sequence: 0 name: College of Science – sequence: 0 name: Medical Laboratory Analysis Department |
| Author_xml | – sequence: 1 givenname: Kosar Hikmat surname: Hama Aziz fullname: Hama Aziz, Kosar Hikmat – sequence: 2 givenname: Fryad S surname: Mustafa fullname: Mustafa, Fryad S – sequence: 3 givenname: Khalid M surname: Omer fullname: Omer, Khalid M – sequence: 4 givenname: Sarkawt surname: Hama fullname: Hama, Sarkawt – sequence: 5 givenname: Rebaz Fayaq surname: Hamarawf fullname: Hamarawf, Rebaz Fayaq – sequence: 6 givenname: Kaiwan Othman surname: Rahman fullname: Rahman, Kaiwan Othman |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37312989$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1PVTEQhhuDEUQ27jVN3BiTo_04X2VDCKKYkJgYXTe97dRbck57aXsO3iX_nF4uIBK76aR95u07nXmJdnzwgNBrSj5SwsUnw6MipGMcnqE9Ruq2YqQVO4_iXXSQ0gUpq20oa-kLtMs7TpnoxR66PgM1r_EIWQ14FYZhyi547DzOS8DqclLZaQx-djH4EXw-xGCt066EWHmDh3BV6ZAyjjCGuYio1SoGpZeQcA4YBjc6rzJs9FwsR39Kcl4fYlUyZgdXr9Bzq4YEB3f7Pvr15fTnyVl1_v3rt5Pj80rXTOSKW8pox4UlrBZNsxBUtJwKQ1qyUKoXltqemoVQFDpd95ZbbYwh2jJj6p41fB8dbXVX02IEo0sBUQ1yFd2o4loG5eS_N94t5e8wS0pY07edKArv7xRiuJwgZTm6pGEYlIcwJcnKM_2ty4K-e4JehCn6Ut-GaknX8a4u1NvHlh683LenAGQL6BhSimBl-Tu16VBx6IZiTW6GQH7mP45vh-C0pHx4knKv-l_4zRaOST9wfyeK3wCQkb2U |
| CitedBy_id | crossref_primary_10_1002_bio_70068 crossref_primary_10_1016_j_eswa_2024_125910 crossref_primary_10_1007_s10653_024_02096_y crossref_primary_10_1007_s10876_025_02848_5 crossref_primary_10_1016_j_cscee_2023_100567 crossref_primary_10_1021_acs_jchemed_4c00519 crossref_primary_10_1016_j_jece_2025_119367 crossref_primary_10_1016_j_nxmate_2025_100487 crossref_primary_10_3390_catal14070449 crossref_primary_10_3390_chemosensors13040149 crossref_primary_10_3390_molecules29153709 crossref_primary_10_3390_nano14080702 crossref_primary_10_3389_fsufs_2024_1453885 crossref_primary_10_1016_j_bios_2024_116805 crossref_primary_10_1016_j_jfca_2025_107220 crossref_primary_10_1016_j_nxmate_2025_100805 crossref_primary_10_3389_fmicb_2024_1450992 crossref_primary_10_1007_s10646_025_02919_3 crossref_primary_10_1016_j_ijbiomac_2024_129882 crossref_primary_10_3390_jcs9040152 crossref_primary_10_1007_s13530_024_00234_8 crossref_primary_10_1016_j_marpolbul_2025_118372 crossref_primary_10_1680_jgere_23_00066 crossref_primary_10_1016_j_ecoenv_2024_117214 crossref_primary_10_3390_toxics13090777 crossref_primary_10_1080_01496395_2025_2555708 crossref_primary_10_1016_j_seppur_2025_134540 crossref_primary_10_1186_s12917_024_04367_3 crossref_primary_10_1080_03067319_2024_2400537 crossref_primary_10_1088_2043_6262_adc977 crossref_primary_10_1039_D5RA02250A crossref_primary_10_1002_elan_12002 crossref_primary_10_1016_j_saa_2024_125070 crossref_primary_10_3390_pr12091972 crossref_primary_10_1007_s13399_024_05285_y crossref_primary_10_3390_pr13010276 crossref_primary_10_1016_j_seppur_2023_124513 crossref_primary_10_1016_j_biortech_2024_131235 crossref_primary_10_1016_j_envres_2025_122184 crossref_primary_10_1016_j_jwpe_2024_106312 crossref_primary_10_1016_j_envres_2024_119504 crossref_primary_10_1016_j_heliyon_2024_e36288 crossref_primary_10_1016_j_molliq_2024_126769 crossref_primary_10_1016_j_seppur_2025_133560 crossref_primary_10_1016_j_jconhyd_2025_104610 crossref_primary_10_1016_j_jece_2024_113561 crossref_primary_10_1177_11786221241278517 crossref_primary_10_1016_j_optmat_2024_116071 crossref_primary_10_3390_biology14050472 crossref_primary_10_1016_j_molstruc_2024_140182 crossref_primary_10_1038_s41598_025_88601_4 crossref_primary_10_1080_17518253_2024_2422416 crossref_primary_10_1007_s10534_025_00671_z crossref_primary_10_1016_j_jenvman_2025_125245 crossref_primary_10_1016_j_rineng_2025_104431 crossref_primary_10_1051_bioconf_202411802010 crossref_primary_10_1016_j_inoche_2024_112113 crossref_primary_10_1016_j_jece_2025_117088 crossref_primary_10_3390_su16072615 crossref_primary_10_1016_j_biortech_2025_133348 crossref_primary_10_1016_j_ijbiomac_2025_141571 crossref_primary_10_3390_toxics12050308 crossref_primary_10_1038_s41598_024_59917_4 crossref_primary_10_1016_j_psep_2024_06_125 crossref_primary_10_1061_JHTRBP_HZENG_1292 crossref_primary_10_1016_j_jece_2025_117773 crossref_primary_10_1016_j_marpolbul_2025_118724 crossref_primary_10_2166_wst_2023_333 crossref_primary_10_1016_j_mineng_2025_109771 crossref_primary_10_1016_j_dwt_2025_101243 crossref_primary_10_1016_j_jhazmat_2025_137564 crossref_primary_10_1016_j_dwt_2025_101123 crossref_primary_10_3390_inorganics13090300 crossref_primary_10_1039_D4RA08446B crossref_primary_10_1007_s10098_025_03193_x crossref_primary_10_1016_j_envadv_2025_100656 crossref_primary_10_3390_app15084350 crossref_primary_10_1016_j_jenvman_2025_126102 crossref_primary_10_1007_s11356_023_30699_y crossref_primary_10_1016_j_cej_2025_161746 crossref_primary_10_1016_j_rineng_2025_104200 crossref_primary_10_1016_j_seppur_2024_128236 crossref_primary_10_1016_j_jwpe_2023_104515 crossref_primary_10_1016_j_molstruc_2025_142411 crossref_primary_10_1016_j_jhazmat_2024_135643 crossref_primary_10_1016_j_jhazmat_2023_132999 crossref_primary_10_1134_S1062739124060218 crossref_primary_10_1007_s10534_024_00643_9 crossref_primary_10_1016_j_talanta_2024_126168 crossref_primary_10_3390_chemosensors12070129 crossref_primary_10_1016_j_colsurfa_2024_135306 crossref_primary_10_1016_j_watres_2023_121087 crossref_primary_10_1007_s10661_025_14289_8 crossref_primary_10_1016_j_jcis_2025_02_007 crossref_primary_10_1016_j_jenvman_2025_124280 crossref_primary_10_1016_j_foodcont_2024_110700 crossref_primary_10_1111_cote_12831 crossref_primary_10_1002_slct_202404488 crossref_primary_10_3389_fnut_2025_1566345 crossref_primary_10_1002_jobm_70064 crossref_primary_10_3390_w17152167 crossref_primary_10_1007_s13762_025_06683_z crossref_primary_10_1080_15320383_2025_2461573 crossref_primary_10_1016_j_heliyon_2024_e40126 crossref_primary_10_1177_11786302231201259 crossref_primary_10_1016_j_ijbiomac_2024_131110 crossref_primary_10_1016_j_cej_2024_158029 crossref_primary_10_1177_02636174251338370 crossref_primary_10_1007_s41742_025_00899_0 crossref_primary_10_1016_j_jenvman_2025_127326 crossref_primary_10_1039_D4RA04537H crossref_primary_10_1007_s42729_024_01713_0 crossref_primary_10_1016_j_desal_2024_117725 crossref_primary_10_1016_j_jics_2025_102088 crossref_primary_10_1007_s40471_025_00367_5 crossref_primary_10_1016_j_molstruc_2024_140921 crossref_primary_10_1051_e3sconf_202560301017 crossref_primary_10_1016_j_jenvman_2025_124172 crossref_primary_10_3390_environments12040100 crossref_primary_10_3390_su17062726 crossref_primary_10_1016_j_heliyon_2025_e42932 crossref_primary_10_1016_j_jclepro_2023_139487 crossref_primary_10_1016_j_marpolbul_2025_117819 crossref_primary_10_1016_j_fbio_2023_103368 crossref_primary_10_1016_j_jece_2024_112881 crossref_primary_10_1039_D5RA01021G crossref_primary_10_1016_j_dwt_2025_101143 crossref_primary_10_1016_j_scitotenv_2024_176267 crossref_primary_10_1016_j_jenvman_2024_121727 crossref_primary_10_1016_j_marpolbul_2023_115639 crossref_primary_10_1021_acs_energyfuels_5c00175 crossref_primary_10_1186_s44315_025_00027_9 crossref_primary_10_1016_j_matchemphys_2024_129253 crossref_primary_10_1007_s13399_024_06354_y crossref_primary_10_1007_s10653_024_02137_6 crossref_primary_10_1007_s13738_024_03146_z crossref_primary_10_1007_s13762_025_06415_3 crossref_primary_10_1007_s13762_023_05401_x crossref_primary_10_1111_1758_2229_13307 crossref_primary_10_3390_ma18153639 crossref_primary_10_1016_j_mseb_2025_118055 crossref_primary_10_1016_j_jenvman_2024_120548 crossref_primary_10_1016_j_jwpe_2023_104213 crossref_primary_10_1016_j_seppur_2023_125095 crossref_primary_10_1016_j_ijbiomac_2024_137797 crossref_primary_10_1016_j_psep_2025_107335 crossref_primary_10_1039_D5RE00124B crossref_primary_10_1016_j_jenvman_2025_124199 crossref_primary_10_1016_j_molliq_2025_127582 crossref_primary_10_1149_1945_7111_ade47f crossref_primary_10_1016_j_envpol_2023_122846 crossref_primary_10_1186_s40068_024_00339_6 crossref_primary_10_1016_j_ceramint_2025_07_125 crossref_primary_10_1016_j_jfca_2024_107089 crossref_primary_10_3390_pollutants5010007 crossref_primary_10_1016_j_jece_2024_113870 crossref_primary_10_1007_s11356_024_32156_w crossref_primary_10_1016_j_cscee_2023_100538 crossref_primary_10_1016_j_jece_2025_116765 crossref_primary_10_1002_slct_202404832 crossref_primary_10_1007_s00604_025_07444_y crossref_primary_10_3390_w17152255 crossref_primary_10_1098_rsos_232033 crossref_primary_10_1016_j_apsusc_2025_162521 crossref_primary_10_1016_j_jfca_2025_108108 crossref_primary_10_1016_j_wmb_2025_100249 crossref_primary_10_1016_j_envexpbot_2025_106240 crossref_primary_10_1016_j_inoche_2025_114806 crossref_primary_10_3390_app15063117 crossref_primary_10_1016_j_inoche_2024_113657 crossref_primary_10_1016_j_cbpc_2023_109800 crossref_primary_10_1016_j_envres_2025_122282 crossref_primary_10_1016_j_ymeth_2024_01_010 crossref_primary_10_3389_fpls_2024_1423625 crossref_primary_10_1016_j_dyepig_2025_113033 crossref_primary_10_1038_s41598_024_76285_1 crossref_primary_10_1016_j_marpolbul_2024_116514 crossref_primary_10_1021_acscentsci_4c01010 crossref_primary_10_1039_D3RA04566H crossref_primary_10_1016_j_envres_2024_119441 crossref_primary_10_1016_j_jece_2023_111247 crossref_primary_10_1038_s41598_025_95736_x crossref_primary_10_1080_15320383_2024_2408005 crossref_primary_10_1039_D5RA03053F crossref_primary_10_1016_j_cej_2024_157132 crossref_primary_10_1016_j_envres_2024_119440 crossref_primary_10_1039_D5NR01593F crossref_primary_10_1186_s44314_024_00003_4 crossref_primary_10_1515_psr_2023_0047 crossref_primary_10_1016_j_psep_2025_107710 crossref_primary_10_1007_s10452_024_10162_x crossref_primary_10_1016_j_jwpe_2025_108072 crossref_primary_10_1007_s12088_025_01472_1 crossref_primary_10_1007_s13399_024_05989_1 crossref_primary_10_1016_j_scitotenv_2024_176989 crossref_primary_10_1016_j_jece_2024_113497 crossref_primary_10_3390_biology14091191 crossref_primary_10_3390_su162310602 crossref_primary_10_1080_15715124_2025_2523413 crossref_primary_10_1515_pac_2024_0103 crossref_primary_10_4081_ijfs_2024_12782 crossref_primary_10_1016_j_jwpe_2024_106867 crossref_primary_10_1016_j_envres_2024_119430 crossref_primary_10_1088_2053_1591_ad7448 crossref_primary_10_3390_antiox13091039 crossref_primary_10_1016_j_jfca_2025_107638 crossref_primary_10_1002_elan_202400365 crossref_primary_10_1039_D4EN01041H crossref_primary_10_1016_j_jhazmat_2025_138351 crossref_primary_10_1007_s10934_024_01662_0 crossref_primary_10_1080_10889868_2025_2502747 crossref_primary_10_1080_17518253_2024_2317824 crossref_primary_10_1038_s41598_025_09956_2 crossref_primary_10_1039_D5RA00057B crossref_primary_10_1007_s13530_025_00268_6 crossref_primary_10_1016_j_etap_2024_104610 crossref_primary_10_1016_j_micromeso_2025_113535 crossref_primary_10_1080_01496395_2025_2452425 crossref_primary_10_1002_slct_202406089 crossref_primary_10_1080_01490451_2025_2539517 crossref_primary_10_1016_j_matchemphys_2025_131029 crossref_primary_10_1016_j_envpol_2023_123063 crossref_primary_10_1093_sumbio_qvaf018 crossref_primary_10_1515_gps_2024_0197 crossref_primary_10_3934_environsci_2025028 crossref_primary_10_1016_j_dsr2_2025_105466 crossref_primary_10_1016_j_jenvman_2024_122523 crossref_primary_10_1080_19393210_2024_2434678 crossref_primary_10_1016_j_ecoenv_2025_117786 crossref_primary_10_1002_slct_202502450 crossref_primary_10_1007_s13201_024_02318_9 crossref_primary_10_1007_s10562_025_05128_z crossref_primary_10_1016_j_molstruc_2025_142485 crossref_primary_10_1080_02757540_2024_2306839 crossref_primary_10_1016_j_jwpe_2024_105862 crossref_primary_10_1016_j_surfin_2025_106618 crossref_primary_10_1021_acsenvironau_5c00024 crossref_primary_10_1080_00958972_2024_2362344 crossref_primary_10_1016_j_jhazmat_2024_136107 crossref_primary_10_1016_j_jtemin_2024_100141 crossref_primary_10_1007_s10965_024_04164_4 crossref_primary_10_1007_s10853_025_11400_9 crossref_primary_10_1038_s41598_025_95697_1 crossref_primary_10_1515_ijcre_2024_0247 crossref_primary_10_1080_00222348_2025_2483004 crossref_primary_10_1016_j_molliq_2025_127380 crossref_primary_10_1080_15592324_2024_2400451 crossref_primary_10_1097_MD_0000000000039152 crossref_primary_10_31185_wjes_Vol13_Iss3_680 crossref_primary_10_1016_j_envpol_2025_125675 crossref_primary_10_1016_j_jece_2024_114366 crossref_primary_10_1002_slct_202501909 crossref_primary_10_1016_j_jclepro_2024_144612 crossref_primary_10_3390_w15213710 crossref_primary_10_1016_j_surfin_2024_105731 crossref_primary_10_1016_j_dwt_2024_100010 crossref_primary_10_1007_s44371_024_00047_1 crossref_primary_10_1016_j_marenvres_2025_107022 crossref_primary_10_3389_fmars_2025_1636760 crossref_primary_10_3390_membranes15020038 crossref_primary_10_1016_j_ijbiomac_2025_142835 crossref_primary_10_1039_D4CY00975D crossref_primary_10_1051_e3sconf_202561904007 crossref_primary_10_1007_s10646_024_02814_3 crossref_primary_10_1039_D5RA00641D crossref_primary_10_3390_agronomy14020372 crossref_primary_10_1016_j_colsurfa_2025_137626 crossref_primary_10_3390_polym16213048 crossref_primary_10_1039_D5RA00912J crossref_primary_10_1016_j_jfca_2024_106581 crossref_primary_10_1515_pac_2024_0360 crossref_primary_10_56082_annalsarscibio_2025_1_262 crossref_primary_10_1007_s12517_025_12284_4 crossref_primary_10_1016_j_hazadv_2025_100878 crossref_primary_10_1016_j_scitotenv_2023_168196 crossref_primary_10_1021_acsomega_5c02923 crossref_primary_10_1016_j_hazadv_2025_100758 crossref_primary_10_1177_00368504251338646 crossref_primary_10_1016_j_jwpe_2024_106778 crossref_primary_10_1016_j_ancene_2025_100482 crossref_primary_10_3389_fnano_2024_1466721 crossref_primary_10_3390_bios15040213 crossref_primary_10_1007_s00289_025_05888_z crossref_primary_10_1007_s10008_025_06372_4 crossref_primary_10_1016_j_jobe_2024_109583 crossref_primary_10_1016_j_dyepig_2024_112028 crossref_primary_10_1039_D3EW00464C crossref_primary_10_1016_j_jwpe_2025_108674 crossref_primary_10_1080_00288330_2024_2373881 crossref_primary_10_3390_molecules30010195 crossref_primary_10_1016_j_renene_2024_121407 crossref_primary_10_1080_02757540_2025_2508993 crossref_primary_10_1007_s10661_024_13013_2 crossref_primary_10_3390_en17153607 crossref_primary_10_1016_j_cej_2025_163856 crossref_primary_10_1016_j_colsurfa_2024_135357 crossref_primary_10_1007_s13369_025_09976_0 crossref_primary_10_1016_j_scenv_2024_100197 crossref_primary_10_1016_j_wri_2023_100227 crossref_primary_10_1016_j_ijbiomac_2025_147398 crossref_primary_10_1016_j_dwt_2025_101427 crossref_primary_10_1007_s13530_025_00259_7 crossref_primary_10_1007_s41062_025_02211_7 crossref_primary_10_1016_j_pedsph_2025_07_002 crossref_primary_10_1016_j_diamond_2025_112294 crossref_primary_10_3390_molecules29112418 crossref_primary_10_1016_j_nxmate_2024_100454 crossref_primary_10_1016_j_jhazmat_2025_137463 crossref_primary_10_1016_j_hybadv_2025_100512 crossref_primary_10_21303_2461_4262_2025_003394 crossref_primary_10_1016_j_molliq_2025_127871 crossref_primary_10_1016_j_jenvman_2025_126882 crossref_primary_10_1016_j_marpolbul_2024_117354 crossref_primary_10_1016_j_clce_2025_100193 crossref_primary_10_1186_s12934_024_02638_0 crossref_primary_10_3390_s25113470 crossref_primary_10_3390_geosciences15020073 crossref_primary_10_1016_j_psep_2024_11_085 crossref_primary_10_3390_jcs7100419 crossref_primary_10_1080_03067319_2024_2423844 crossref_primary_10_1002_ejic_202400795 crossref_primary_10_1007_s11837_025_07692_6 crossref_primary_10_1007_s10661_024_12875_w crossref_primary_10_1016_j_jwpe_2025_107367 crossref_primary_10_54203_scil_2025_wvj22 crossref_primary_10_1016_j_saa_2025_126098 crossref_primary_10_1007_s10811_023_03131_8 crossref_primary_10_1016_j_jenvman_2025_126771 crossref_primary_10_1016_j_molstruc_2025_143414 crossref_primary_10_1007_s10661_025_13818_9 crossref_primary_10_1016_j_physb_2025_416887 crossref_primary_10_1016_j_cis_2024_103338 crossref_primary_10_1016_j_jtice_2024_105481 crossref_primary_10_1016_j_ecoenv_2024_117380 crossref_primary_10_1016_j_indcrop_2024_118845 crossref_primary_10_1051_e3sconf_202456411011 crossref_primary_10_18586_msufbd_1652087 crossref_primary_10_1016_j_jhazmat_2025_138577 crossref_primary_10_1051_bioconf_202410901003 crossref_primary_10_1007_s00027_024_01121_7 crossref_primary_10_3390_w16223305 crossref_primary_10_1016_j_cartre_2025_100465 crossref_primary_10_1016_j_jwpe_2025_107233 crossref_primary_10_1016_j_seppur_2025_131853 crossref_primary_10_1007_s41101_025_00377_w crossref_primary_10_1007_s11356_023_30805_0 crossref_primary_10_2166_wpt_2024_171 crossref_primary_10_1002_elan_202400107 crossref_primary_10_59675_P215 crossref_primary_10_3390_jox15020059 crossref_primary_10_1016_j_ecoenv_2024_117390 crossref_primary_10_1016_j_desal_2024_118324 crossref_primary_10_1016_j_scca_2025_100093 crossref_primary_10_3390_pr13051364 |
| Cites_doi | 10.1016/j.jes.2021.10.010 10.21967/jbb.v4i1.180 10.1016/j.biortech.2017.07.020 10.1016/j.molliq.2019.111197 10.1016/j.cclet.2020.07.050 10.1016/j.jhazmat.2018.01.011 10.1021/acs.est.6b00632 10.1016/j.envpol.2022.119869 10.1007/s11157-018-09490-w 10.1016/j.biortech.2020.122808 10.1016/j.micromeso.2012.06.007 10.3390/ijerph14010094 10.1007/s13201-018-0661-6 10.1016/j.scitotenv.2020.144604 10.1016/j.powtec.2020.02.069 10.1016/j.chemosphere.2021.132369 10.1016/j.jhazmat.2016.09.022 10.1016/j.cej.2013.07.036 10.1088/1757-899X/870/1/012023 10.1016/j.jcis.2004.08.028 10.1016/j.chemosphere.2021.131959 10.1016/j.apcatb.2016.07.023 10.1039/D2RA00796G 10.1016/j.chemosphere.2019.124942 10.1016/j.jhazmat.2021.127158 10.1016/j.apt.2017.04.028 10.1016/j.jhazmat.2022.128375 10.1016/j.jclepro.2020.120322 10.1016/j.jksus.2021.101653 10.1016/j.psep.2022.02.061 10.1007/s11356-019-05990-6 10.1039/D2RA07263G 10.1016/j.envres.2021.111911 10.1007/s11270-020-04863-w 10.1016/j.cej.2019.01.061 10.1016/j.envres.2022.113162 10.1016/j.envres.2022.113456 10.1007/s10653-019-00431-2 10.1016/j.apsusc.2020.147776 10.1016/j.scitotenv.2019.134883 10.1016/j.electacta.2015.08.103 10.1016/j.scitotenv.2022.158870 10.1111/raq.12639 10.1007/s00420-003-0499-5 10.30684/etj.29.3.15 10.1016/j.arabjc.2021.103366 10.1016/j.jhazmat.2019.121446 10.1016/j.jenvman.2014.02.007 10.1016/j.jenvman.2022.115214 10.1016/j.cej.2021.131584 10.1016/j.seppur.2021.119510 10.1007/s40710-020-00476-x 10.1016/j.chemosphere.2021.132230 10.1016/j.envpol.2022.118939 10.1016/j.chemosphere.2019.04.160 10.1016/j.chemosphere.2019.01.161 10.1016/j.scitotenv.2019.134509 10.1016/j.seppur.2021.119831 10.1016/j.psep.2017.11.005 10.1016/j.jhazmat.2021.127012 10.1016/j.cej.2020.127139 10.1016/j.bj.2018.03.003 10.1016/S0043-1354(02)00208-7 10.1016/j.seppur.2020.117885 10.1038/s41545-020-00095-x 10.1007/s40726-020-00135-7 10.1016/j.jclepro.2020.122462 10.1039/D2RA05832D 10.1039/C7RA10185F 10.1016/j.cej.2017.05.031 10.1007/s13762-013-0299-8 10.1016/j.fuel.2018.11.102 10.1016/j.jhazmat.2021.127244 10.1016/j.jece.2021.106088 10.1007/s13201-016-0382-7 10.1016/j.micromeso.2019.109667 10.1016/j.ijbiomac.2021.08.186 10.3390/w13040517 10.1080/09593330.2018.1435739 10.1016/j.cej.2019.04.005 10.1007/s10311-018-0785-9 10.1016/j.reactfunctpolym.2021.105129 10.1016/j.apcatb.2013.07.038 10.1016/j.jwpe.2020.101339 10.1016/j.biortech.2020.122886 10.1016/j.tibtech.2019.04.007 10.1016/j.jwpe.2022.103023 10.1016/j.biortech.2016.05.057 10.1016/j.eti.2020.100692 10.1016/j.cej.2020.126774 10.3390/w15030478 10.1016/j.jhazmat.2011.03.063 10.1016/j.cej.2019.122703 10.2166/wst.2004.0270 10.1007/s11356-020-08173-w 10.1016/j.jclepro.2022.131441 10.1016/j.seppur.2021.120099 10.1016/j.jaap.2021.105081 10.1016/j.chemosphere.2014.05.077 10.3390/coatings9080465 10.1016/j.cej.2021.131721 10.1016/j.jhazmat.2021.126878 10.1016/j.watres.2013.09.050 10.1016/j.cej.2019.122060 10.1016/j.psep.2022.12.030 10.1016/j.jclepro.2020.123805 10.1016/j.jclepro.2020.122411 10.1016/j.jhazmat.2021.126722 10.1016/j.biortech.2020.124011 10.1016/j.jaap.2022.105542 10.1039/D1TA06612A 10.1007/s11356-017-8715-0 10.1016/j.scitotenv.2017.09.016 10.1016/j.cep.2022.108812 10.1016/j.jiec.2019.03.029 10.1016/j.envadv.2022.100204 10.1016/j.biortech.2017.07.082 10.1016/j.scitotenv.2019.04.416 10.1007/s13762-012-0113-z 10.1088/1742-6596/1996/1/012011 10.1016/j.heliyon.2019.e02320 10.1016/j.powtec.2016.02.019 10.1016/j.procbio.2012.02.025 10.1016/j.cej.2021.131708 10.1007/978-981-13-3426-9_15 10.1016/B978-0-12-814154-0.00005-0 10.1016/j.jece.2017.05.029 10.1016/j.envint.2019.01.067 10.1016/j.cej.2012.08.045 10.1016/j.ijhydene.2017.05.156 10.1007/s11356-020-09868-w 10.1016/j.cej.2021.129946 10.1016/j.scitotenv.2021.150606 10.3390/nano12040678 10.1016/j.jhazmat.2019.04.031 10.1080/15320383.2019.1592108 10.1016/j.chemosphere.2020.126539 10.1039/D3RA01660A 10.1016/j.cej.2021.131468 10.1016/j.cej.2018.04.161 10.1016/j.molliq.2016.04.128 10.1016/j.jenvman.2014.11.005 10.3390/plants11050595 10.1016/j.cej.2022.139071 10.1007/978-3-7643-8340-4_6 10.1016/j.eti.2020.100774 10.1080/03067319.2020.1722811 10.1016/j.scitotenv.2019.03.011 10.1016/j.cej.2019.123911 10.1016/j.carbpol.2020.115881 10.1016/j.biortech.2019.122468 10.1016/j.cej.2019.123639 10.1515/revce-2016-0021 10.1039/D1RA07034G 10.1016/j.jhazmat.2021.127312 10.1016/j.jwpe.2020.101561 10.1016/j.chemosphere.2023.138508 10.1016/j.jhazmat.2022.128841 10.1016/j.apcatb.2021.120375 10.1016/j.envpol.2018.02.020 10.1016/j.seppur.2019.01.074 10.1016/j.rser.2021.111265 10.1016/j.biortech.2014.07.014 10.1016/j.chemosphere.2014.04.043 10.1016/j.biortech.2012.11.132 10.1016/j.seppur.2022.122484 10.1016/j.fuel.2017.12.054 10.1016/j.cej.2016.10.137 10.1016/j.biortech.2021.126081 10.1016/j.fuel.2019.04.096 10.1016/j.micromeso.2019.05.062 10.1016/j.cej.2012.06.116 10.1016/j.micromeso.2021.111553 10.1016/j.clema.2022.100045 10.1016/j.biortech.2019.122030 10.1016/B978-0-323-85763-5.00024-6 10.1016/j.chemosphere.2022.134788 10.1016/j.biortech.2014.03.073 10.1016/j.jhazmat.2020.122515 10.1016/j.micromeso.2019.06.009 10.1016/j.wri.2023.100202 10.1016/j.scitotenv.2021.151774 10.1007/s11356-017-0956-4 10.1016/j.cej.2021.131688 10.1016/B978-0-323-95919-3.00014-8 10.1016/j.jmrt.2019.04.009 10.1016/j.cej.2013.10.088 10.1016/j.scitotenv.2021.151442 10.1016/j.chemosphere.2020.129129 10.1016/j.scitotenv.2021.150116 10.1016/j.chemosphere.2020.126331 10.1016/j.jhazmat.2021.126225 10.1007/s12517-021-07443-2 10.5937/JMMA1901067T |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2023 This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2023 – notice: This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| DOI | 10.1039/d3ra00723e |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2046-2069 |
| EndPage | 1761 |
| ExternalDocumentID | PMC10258679 37312989 10_1039_D3RA00723E d3ra00723e |
| Genre | Journal Article Review |
| GroupedDBID | -JG 0-7 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV ABEMK ABGFH ABPDG ABXOH ACGFS ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BCNDV BLAPV BSQNT C6K EBS EE0 EF- GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- OK1 PGMZT R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH SMJ ZCN AAYXX ABIQK AFPKN AGMRB CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
| ID | FETCH-LOGICAL-c429t-3f121739f024955b9196319d060baa89f1f81db9a1e7c48f3fcddd0cf2dd48253 |
| ISICitedReferencesCount | 454 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003285200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2046-2069 |
| IngestDate | Tue Nov 04 02:06:45 EST 2025 Fri Sep 05 11:56:41 EDT 2025 Sun Nov 09 06:59:42 EST 2025 Mon Jul 21 05:56:34 EDT 2025 Tue Nov 18 21:10:32 EST 2025 Sat Nov 29 06:30:18 EST 2025 Tue Dec 17 20:58:44 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 26 |
| Language | English |
| License | This journal is © The Royal Society of Chemistry. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c429t-3f121739f024955b9196319d060baa89f1f81db9a1e7c48f3fcddd0cf2dd48253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-7042-7534 0000-0002-6866-4116 |
| OpenAccessLink | http://dx.doi.org/10.1039/d3ra00723e |
| PMID | 37312989 |
| PQID | 2826077374 |
| PQPubID | 2047525 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1039_D3RA00723E pubmedcentral_primary_oai_pubmedcentral_nih_gov_10258679 pubmed_primary_37312989 crossref_primary_10_1039_D3RA00723E rsc_primary_d3ra00723e proquest_journals_2826077374 proquest_miscellaneous_2825812173 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-09 |
| PublicationDateYYYYMMDD | 2023-06-09 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | RSC advances |
| PublicationTitleAlternate | RSC Adv |
| PublicationYear | 2023 |
| Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
| References | Luptakova (D3RA00723E/cit12/1) 2012; 47 Fung (D3RA00723E/cit57/1) 2018; 41 Wang (D3RA00723E/cit26/1) 2022; 427 Zhen (D3RA00723E/cit206/1) 2012; 209 Jain (D3RA00723E/cit148/1) 2022; 12 Ayala (D3RA00723E/cit100/1) 2019; 45 Xie (D3RA00723E/cit54/1) 2016; 7 Abdullahi (D3RA00723E/cit173/1) 2017; 28 Gupta (D3RA00723E/cit146/1) 2020; 38 Araucz (D3RA00723E/cit70/1) 2020; 251 Ayala (D3RA00723E/cit101/1) 2019; 40 Amalina (D3RA00723E/cit112/1) 2022; 3 Abdulla (D3RA00723E/cit4/1) 2020; 612 Aziz (D3RA00723E/cit181/1) 2019; 228 Deng (D3RA00723E/cit80/1) 2019 Yuan (D3RA00723E/cit41/1) 2020; 27 Xu (D3RA00723E/cit32/1) 2022; 212 Megha (D3RA00723E/cit79/1) 2023; 77 Chauhan (D3RA00723E/cit19/1) 2023; 78 Bayuo (D3RA00723E/cit30/1) 2023; 13 Kaith (D3RA00723E/cit164/1) 2022; 53 Hu (D3RA00723E/cit50/1) 2018; 25 Duan (D3RA00723E/cit97/1) 2020; 37 Maarof (D3RA00723E/cit84/1) 2017; 33 Chen (D3RA00723E/cit78/1) 2023; 451 Montalvo (D3RA00723E/cit165/1) 2020; 301 Sun (D3RA00723E/cit85/1) 2020; 385 Li (D3RA00723E/cit125/1) 2022; 310 Zhang (D3RA00723E/cit98/1) 2023; 305 Li (D3RA00723E/cit46/1) 2020; 27 Chen (D3RA00723E/cit72/1) 2023; 124 Kyzas (D3RA00723E/cit21/1) 2016; 220 Panahi (D3RA00723E/cit122/1) 2020; 270 Yoldi (D3RA00723E/cit167/1) 2020; 366 Mani (D3RA00723E/cit53/1) 2014; 11 Janjhi (D3RA00723E/cit73/1) 2023 Yoldi (D3RA00723E/cit170/1) 2019; 287 Yang (D3RA00723E/cit171/1) 2021; 536 Yaashikaa (D3RA00723E/cit35/1) 2022; 287 Tran (D3RA00723E/cit22/1) 2017; 42 Ma (D3RA00723E/cit136/1) 2014; 169 Zhang (D3RA00723E/cit141/1) 2013; 130 Visa (D3RA00723E/cit169/1) 2016; 294 Fei (D3RA00723E/cit179/1) 2022; 10 Saini (D3RA00723E/cit7/1) 2020 Ramírez Calderón (D3RA00723E/cit58/1) 2020; 6 Rai (D3RA00723E/cit55/1) 2019; 125 Reddy (D3RA00723E/cit103/1) 2019; 18 Fang (D3RA00723E/cit109/1) 2022; 300 Purnomo (D3RA00723E/cit168/1) 2012; 162 Zhao (D3RA00723E/cit194/1) 2015; 180 Yu (D3RA00723E/cit121/1) 2017; 7 Yaashikaa (D3RA00723E/cit113/1) 2019; 292 Yang (D3RA00723E/cit174/1) 2022; 424 Vithanage (D3RA00723E/cit133/1) 2015; 151 Chakraborty (D3RA00723E/cit88/1) 2022; 102 Liu (D3RA00723E/cit202/1) 2021; 406 Tchounwou (D3RA00723E/cit45/1) 2012; 101 Wang (D3RA00723E/cit188/1) 2019; 370 Weber (D3RA00723E/cit107/1) 2018; 217 Aziz (D3RA00723E/cit182/1) 2017; 313 Mustafa (D3RA00723E/cit110/1) 2023; 170 Dilpazeer (D3RA00723E/cit43/1) 2023; 15 Singh (D3RA00723E/cit17/1) 2022 Qiu (D3RA00723E/cit63/1) 2021; 155 BrbootI (D3RA00723E/cit14/1) 2011; 29 Imdad (D3RA00723E/cit87/1) 2022 Wang (D3RA00723E/cit177/1) 2020; 240 Liang (D3RA00723E/cit190/1) 2019; 374 Saleh (D3RA00723E/cit60/1) 2022; 17 Du (D3RA00723E/cit176/1) 2020; 31 Leong (D3RA00723E/cit178/1) 2020; 303 Qu (D3RA00723E/cit143/1) 2022 Cheng (D3RA00723E/cit127/1) 2022; 343 Liu (D3RA00723E/cit203/1) 2021; 257 Wu (D3RA00723E/cit124/1) 2018; 348 Rafique (D3RA00723E/cit151/1) 2022 Zhao (D3RA00723E/cit193/1) 2014; 144 Ahmed (D3RA00723E/cit135/1) 2016; 214 Kamali (D3RA00723E/cit106/1) 2021; 420 Rajendran (D3RA00723E/cit49/1) 2022; 287 Liu (D3RA00723E/cit128/1) 2020; 257 Wang (D3RA00723E/cit187/1) 2019; 26 Belova (D3RA00723E/cit157/1) 2019; 5 Khulbe (D3RA00723E/cit62/1) 2018; 8 Hoang (D3RA00723E/cit11/1) 2022; 287 Funan (D3RA00723E/cit77/1) 2023; 5 Xu (D3RA00723E/cit180/1) 2022; 429 Aziz (D3RA00723E/cit184/1) 2018; 113 Karim (D3RA00723E/cit185/1) 2021; 958 Yao (D3RA00723E/cit44/1) 2019; 375 Zhang (D3RA00723E/cit129/1) 2019; 252 Liu (D3RA00723E/cit201/1) 2022; 280 Li (D3RA00723E/cit36/1) 2022; 424 Ahmadijokani (D3RA00723E/cit8/1) 2022; 316 Aziz (D3RA00723E/cit92/1) 2021; 14 Tasić (D3RA00723E/cit163/1) 2019; 55 Zeng (D3RA00723E/cit195/1) 2016; 50 Xiang (D3RA00723E/cit114/1) 2020; 252 Godwin (D3RA00723E/cit94/1) 2019; 4 Bortoloti (D3RA00723E/cit66/1) 2022; 8 Adil (D3RA00723E/cit31/1) 2022; 12 Irannajad (D3RA00723E/cit160/1) 2021; 8 Han (D3RA00723E/cit71/1) 2022; 423 Luo (D3RA00723E/cit6/1) 2022; 422 Ayangbenro (D3RA00723E/cit47/1) 2017; 14 Wang (D3RA00723E/cit34/1) 2021; 266 Yang (D3RA00723E/cit140/1) 2014; 48 Kamali (D3RA00723E/cit105/1) 2022; 427 Yang (D3RA00723E/cit120/1) 2018; 348 Fan (D3RA00723E/cit2/1) 2021; 416 Li (D3RA00723E/cit13/1) 2019; 28 Wang (D3RA00723E/cit191/1) 2020; 381 Su (D3RA00723E/cit126/1) 2021; 768 Ren (D3RA00723E/cit153/1) 2022 Lv (D3RA00723E/cit155/1) 2022; 329 Uchimiya (D3RA00723E/cit137/1) 2011; 190 Abdullah (D3RA00723E/cit83/1) 2019; 76 Yi (D3RA00723E/cit144/1) 2020; 298 Aziz (D3RA00723E/cit200/1) 2019; 216 Xu (D3RA00723E/cit118/1) 2019; 239 Placido (D3RA00723E/cit16/1) 2022; 11 Peyravi (D3RA00723E/cit20/1) 2023 Zhou (D3RA00723E/cit138/1) 2013; 231 Xue (D3RA00723E/cit139/1) 2012; 200 Erdem (D3RA00723E/cit91/1) 2004; 280 Qin (D3RA00723E/cit104/1) 2022; 818 Bosso (D3RA00723E/cit152/1) 2002; 36 Hussain (D3RA00723E/cit130/1) 2020; 42 Xu (D3RA00723E/cit186/1) 2020; 392 Bilal (D3RA00723E/cit29/1) 2021; 278 Chen (D3RA00723E/cit197/1) 2017; 324 Qu (D3RA00723E/cit1/1) 2018; 237 Xu (D3RA00723E/cit132/1) 2014; 111 Mao (D3RA00723E/cit95/1) 2020; 393 Ayala (D3RA00723E/cit99/1) 2019; 8 Cheng (D3RA00723E/cit111/1) 2019; 37 Kansara (D3RA00723E/cit89/1) 2016; 12 Alka (D3RA00723E/cit64/1) 2021; 278 Carolin (D3RA00723E/cit28/1) 2017; 5 Syeda (D3RA00723E/cit68/1) 2022; 807 Miranda (D3RA00723E/cit38/1) 2022; 804 Bhat (D3RA00723E/cit81/1) 2022; 303 Cao (D3RA00723E/cit204/1) 2019; 362 Qasem (D3RA00723E/cit15/1) 2021; 4 Liu (D3RA00723E/cit207/1) 2017; 321 Elzwayie (D3RA00723E/cit42/1) 2017; 24 Pan (D3RA00723E/cit69/1) 2022; 423 Hama Aziz (D3RA00723E/cit198/1) 2019; 9 He (D3RA00723E/cit131/1) 2018; 612 Dong (D3RA00723E/cit142/1) 2022; 806 Sun (D3RA00723E/cit67/1) 2022; 170 Nobaharan (D3RA00723E/cit75/1) 2021; 13 Feng (D3RA00723E/cit9/1) 2022; 284 Shou (D3RA00723E/cit33/1) 2022; 212 Zaynab (D3RA00723E/cit5/1) 2022; 34 Ali (D3RA00723E/cit65/1) 2013; 10 Ji (D3RA00723E/cit90/1) 2022 Velarde (D3RA00723E/cit175/1) 2023 Hadjittofi (D3RA00723E/cit134/1) 2014; 159 Mihaly-Cozmuta (D3RA00723E/cit158/1) 2014; 137 Vardhan (D3RA00723E/cit27/1) 2019; 290 Hsu (D3RA00723E/cit74/1) 2023; 855 Bayuo (D3RA00723E/cit147/1) 2022; 12 Collins (D3RA00723E/cit172/1) 2020; 291 Yoon (D3RA00723E/cit123/1) 2017; 246 Hoang (D3RA00723E/cit116/1) 2021; 148 Ayala (D3RA00723E/cit102/1) 2020; 384 Obaid (D3RA00723E/cit154/1) 2018; 5 Lian (D3RA00723E/cit117/1) 2020; 317 Liu (D3RA00723E/cit159/1) 2021; 406 Aziz (D3RA00723E/cit199/1) 2021 Cui (D3RA00723E/cit145/1) 2022; 12 Vallejo (D3RA00723E/cit25/1) 2015; 118 Aziz (D3RA00723E/cit183/1) 2023; 13 Shah (D3RA00723E/cit48/1) 2020; 18 Qiang (D3RA00723E/cit166/1) 2019; 287 Dai (D3RA00723E/cit149/1) 2019; 223 Wang (D3RA00723E/cit189/1) 2022; 427 Suty (D3RA00723E/cit24/1) 2004; 49 Otunola (D3RA00723E/cit40/1) 2020; 18 Zorpas (D3RA00723E/cit161/1) 2021; 14 Khan (D3RA00723E/cit23/1) 2020; 269 Ikeda (D3RA00723E/cit56/1) 2004; 77 Liang (D3RA00723E/cit192/1) 2021; 296 Wang (D3RA00723E/cit150/1) 2019; 668 Xu (D3RA00723E/cit93/1) 2017; 200 Roy (D3RA00723E/cit3/1) 2021; 16 Zhao (D3RA00723E/cit205/1) 2014; 239 Zhao (D3RA00723E/cit52/1) 2020; 704 Sizmur (D3RA00723E/cit119/1) 2017; 246 Li (D3RA00723E/cit51/1) 2022; 14 Xiang (D3RA00723E/cit18/1) 2022; 49 Sakhi (D3RA00723E/cit86/1) 2018 Chen (D3RA00723E/cit115/1) 2022; 160 Rad (D3RA00723E/cit162/1) 2021; 9 Niu (D3RA00723E/cit37/1) 2020; 700 Fan (D3RA00723E/cit39/1) 2022; 203 Zhu (D3RA00723E/cit76/1) 2019; 678 Pohl (D3RA00723E/cit61/1) 2020; 231 Taamneh (D3RA00723E/cit156/1) 2017; 7 Jiao (D3RA00723E/cit10/1) 2022; 421 Aktar (D3RA00723E/cit108/1) 2022; 164 Choi (D3RA00723E/cit96/1) 2020; 234 Geng (D3RA00723E/cit59/1) 2021; 190 Hu (D3RA00723E/cit196/1) 2022; 428 Crini (D3RA00723E/cit82/1) 2019; 17 |
| References_xml | – issn: 2020 end-page: p 357-387 publication-title: Bioremediation of industrial waste for environmental safety doi: Saini Dhania – issn: 2022 end-page: p 253-276 publication-title: Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water doi: Singh Kumar Dhanjal Parihar Ramamurthy Singh – issn: 2023 end-page: p 331-351 publication-title: Metals in Water doi: Peyravi Rezaei – issn: 2018 doi: Sakhi Rakhila Elmchaouri Abouri Souabi Jada – issn: 2019 end-page: p 125-153 publication-title: Nanohybrid and Nanoporous Materials for Aquatic Pollution Control doi: Deng Feng Tang Zeng Chen Zhang – volume: 124 start-page: 268 year: 2023 ident: D3RA00723E/cit72/1 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2021.10.010 – volume: 4 start-page: 31 year: 2019 ident: D3RA00723E/cit94/1 publication-title: J. Bioresour. Bioprod. doi: 10.21967/jbb.v4i1.180 – volume: 246 start-page: 69 year: 2017 ident: D3RA00723E/cit123/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.020 – volume: 290 start-page: 111197 year: 2019 ident: D3RA00723E/cit27/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111197 – volume: 31 start-page: 2575 year: 2020 ident: D3RA00723E/cit176/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.07.050 – volume: 348 start-page: 10 year: 2018 ident: D3RA00723E/cit124/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.01.011 – volume: 50 start-page: 6459 year: 2016 ident: D3RA00723E/cit195/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00632 – volume: 310 start-page: 119869 year: 2022 ident: D3RA00723E/cit125/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.119869 – volume: 18 start-page: 127 year: 2019 ident: D3RA00723E/cit103/1 publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-018-09490-w – volume: 301 start-page: 122808 year: 2020 ident: D3RA00723E/cit165/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.122808 – volume: 162 start-page: 6 year: 2012 ident: D3RA00723E/cit168/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2012.06.007 – volume: 14 start-page: 94 year: 2017 ident: D3RA00723E/cit47/1 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph14010094 – volume: 8 start-page: 1 year: 2018 ident: D3RA00723E/cit62/1 publication-title: Appl. Water Sci. doi: 10.1007/s13201-018-0661-6 – volume: 768 start-page: 144604 year: 2021 ident: D3RA00723E/cit126/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144604 – volume: 366 start-page: 175 year: 2020 ident: D3RA00723E/cit167/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.02.069 – volume: 287 start-page: 132369 year: 2022 ident: D3RA00723E/cit49/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132369 – volume: 321 start-page: 290 year: 2017 ident: D3RA00723E/cit207/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.09.022 – volume: 77 start-page: 188 year: 2023 ident: D3RA00723E/cit79/1 publication-title: Mater. Today: Proc. – volume: 231 start-page: 512 year: 2013 ident: D3RA00723E/cit138/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.07.036 – volume: 612 start-page: 012023 year: 2020 ident: D3RA00723E/cit4/1 publication-title: IOP Conference Series: Earth and Environmental Science doi: 10.1088/1757-899X/870/1/012023 – volume: 280 start-page: 309 year: 2004 ident: D3RA00723E/cit91/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.08.028 – volume: 287 start-page: 131959 year: 2022 ident: D3RA00723E/cit11/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131959 – volume: 200 start-page: 439 year: 2017 ident: D3RA00723E/cit93/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.07.023 – volume: 12 start-page: 11233 year: 2022 ident: D3RA00723E/cit147/1 publication-title: RSC Adv. doi: 10.1039/D2RA00796G – volume: 240 start-page: 124942 year: 2020 ident: D3RA00723E/cit177/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124942 – volume: 423 start-page: 127158 year: 2022 ident: D3RA00723E/cit69/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127158 – volume: 28 start-page: 1827 year: 2017 ident: D3RA00723E/cit173/1 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2017.04.028 – start-page: 128375 year: 2022 ident: D3RA00723E/cit90/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.128375 – volume: 257 start-page: 120322 year: 2020 ident: D3RA00723E/cit128/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.120322 – volume: 34 start-page: 101653 year: 2022 ident: D3RA00723E/cit5/1 publication-title: J. King Saud Univ., Sci. doi: 10.1016/j.jksus.2021.101653 – volume: 160 start-page: 704 year: 2022 ident: D3RA00723E/cit115/1 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.02.061 – volume: 26 start-page: 29736 year: 2019 ident: D3RA00723E/cit187/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-05990-6 – volume: 13 start-page: 115 year: 2023 ident: D3RA00723E/cit183/1 publication-title: RSC Adv. doi: 10.1039/D2RA07263G – volume: 203 start-page: 111911 year: 2022 ident: D3RA00723E/cit39/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2021.111911 – volume: 231 start-page: 1 year: 2020 ident: D3RA00723E/cit61/1 publication-title: Water, Air, Soil Pollut. doi: 10.1007/s11270-020-04863-w – volume: 362 start-page: 487 year: 2019 ident: D3RA00723E/cit204/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.061 – volume: 212 start-page: 113162 year: 2022 ident: D3RA00723E/cit33/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2022.113162 – volume: 212 start-page: 113456 year: 2022 ident: D3RA00723E/cit32/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2022.113456 – volume: 42 start-page: 2519 year: 2020 ident: D3RA00723E/cit130/1 publication-title: Environ. Geochem. Health doi: 10.1007/s10653-019-00431-2 – volume: 536 start-page: 147776 year: 2021 ident: D3RA00723E/cit171/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147776 – volume: 704 start-page: 134883 year: 2020 ident: D3RA00723E/cit52/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134883 – volume: 180 start-page: 129 year: 2015 ident: D3RA00723E/cit194/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.08.103 – volume: 855 start-page: 158870 year: 2023 ident: D3RA00723E/cit74/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.158870 – volume: 14 start-page: 1028 year: 2022 ident: D3RA00723E/cit51/1 publication-title: Rev. Aquac. doi: 10.1111/raq.12639 – volume: 77 start-page: 227 year: 2004 ident: D3RA00723E/cit56/1 publication-title: Int. Arch. Occup. Environ. Health doi: 10.1007/s00420-003-0499-5 – volume: 29 start-page: 595 year: 2011 ident: D3RA00723E/cit14/1 publication-title: J. Eng. Technol. doi: 10.30684/etj.29.3.15 – volume: 45 start-page: 141 year: 2019 ident: D3RA00723E/cit100/1 publication-title: Environ. Prot. Eng. – start-page: 103366 year: 2021 ident: D3RA00723E/cit199/1 publication-title: Arabian J. Chem. doi: 10.1016/j.arabjc.2021.103366 – volume: 384 start-page: 121446 year: 2020 ident: D3RA00723E/cit102/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121446 – volume: 137 start-page: 69 year: 2014 ident: D3RA00723E/cit158/1 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2014.02.007 – volume: 316 start-page: 115214 year: 2022 ident: D3RA00723E/cit8/1 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2022.115214 – volume: 14 start-page: 103366 year: 2021 ident: D3RA00723E/cit92/1 publication-title: Arabian J. Chem. doi: 10.1016/j.arabjc.2021.103366 – volume: 427 start-page: 131584 year: 2022 ident: D3RA00723E/cit189/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131584 – volume: 278 start-page: 119510 year: 2021 ident: D3RA00723E/cit29/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119510 – volume: 8 start-page: 7 year: 2021 ident: D3RA00723E/cit160/1 publication-title: Environ. Processes doi: 10.1007/s40710-020-00476-x – volume: 287 start-page: 132230 year: 2022 ident: D3RA00723E/cit35/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132230 – volume: 300 start-page: 118939 year: 2022 ident: D3RA00723E/cit109/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.118939 – volume: 228 start-page: 377 year: 2019 ident: D3RA00723E/cit181/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.04.160 – volume: 223 start-page: 12 year: 2019 ident: D3RA00723E/cit149/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.01.161 – volume: 700 start-page: 134509 year: 2020 ident: D3RA00723E/cit37/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134509 – volume: 280 start-page: 119831 year: 2022 ident: D3RA00723E/cit201/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119831 – volume: 113 start-page: 319 year: 2018 ident: D3RA00723E/cit184/1 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2017.11.005 – volume: 423 start-page: 127012 year: 2022 ident: D3RA00723E/cit71/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127012 – volume: 406 start-page: 127139 year: 2021 ident: D3RA00723E/cit159/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127139 – volume: 41 start-page: 88 year: 2018 ident: D3RA00723E/cit57/1 publication-title: Biomed. J. doi: 10.1016/j.bj.2018.03.003 – volume: 36 start-page: 4795 year: 2002 ident: D3RA00723E/cit152/1 publication-title: Water Res. doi: 10.1016/S0043-1354(02)00208-7 – volume: 257 start-page: 117885 year: 2021 ident: D3RA00723E/cit203/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117885 – volume: 12 start-page: 143 year: 2016 ident: D3RA00723E/cit89/1 publication-title: Environ. Sci. Indian J. – volume: 4 start-page: 1 year: 2021 ident: D3RA00723E/cit15/1 publication-title: npj Clean Water doi: 10.1038/s41545-020-00095-x – volume: 6 start-page: 8 year: 2020 ident: D3RA00723E/cit58/1 publication-title: Curr. Pollut. Rep. doi: 10.1007/s40726-020-00135-7 – volume: 270 start-page: 122462 year: 2020 ident: D3RA00723E/cit122/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.122462 – volume: 12 start-page: 32197 year: 2022 ident: D3RA00723E/cit148/1 publication-title: RSC Adv. doi: 10.1039/D2RA05832D – volume: 7 start-page: 53135 year: 2017 ident: D3RA00723E/cit121/1 publication-title: RSC Adv. doi: 10.1039/C7RA10185F – volume: 324 start-page: 74 year: 2017 ident: D3RA00723E/cit197/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.05.031 – volume: 11 start-page: 843 year: 2014 ident: D3RA00723E/cit53/1 publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-013-0299-8 – volume: 239 start-page: 982 year: 2019 ident: D3RA00723E/cit118/1 publication-title: Fuel doi: 10.1016/j.fuel.2018.11.102 – volume: 53 start-page: 174 year: 2022 ident: D3RA00723E/cit164/1 publication-title: Mater. Today: Proc. – volume: 424 start-page: 127244 year: 2022 ident: D3RA00723E/cit174/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127244 – volume: 9 start-page: 106088 year: 2021 ident: D3RA00723E/cit162/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106088 – volume: 7 start-page: 2021 year: 2017 ident: D3RA00723E/cit156/1 publication-title: Appl. Water Sci. doi: 10.1007/s13201-016-0382-7 – volume: 291 start-page: 109667 year: 2020 ident: D3RA00723E/cit172/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2019.109667 – volume: 190 start-page: 170 year: 2021 ident: D3RA00723E/cit59/1 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.08.186 – volume: 13 start-page: 517 year: 2021 ident: D3RA00723E/cit75/1 publication-title: Water doi: 10.3390/w13040517 – volume: 40 start-page: 2037 year: 2019 ident: D3RA00723E/cit101/1 publication-title: Environ. Technol. doi: 10.1080/09593330.2018.1435739 – volume: 370 start-page: 1298 year: 2019 ident: D3RA00723E/cit188/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.005 – volume: 17 start-page: 145 year: 2019 ident: D3RA00723E/cit82/1 publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-018-0785-9 – volume: 170 start-page: 105129 year: 2022 ident: D3RA00723E/cit67/1 publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2021.105129 – volume: 144 start-page: 478 year: 2014 ident: D3RA00723E/cit193/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2013.07.038 – volume: 37 start-page: 101339 year: 2020 ident: D3RA00723E/cit97/1 publication-title: J. Water Process. Eng. doi: 10.1016/j.jwpe.2020.101339 – volume: 303 start-page: 122886 year: 2020 ident: D3RA00723E/cit178/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.122886 – volume: 37 start-page: 1255 year: 2019 ident: D3RA00723E/cit111/1 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2019.04.007 – volume: 49 start-page: 103023 year: 2022 ident: D3RA00723E/cit18/1 publication-title: J. Water Process. Eng. doi: 10.1016/j.jwpe.2022.103023 – volume: 214 start-page: 836 year: 2016 ident: D3RA00723E/cit135/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.057 – volume: 18 start-page: 100692 year: 2020 ident: D3RA00723E/cit40/1 publication-title: Environ. Technol. Innovation doi: 10.1016/j.eti.2020.100692 – volume: 406 start-page: 126774 year: 2021 ident: D3RA00723E/cit202/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126774 – volume: 15 start-page: 478 year: 2023 ident: D3RA00723E/cit43/1 publication-title: Water doi: 10.3390/w15030478 – volume: 190 start-page: 432 year: 2011 ident: D3RA00723E/cit137/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.03.063 – volume: 381 start-page: 122703 year: 2020 ident: D3RA00723E/cit191/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122703 – volume: 49 start-page: 227 year: 2004 ident: D3RA00723E/cit24/1 publication-title: Water Sci. Technol. doi: 10.2166/wst.2004.0270 – volume: 27 start-page: 18392 year: 2020 ident: D3RA00723E/cit46/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-08173-w – start-page: 131441 year: 2022 ident: D3RA00723E/cit153/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2022.131441 – volume: 284 start-page: 120099 year: 2022 ident: D3RA00723E/cit9/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.120099 – volume: 17 start-page: 100617 year: 2022 ident: D3RA00723E/cit60/1 publication-title: Environ. Nanotechnol., Monit. Manage. – volume: 155 start-page: 105081 year: 2021 ident: D3RA00723E/cit63/1 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2021.105081 – volume: 118 start-page: 44 year: 2015 ident: D3RA00723E/cit25/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.05.077 – volume: 9 start-page: 465 year: 2019 ident: D3RA00723E/cit198/1 publication-title: Coatings doi: 10.3390/coatings9080465 – volume: 427 start-page: 131721 year: 2022 ident: D3RA00723E/cit26/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131721 – volume: 422 start-page: 126878 year: 2022 ident: D3RA00723E/cit6/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126878 – volume: 48 start-page: 396 year: 2014 ident: D3RA00723E/cit140/1 publication-title: Water Res. doi: 10.1016/j.watres.2013.09.050 – start-page: 1 year: 2022 ident: D3RA00723E/cit151/1 publication-title: Environ. Sci. Pollut. Res. – volume: 375 start-page: 122060 year: 2019 ident: D3RA00723E/cit44/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122060 – volume: 170 start-page: 436 year: 2023 ident: D3RA00723E/cit110/1 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.12.030 – year: 2018 ident: D3RA00723E/cit86/1 – volume: 278 start-page: 123805 year: 2021 ident: D3RA00723E/cit64/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.123805 – volume: 269 start-page: 122411 year: 2020 ident: D3RA00723E/cit23/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.122411 – volume: 7 start-page: 755 year: 2016 ident: D3RA00723E/cit54/1 publication-title: Front. Plant Sci. – volume: 421 start-page: 126722 year: 2022 ident: D3RA00723E/cit10/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126722 – volume: 317 start-page: 124011 year: 2020 ident: D3RA00723E/cit117/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124011 – volume: 164 start-page: 105542 year: 2022 ident: D3RA00723E/cit108/1 publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2022.105542 – volume: 10 start-page: 1047 year: 2022 ident: D3RA00723E/cit179/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA06612A – volume: 24 start-page: 12104 year: 2017 ident: D3RA00723E/cit42/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8715-0 – volume: 612 start-page: 1177 year: 2018 ident: D3RA00723E/cit131/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.016 – start-page: 108812 year: 2022 ident: D3RA00723E/cit87/1 publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2022.108812 – volume: 76 start-page: 17 year: 2019 ident: D3RA00723E/cit83/1 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2019.03.029 – volume: 8 start-page: 100204 year: 2022 ident: D3RA00723E/cit66/1 publication-title: Environ. Adv. doi: 10.1016/j.envadv.2022.100204 – volume: 246 start-page: 34 year: 2017 ident: D3RA00723E/cit119/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.082 – volume: 5 start-page: 13 year: 2023 ident: D3RA00723E/cit77/1 publication-title: Environ. Earth Sci. – volume: 678 start-page: 253 year: 2019 ident: D3RA00723E/cit76/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.04.416 – volume: 5 start-page: 17930 year: 2018 ident: D3RA00723E/cit154/1 publication-title: Mater. Today: Proc. – volume: 10 start-page: 377 year: 2013 ident: D3RA00723E/cit65/1 publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-012-0113-z – volume: 958 start-page: 012011 year: 2021 ident: D3RA00723E/cit185/1 publication-title: IOP Conference Series: Earth and Environmental Science doi: 10.1088/1742-6596/1996/1/012011 – volume: 5 start-page: e02320 year: 2019 ident: D3RA00723E/cit157/1 publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02320 – volume: 294 start-page: 338 year: 2016 ident: D3RA00723E/cit169/1 publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.02.019 – volume: 47 start-page: 1633 year: 2012 ident: D3RA00723E/cit12/1 publication-title: Process Biochem. doi: 10.1016/j.procbio.2012.02.025 – volume: 427 start-page: 131708 year: 2022 ident: D3RA00723E/cit105/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131708 – start-page: 357 volume-title: Bioremediation of industrial waste for environmental safety year: 2020 ident: D3RA00723E/cit7/1 doi: 10.1007/978-981-13-3426-9_15 – start-page: 125 volume-title: Nanohybrid and Nanoporous Materials for Aquatic Pollution Control year: 2019 ident: D3RA00723E/cit80/1 doi: 10.1016/B978-0-12-814154-0.00005-0 – volume: 5 start-page: 2782 year: 2017 ident: D3RA00723E/cit28/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2017.05.029 – volume: 125 start-page: 365 year: 2019 ident: D3RA00723E/cit55/1 publication-title: Environ. Int. doi: 10.1016/j.envint.2019.01.067 – volume: 209 start-page: 547 year: 2012 ident: D3RA00723E/cit206/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.08.045 – volume: 42 start-page: 27741 year: 2017 ident: D3RA00723E/cit22/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.05.156 – volume: 27 start-page: 35556 year: 2020 ident: D3RA00723E/cit41/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-09868-w – volume: 420 start-page: 129946 year: 2021 ident: D3RA00723E/cit106/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129946 – volume: 807 start-page: 150606 year: 2022 ident: D3RA00723E/cit68/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150606 – volume: 12 start-page: 678 year: 2022 ident: D3RA00723E/cit145/1 publication-title: Nanomaterials doi: 10.3390/nano12040678 – volume: 374 start-page: 167 year: 2019 ident: D3RA00723E/cit190/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.04.031 – volume: 28 start-page: 380 year: 2019 ident: D3RA00723E/cit13/1 publication-title: Soil Sediment Contam.: Int. J. doi: 10.1080/15320383.2019.1592108 – volume: 252 start-page: 126539 year: 2020 ident: D3RA00723E/cit114/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126539 – volume: 13 start-page: 13052 year: 2023 ident: D3RA00723E/cit30/1 publication-title: RSC Adv. doi: 10.1039/D3RA01660A – volume: 428 start-page: 131468 year: 2022 ident: D3RA00723E/cit196/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131468 – volume: 348 start-page: 191 year: 2018 ident: D3RA00723E/cit120/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.161 – volume: 220 start-page: 657 year: 2016 ident: D3RA00723E/cit21/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.04.128 – volume: 151 start-page: 443 year: 2015 ident: D3RA00723E/cit133/1 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2014.11.005 – volume: 11 start-page: 595 year: 2022 ident: D3RA00723E/cit16/1 publication-title: Plants doi: 10.3390/plants11050595 – volume: 451 start-page: 139071 year: 2023 ident: D3RA00723E/cit78/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139071 – volume: 101 start-page: 133 year: 2012 ident: D3RA00723E/cit45/1 publication-title: Molecular, Clinical and Environmental Toxicology doi: 10.1007/978-3-7643-8340-4_6 – volume: 18 start-page: 100774 year: 2020 ident: D3RA00723E/cit48/1 publication-title: Environ. Technol. Innovation doi: 10.1016/j.eti.2020.100774 – volume: 102 start-page: 342 year: 2022 ident: D3RA00723E/cit88/1 publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/03067319.2020.1722811 – volume: 668 start-page: 1298 year: 2019 ident: D3RA00723E/cit150/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.011 – volume: 385 start-page: 123911 year: 2020 ident: D3RA00723E/cit85/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123911 – volume: 234 start-page: 115881 year: 2020 ident: D3RA00723E/cit96/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.115881 – volume: 298 start-page: 122468 year: 2020 ident: D3RA00723E/cit144/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122468 – volume: 392 start-page: 123639 year: 2020 ident: D3RA00723E/cit186/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123639 – volume: 33 start-page: 359 year: 2017 ident: D3RA00723E/cit84/1 publication-title: Rev. Chem. Eng. doi: 10.1515/revce-2016-0021 – volume: 12 start-page: 1433 year: 2022 ident: D3RA00723E/cit31/1 publication-title: RSC Adv. doi: 10.1039/D1RA07034G – volume: 424 start-page: 127312 year: 2022 ident: D3RA00723E/cit36/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127312 – volume: 38 start-page: 101561 year: 2020 ident: D3RA00723E/cit146/1 publication-title: J. Water Process. Eng. doi: 10.1016/j.jwpe.2020.101561 – start-page: 138508 year: 2023 ident: D3RA00723E/cit175/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.138508 – start-page: 128841 year: 2022 ident: D3RA00723E/cit143/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.128841 – volume: 296 start-page: 120375 year: 2021 ident: D3RA00723E/cit192/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120375 – volume: 237 start-page: 639 year: 2018 ident: D3RA00723E/cit1/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.02.020 – volume: 216 start-page: 51 year: 2019 ident: D3RA00723E/cit200/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.01.074 – volume: 148 start-page: 111265 year: 2021 ident: D3RA00723E/cit116/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2021.111265 – volume: 169 start-page: 403 year: 2014 ident: D3RA00723E/cit136/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.07.014 – volume: 111 start-page: 320 year: 2014 ident: D3RA00723E/cit132/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.04.043 – volume: 130 start-page: 457 year: 2013 ident: D3RA00723E/cit141/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.11.132 – volume: 78 start-page: 1 year: 2023 ident: D3RA00723E/cit19/1 publication-title: Mater. Today: Proc. – volume: 305 start-page: 122484 year: 2023 ident: D3RA00723E/cit98/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122484 – volume: 217 start-page: 240 year: 2018 ident: D3RA00723E/cit107/1 publication-title: Fuel doi: 10.1016/j.fuel.2017.12.054 – volume: 313 start-page: 1033 year: 2017 ident: D3RA00723E/cit182/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.137 – volume: 343 start-page: 126081 year: 2022 ident: D3RA00723E/cit127/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126081 – volume: 252 start-page: 101 year: 2019 ident: D3RA00723E/cit129/1 publication-title: Fuel doi: 10.1016/j.fuel.2019.04.096 – volume: 287 start-page: 77 year: 2019 ident: D3RA00723E/cit166/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2019.05.062 – volume: 200 start-page: 673 year: 2012 ident: D3RA00723E/cit139/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.06.116 – volume: 329 start-page: 111553 year: 2022 ident: D3RA00723E/cit155/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.111553 – volume: 3 start-page: 100045 year: 2022 ident: D3RA00723E/cit112/1 publication-title: Cleaner Mater. doi: 10.1016/j.clema.2022.100045 – volume: 292 start-page: 122030 year: 2019 ident: D3RA00723E/cit113/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122030 – start-page: 253 volume-title: Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water year: 2022 ident: D3RA00723E/cit17/1 doi: 10.1016/B978-0-323-85763-5.00024-6 – volume: 303 start-page: 134788 year: 2022 ident: D3RA00723E/cit81/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.134788 – volume: 159 start-page: 460 year: 2014 ident: D3RA00723E/cit134/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.03.073 – volume: 393 start-page: 122515 year: 2020 ident: D3RA00723E/cit95/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122515 – volume: 287 start-page: 183 year: 2019 ident: D3RA00723E/cit170/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2019.06.009 – start-page: 100202 year: 2023 ident: D3RA00723E/cit73/1 publication-title: Water Resour. Ind. doi: 10.1016/j.wri.2023.100202 – volume: 818 start-page: 151774 year: 2022 ident: D3RA00723E/cit104/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.151774 – volume: 25 start-page: 5921 year: 2018 ident: D3RA00723E/cit50/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0956-4 – volume: 429 start-page: 131688 year: 2022 ident: D3RA00723E/cit180/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131688 – start-page: 331 volume-title: Metals in Water year: 2023 ident: D3RA00723E/cit20/1 doi: 10.1016/B978-0-323-95919-3.00014-8 – volume: 8 start-page: 2732 year: 2019 ident: D3RA00723E/cit99/1 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2019.04.009 – volume: 239 start-page: 53 year: 2014 ident: D3RA00723E/cit205/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.10.088 – volume: 806 start-page: 151442 year: 2022 ident: D3RA00723E/cit142/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.151442 – volume: 266 start-page: 129129 year: 2021 ident: D3RA00723E/cit34/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129129 – volume: 804 start-page: 150116 year: 2022 ident: D3RA00723E/cit38/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150116 – volume: 251 start-page: 126331 year: 2020 ident: D3RA00723E/cit70/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126331 – volume: 16 start-page: 100602 year: 2021 ident: D3RA00723E/cit3/1 publication-title: Environ. Nanotechnol., Monit. Manage. – volume: 416 start-page: 126225 year: 2021 ident: D3RA00723E/cit2/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126225 – volume: 14 start-page: 1 year: 2021 ident: D3RA00723E/cit161/1 publication-title: Arabian J. Geosci. doi: 10.1007/s12517-021-07443-2 – volume: 55 start-page: 67 year: 2019 ident: D3RA00723E/cit163/1 publication-title: J. Min. Metall., Sect. A doi: 10.5937/JMMA1901067T |
| SSID | ssj0000651261 |
| Score | 2.7325697 |
| SecondaryResourceType | review_article |
| Snippet | Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy... |
| SourceID | pubmedcentral proquest pubmed crossref rsc |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 17595 |
| SubjectTerms | Abrasion Aquatic environment Bioaccumulation Carcinogens Chemistry Climate change Contaminants Coordination compounds Heavy metals Industrial wastes Ion exchangers Metals Mine wastes Municipal landfills Neurological system Oxidation Pollution sources Reproductive system Toxicity Toxicology Urban runoff Urbanization Volcanic eruptions Wastewater |
| Title | Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37312989 https://www.proquest.com/docview/2826077374 https://www.proquest.com/docview/2825812173 https://pubmed.ncbi.nlm.nih.gov/PMC10258679 |
| Volume | 13 |
| WOSCitedRecordID | wos001003285200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2046-2069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000651261 issn: 2046-2069 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXaBcFeEF8LgaUygguqok3ifHlvVVlUacWCYJF6q5zY0VbbJiVNuy0HJP4HP5axEyepChIcuERV4sRq5mUyMxm_h9BrEViOgDjUFOD7Tdd3fZP5kW8GIvGimBM7jkuxieDiIhyP6cdO56deC7OeBWkabjZ08V9NDfvA2HLp7D-Yu74o7IDfYHTYgtlh-1eGHwm23kplaLnGSgoZt9sZ2deVomhtrW9T2jyKSEK3m8-yGzPOlkU_F_NsLckEKuLxkg5CzJQSWCGqrwxFtoGTi225bjpvPjZo3u_PQ91qsGwc3pz1B9-mqnx9ni1Z3h9NryF6bgAAYWvCyth6y3hTov1Q6b2cX0EKwVvVXLhkVeO-ZjdFu5zhENV2VTpNodyeAxk7GLQUcKl9NGlh0Wl7XAh_SpXOvXeBRSSVKic5k_ToRLQHwR1ZzBUASEBsyULfvA_rLkV9qItuOTCL9JnvvzcVPAjebMg_NectoSfNXIfojj57N-DZy2L2m3G7udaeUTHO5X10r0pO8KAE1QPUEelDdHeoNQEfoR8KXFiBC9fgwtMUAxRwBS7cAtcprqGFAVpYQwtX0MINtHCR4RpaWEELa2idYoZLYD1GX96dXQ5HZiXiYcYQ6hQmSWzIeglNJDel50VUunybcsu3IsZCmtgJpEwRZbYIYjdMSBJzzq04cTh3Q8cjR-ggzVLxFGHGIxFB-Mpc4bmcQmgdcI8wwj0aM-5TA73Rd3oSVwz3UmhlNlGdFoRO3pJPA2WgMwO9qscuSl6X34461gabVI_4cuJARm4FAQlcA72sD4Mh5Kc2lopspcZ4ofrjBnpS2reeRgPDQOGO5esBkvF990g6vVLM75ANeJIh00BHAJL6hAZ3z_4423N02Dxux-igyFfiBbodr4vpMu-hbjAOe6og1VMo_wX7V9Wf |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heavy+metal+pollution+in+the+aquatic+environment%3A+efficient+and+low-cost+removal+approaches+to+eliminate+their+toxicity%3A+a+review&rft.jtitle=RSC+advances&rft.au=Hama+Aziz%2C+Kosar+Hikmat&rft.au=Mustafa%2C+Fryad+S&rft.au=Omer%2C+Khalid+M&rft.au=Hama%2C+Sarkawt&rft.date=2023-06-09&rft.eissn=2046-2069&rft.volume=13&rft.issue=26&rft.spage=17595&rft_id=info:doi/10.1039%2Fd3ra00723e&rft_id=info%3Apmid%2F37312989&rft.externalDocID=37312989 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |