Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review

Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution inclu...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances Vol. 13; no. 26; pp. 17595 - 1761
Main Authors: Hama Aziz, Kosar Hikmat, Mustafa, Fryad S, Omer, Khalid M, Hama, Sarkawt, Hamarawf, Rebaz Fayaq, Rahman, Kaiwan Othman
Format: Journal Article
Language:English
Published: England Royal Society of Chemistry 09.06.2023
The Royal Society of Chemistry
Subjects:
ISSN:2046-2069, 2046-2069
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered. An overview of the sources of heavy metal pollution, the related health risks, and cost-effective methods for removing them from wastewater.
AbstractList Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered.
Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered. An overview of the sources of heavy metal pollution, the related health risks, and cost-effective methods for removing them from wastewater.
Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered.Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered.
Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered. An overview of the sources of heavy metal pollution, the related health risks, and cost-effective methods for removing them from wastewater.
Author Omer, Khalid M
Hama Aziz, Kosar Hikmat
Hamarawf, Rebaz Fayaq
Mustafa, Fryad S
Hama, Sarkawt
Rahman, Kaiwan Othman
AuthorAffiliation Department of Chemistry
College of Science
Razga Company
College of health sciences
University of Sulaimani
Medical Laboratory Analysis Department
Cihan University-Sulaimaniya
AuthorAffiliation_xml – sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: College of health sciences
– sequence: 0
  name: University of Sulaimani
– sequence: 0
  name: Razga Company
– sequence: 0
  name: Cihan University-Sulaimaniya
– sequence: 0
  name: College of Science
– sequence: 0
  name: Medical Laboratory Analysis Department
Author_xml – sequence: 1
  givenname: Kosar Hikmat
  surname: Hama Aziz
  fullname: Hama Aziz, Kosar Hikmat
– sequence: 2
  givenname: Fryad S
  surname: Mustafa
  fullname: Mustafa, Fryad S
– sequence: 3
  givenname: Khalid M
  surname: Omer
  fullname: Omer, Khalid M
– sequence: 4
  givenname: Sarkawt
  surname: Hama
  fullname: Hama, Sarkawt
– sequence: 5
  givenname: Rebaz Fayaq
  surname: Hamarawf
  fullname: Hamarawf, Rebaz Fayaq
– sequence: 6
  givenname: Kaiwan Othman
  surname: Rahman
  fullname: Rahman, Kaiwan Othman
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37312989$$D View this record in MEDLINE/PubMed
BookMark eNptkk1PVTEQhhuDEUQ27jVN3BiTo_04X2VDCKKYkJgYXTe97dRbck57aXsO3iX_nF4uIBK76aR95u07nXmJdnzwgNBrSj5SwsUnw6MipGMcnqE9Ruq2YqQVO4_iXXSQ0gUpq20oa-kLtMs7TpnoxR66PgM1r_EIWQ14FYZhyi547DzOS8DqclLZaQx-djH4EXw-xGCt066EWHmDh3BV6ZAyjjCGuYio1SoGpZeQcA4YBjc6rzJs9FwsR39Kcl4fYlUyZgdXr9Bzq4YEB3f7Pvr15fTnyVl1_v3rt5Pj80rXTOSKW8pox4UlrBZNsxBUtJwKQ1qyUKoXltqemoVQFDpd95ZbbYwh2jJj6p41fB8dbXVX02IEo0sBUQ1yFd2o4loG5eS_N94t5e8wS0pY07edKArv7xRiuJwgZTm6pGEYlIcwJcnKM_2ty4K-e4JehCn6Ut-GaknX8a4u1NvHlh683LenAGQL6BhSimBl-Tu16VBx6IZiTW6GQH7mP45vh-C0pHx4knKv-l_4zRaOST9wfyeK3wCQkb2U
CitedBy_id crossref_primary_10_1002_bio_70068
crossref_primary_10_1016_j_eswa_2024_125910
crossref_primary_10_1007_s10653_024_02096_y
crossref_primary_10_1007_s10876_025_02848_5
crossref_primary_10_1016_j_cscee_2023_100567
crossref_primary_10_1021_acs_jchemed_4c00519
crossref_primary_10_1016_j_jece_2025_119367
crossref_primary_10_1016_j_nxmate_2025_100487
crossref_primary_10_3390_catal14070449
crossref_primary_10_3390_chemosensors13040149
crossref_primary_10_3390_molecules29153709
crossref_primary_10_3390_nano14080702
crossref_primary_10_3389_fsufs_2024_1453885
crossref_primary_10_1016_j_bios_2024_116805
crossref_primary_10_1016_j_jfca_2025_107220
crossref_primary_10_1016_j_nxmate_2025_100805
crossref_primary_10_3389_fmicb_2024_1450992
crossref_primary_10_1007_s10646_025_02919_3
crossref_primary_10_1016_j_ijbiomac_2024_129882
crossref_primary_10_3390_jcs9040152
crossref_primary_10_1007_s13530_024_00234_8
crossref_primary_10_1016_j_marpolbul_2025_118372
crossref_primary_10_1680_jgere_23_00066
crossref_primary_10_1016_j_ecoenv_2024_117214
crossref_primary_10_3390_toxics13090777
crossref_primary_10_1080_01496395_2025_2555708
crossref_primary_10_1016_j_seppur_2025_134540
crossref_primary_10_1186_s12917_024_04367_3
crossref_primary_10_1080_03067319_2024_2400537
crossref_primary_10_1088_2043_6262_adc977
crossref_primary_10_1039_D5RA02250A
crossref_primary_10_1002_elan_12002
crossref_primary_10_1016_j_saa_2024_125070
crossref_primary_10_3390_pr12091972
crossref_primary_10_1007_s13399_024_05285_y
crossref_primary_10_3390_pr13010276
crossref_primary_10_1016_j_seppur_2023_124513
crossref_primary_10_1016_j_biortech_2024_131235
crossref_primary_10_1016_j_envres_2025_122184
crossref_primary_10_1016_j_jwpe_2024_106312
crossref_primary_10_1016_j_envres_2024_119504
crossref_primary_10_1016_j_heliyon_2024_e36288
crossref_primary_10_1016_j_molliq_2024_126769
crossref_primary_10_1016_j_seppur_2025_133560
crossref_primary_10_1016_j_jconhyd_2025_104610
crossref_primary_10_1016_j_jece_2024_113561
crossref_primary_10_1177_11786221241278517
crossref_primary_10_1016_j_optmat_2024_116071
crossref_primary_10_3390_biology14050472
crossref_primary_10_1016_j_molstruc_2024_140182
crossref_primary_10_1038_s41598_025_88601_4
crossref_primary_10_1080_17518253_2024_2422416
crossref_primary_10_1007_s10534_025_00671_z
crossref_primary_10_1016_j_jenvman_2025_125245
crossref_primary_10_1016_j_rineng_2025_104431
crossref_primary_10_1051_bioconf_202411802010
crossref_primary_10_1016_j_inoche_2024_112113
crossref_primary_10_1016_j_jece_2025_117088
crossref_primary_10_3390_su16072615
crossref_primary_10_1016_j_biortech_2025_133348
crossref_primary_10_1016_j_ijbiomac_2025_141571
crossref_primary_10_3390_toxics12050308
crossref_primary_10_1038_s41598_024_59917_4
crossref_primary_10_1016_j_psep_2024_06_125
crossref_primary_10_1061_JHTRBP_HZENG_1292
crossref_primary_10_1016_j_jece_2025_117773
crossref_primary_10_1016_j_marpolbul_2025_118724
crossref_primary_10_2166_wst_2023_333
crossref_primary_10_1016_j_mineng_2025_109771
crossref_primary_10_1016_j_dwt_2025_101243
crossref_primary_10_1016_j_jhazmat_2025_137564
crossref_primary_10_1016_j_dwt_2025_101123
crossref_primary_10_3390_inorganics13090300
crossref_primary_10_1039_D4RA08446B
crossref_primary_10_1007_s10098_025_03193_x
crossref_primary_10_1016_j_envadv_2025_100656
crossref_primary_10_3390_app15084350
crossref_primary_10_1016_j_jenvman_2025_126102
crossref_primary_10_1007_s11356_023_30699_y
crossref_primary_10_1016_j_cej_2025_161746
crossref_primary_10_1016_j_rineng_2025_104200
crossref_primary_10_1016_j_seppur_2024_128236
crossref_primary_10_1016_j_jwpe_2023_104515
crossref_primary_10_1016_j_molstruc_2025_142411
crossref_primary_10_1016_j_jhazmat_2024_135643
crossref_primary_10_1016_j_jhazmat_2023_132999
crossref_primary_10_1134_S1062739124060218
crossref_primary_10_1007_s10534_024_00643_9
crossref_primary_10_1016_j_talanta_2024_126168
crossref_primary_10_3390_chemosensors12070129
crossref_primary_10_1016_j_colsurfa_2024_135306
crossref_primary_10_1016_j_watres_2023_121087
crossref_primary_10_1007_s10661_025_14289_8
crossref_primary_10_1016_j_jcis_2025_02_007
crossref_primary_10_1016_j_jenvman_2025_124280
crossref_primary_10_1016_j_foodcont_2024_110700
crossref_primary_10_1111_cote_12831
crossref_primary_10_1002_slct_202404488
crossref_primary_10_3389_fnut_2025_1566345
crossref_primary_10_1002_jobm_70064
crossref_primary_10_3390_w17152167
crossref_primary_10_1007_s13762_025_06683_z
crossref_primary_10_1080_15320383_2025_2461573
crossref_primary_10_1016_j_heliyon_2024_e40126
crossref_primary_10_1177_11786302231201259
crossref_primary_10_1016_j_ijbiomac_2024_131110
crossref_primary_10_1016_j_cej_2024_158029
crossref_primary_10_1177_02636174251338370
crossref_primary_10_1007_s41742_025_00899_0
crossref_primary_10_1016_j_jenvman_2025_127326
crossref_primary_10_1039_D4RA04537H
crossref_primary_10_1007_s42729_024_01713_0
crossref_primary_10_1016_j_desal_2024_117725
crossref_primary_10_1016_j_jics_2025_102088
crossref_primary_10_1007_s40471_025_00367_5
crossref_primary_10_1016_j_molstruc_2024_140921
crossref_primary_10_1051_e3sconf_202560301017
crossref_primary_10_1016_j_jenvman_2025_124172
crossref_primary_10_3390_environments12040100
crossref_primary_10_3390_su17062726
crossref_primary_10_1016_j_heliyon_2025_e42932
crossref_primary_10_1016_j_jclepro_2023_139487
crossref_primary_10_1016_j_marpolbul_2025_117819
crossref_primary_10_1016_j_fbio_2023_103368
crossref_primary_10_1016_j_jece_2024_112881
crossref_primary_10_1039_D5RA01021G
crossref_primary_10_1016_j_dwt_2025_101143
crossref_primary_10_1016_j_scitotenv_2024_176267
crossref_primary_10_1016_j_jenvman_2024_121727
crossref_primary_10_1016_j_marpolbul_2023_115639
crossref_primary_10_1021_acs_energyfuels_5c00175
crossref_primary_10_1186_s44315_025_00027_9
crossref_primary_10_1016_j_matchemphys_2024_129253
crossref_primary_10_1007_s13399_024_06354_y
crossref_primary_10_1007_s10653_024_02137_6
crossref_primary_10_1007_s13738_024_03146_z
crossref_primary_10_1007_s13762_025_06415_3
crossref_primary_10_1007_s13762_023_05401_x
crossref_primary_10_1111_1758_2229_13307
crossref_primary_10_3390_ma18153639
crossref_primary_10_1016_j_mseb_2025_118055
crossref_primary_10_1016_j_jenvman_2024_120548
crossref_primary_10_1016_j_jwpe_2023_104213
crossref_primary_10_1016_j_seppur_2023_125095
crossref_primary_10_1016_j_ijbiomac_2024_137797
crossref_primary_10_1016_j_psep_2025_107335
crossref_primary_10_1039_D5RE00124B
crossref_primary_10_1016_j_jenvman_2025_124199
crossref_primary_10_1016_j_molliq_2025_127582
crossref_primary_10_1149_1945_7111_ade47f
crossref_primary_10_1016_j_envpol_2023_122846
crossref_primary_10_1186_s40068_024_00339_6
crossref_primary_10_1016_j_ceramint_2025_07_125
crossref_primary_10_1016_j_jfca_2024_107089
crossref_primary_10_3390_pollutants5010007
crossref_primary_10_1016_j_jece_2024_113870
crossref_primary_10_1007_s11356_024_32156_w
crossref_primary_10_1016_j_cscee_2023_100538
crossref_primary_10_1016_j_jece_2025_116765
crossref_primary_10_1002_slct_202404832
crossref_primary_10_1007_s00604_025_07444_y
crossref_primary_10_3390_w17152255
crossref_primary_10_1098_rsos_232033
crossref_primary_10_1016_j_apsusc_2025_162521
crossref_primary_10_1016_j_jfca_2025_108108
crossref_primary_10_1016_j_wmb_2025_100249
crossref_primary_10_1016_j_envexpbot_2025_106240
crossref_primary_10_1016_j_inoche_2025_114806
crossref_primary_10_3390_app15063117
crossref_primary_10_1016_j_inoche_2024_113657
crossref_primary_10_1016_j_cbpc_2023_109800
crossref_primary_10_1016_j_envres_2025_122282
crossref_primary_10_1016_j_ymeth_2024_01_010
crossref_primary_10_3389_fpls_2024_1423625
crossref_primary_10_1016_j_dyepig_2025_113033
crossref_primary_10_1038_s41598_024_76285_1
crossref_primary_10_1016_j_marpolbul_2024_116514
crossref_primary_10_1021_acscentsci_4c01010
crossref_primary_10_1039_D3RA04566H
crossref_primary_10_1016_j_envres_2024_119441
crossref_primary_10_1016_j_jece_2023_111247
crossref_primary_10_1038_s41598_025_95736_x
crossref_primary_10_1080_15320383_2024_2408005
crossref_primary_10_1039_D5RA03053F
crossref_primary_10_1016_j_cej_2024_157132
crossref_primary_10_1016_j_envres_2024_119440
crossref_primary_10_1039_D5NR01593F
crossref_primary_10_1186_s44314_024_00003_4
crossref_primary_10_1515_psr_2023_0047
crossref_primary_10_1016_j_psep_2025_107710
crossref_primary_10_1007_s10452_024_10162_x
crossref_primary_10_1016_j_jwpe_2025_108072
crossref_primary_10_1007_s12088_025_01472_1
crossref_primary_10_1007_s13399_024_05989_1
crossref_primary_10_1016_j_scitotenv_2024_176989
crossref_primary_10_1016_j_jece_2024_113497
crossref_primary_10_3390_biology14091191
crossref_primary_10_3390_su162310602
crossref_primary_10_1080_15715124_2025_2523413
crossref_primary_10_1515_pac_2024_0103
crossref_primary_10_4081_ijfs_2024_12782
crossref_primary_10_1016_j_jwpe_2024_106867
crossref_primary_10_1016_j_envres_2024_119430
crossref_primary_10_1088_2053_1591_ad7448
crossref_primary_10_3390_antiox13091039
crossref_primary_10_1016_j_jfca_2025_107638
crossref_primary_10_1002_elan_202400365
crossref_primary_10_1039_D4EN01041H
crossref_primary_10_1016_j_jhazmat_2025_138351
crossref_primary_10_1007_s10934_024_01662_0
crossref_primary_10_1080_10889868_2025_2502747
crossref_primary_10_1080_17518253_2024_2317824
crossref_primary_10_1038_s41598_025_09956_2
crossref_primary_10_1039_D5RA00057B
crossref_primary_10_1007_s13530_025_00268_6
crossref_primary_10_1016_j_etap_2024_104610
crossref_primary_10_1016_j_micromeso_2025_113535
crossref_primary_10_1080_01496395_2025_2452425
crossref_primary_10_1002_slct_202406089
crossref_primary_10_1080_01490451_2025_2539517
crossref_primary_10_1016_j_matchemphys_2025_131029
crossref_primary_10_1016_j_envpol_2023_123063
crossref_primary_10_1093_sumbio_qvaf018
crossref_primary_10_1515_gps_2024_0197
crossref_primary_10_3934_environsci_2025028
crossref_primary_10_1016_j_dsr2_2025_105466
crossref_primary_10_1016_j_jenvman_2024_122523
crossref_primary_10_1080_19393210_2024_2434678
crossref_primary_10_1016_j_ecoenv_2025_117786
crossref_primary_10_1002_slct_202502450
crossref_primary_10_1007_s13201_024_02318_9
crossref_primary_10_1007_s10562_025_05128_z
crossref_primary_10_1016_j_molstruc_2025_142485
crossref_primary_10_1080_02757540_2024_2306839
crossref_primary_10_1016_j_jwpe_2024_105862
crossref_primary_10_1016_j_surfin_2025_106618
crossref_primary_10_1021_acsenvironau_5c00024
crossref_primary_10_1080_00958972_2024_2362344
crossref_primary_10_1016_j_jhazmat_2024_136107
crossref_primary_10_1016_j_jtemin_2024_100141
crossref_primary_10_1007_s10965_024_04164_4
crossref_primary_10_1007_s10853_025_11400_9
crossref_primary_10_1038_s41598_025_95697_1
crossref_primary_10_1515_ijcre_2024_0247
crossref_primary_10_1080_00222348_2025_2483004
crossref_primary_10_1016_j_molliq_2025_127380
crossref_primary_10_1080_15592324_2024_2400451
crossref_primary_10_1097_MD_0000000000039152
crossref_primary_10_31185_wjes_Vol13_Iss3_680
crossref_primary_10_1016_j_envpol_2025_125675
crossref_primary_10_1016_j_jece_2024_114366
crossref_primary_10_1002_slct_202501909
crossref_primary_10_1016_j_jclepro_2024_144612
crossref_primary_10_3390_w15213710
crossref_primary_10_1016_j_surfin_2024_105731
crossref_primary_10_1016_j_dwt_2024_100010
crossref_primary_10_1007_s44371_024_00047_1
crossref_primary_10_1016_j_marenvres_2025_107022
crossref_primary_10_3389_fmars_2025_1636760
crossref_primary_10_3390_membranes15020038
crossref_primary_10_1016_j_ijbiomac_2025_142835
crossref_primary_10_1039_D4CY00975D
crossref_primary_10_1051_e3sconf_202561904007
crossref_primary_10_1007_s10646_024_02814_3
crossref_primary_10_1039_D5RA00641D
crossref_primary_10_3390_agronomy14020372
crossref_primary_10_1016_j_colsurfa_2025_137626
crossref_primary_10_3390_polym16213048
crossref_primary_10_1039_D5RA00912J
crossref_primary_10_1016_j_jfca_2024_106581
crossref_primary_10_1515_pac_2024_0360
crossref_primary_10_56082_annalsarscibio_2025_1_262
crossref_primary_10_1007_s12517_025_12284_4
crossref_primary_10_1016_j_hazadv_2025_100878
crossref_primary_10_1016_j_scitotenv_2023_168196
crossref_primary_10_1021_acsomega_5c02923
crossref_primary_10_1016_j_hazadv_2025_100758
crossref_primary_10_1177_00368504251338646
crossref_primary_10_1016_j_jwpe_2024_106778
crossref_primary_10_1016_j_ancene_2025_100482
crossref_primary_10_3389_fnano_2024_1466721
crossref_primary_10_3390_bios15040213
crossref_primary_10_1007_s00289_025_05888_z
crossref_primary_10_1007_s10008_025_06372_4
crossref_primary_10_1016_j_jobe_2024_109583
crossref_primary_10_1016_j_dyepig_2024_112028
crossref_primary_10_1039_D3EW00464C
crossref_primary_10_1016_j_jwpe_2025_108674
crossref_primary_10_1080_00288330_2024_2373881
crossref_primary_10_3390_molecules30010195
crossref_primary_10_1016_j_renene_2024_121407
crossref_primary_10_1080_02757540_2025_2508993
crossref_primary_10_1007_s10661_024_13013_2
crossref_primary_10_3390_en17153607
crossref_primary_10_1016_j_cej_2025_163856
crossref_primary_10_1016_j_colsurfa_2024_135357
crossref_primary_10_1007_s13369_025_09976_0
crossref_primary_10_1016_j_scenv_2024_100197
crossref_primary_10_1016_j_wri_2023_100227
crossref_primary_10_1016_j_ijbiomac_2025_147398
crossref_primary_10_1016_j_dwt_2025_101427
crossref_primary_10_1007_s13530_025_00259_7
crossref_primary_10_1007_s41062_025_02211_7
crossref_primary_10_1016_j_pedsph_2025_07_002
crossref_primary_10_1016_j_diamond_2025_112294
crossref_primary_10_3390_molecules29112418
crossref_primary_10_1016_j_nxmate_2024_100454
crossref_primary_10_1016_j_jhazmat_2025_137463
crossref_primary_10_1016_j_hybadv_2025_100512
crossref_primary_10_21303_2461_4262_2025_003394
crossref_primary_10_1016_j_molliq_2025_127871
crossref_primary_10_1016_j_jenvman_2025_126882
crossref_primary_10_1016_j_marpolbul_2024_117354
crossref_primary_10_1016_j_clce_2025_100193
crossref_primary_10_1186_s12934_024_02638_0
crossref_primary_10_3390_s25113470
crossref_primary_10_3390_geosciences15020073
crossref_primary_10_1016_j_psep_2024_11_085
crossref_primary_10_3390_jcs7100419
crossref_primary_10_1080_03067319_2024_2423844
crossref_primary_10_1002_ejic_202400795
crossref_primary_10_1007_s11837_025_07692_6
crossref_primary_10_1007_s10661_024_12875_w
crossref_primary_10_1016_j_jwpe_2025_107367
crossref_primary_10_54203_scil_2025_wvj22
crossref_primary_10_1016_j_saa_2025_126098
crossref_primary_10_1007_s10811_023_03131_8
crossref_primary_10_1016_j_jenvman_2025_126771
crossref_primary_10_1016_j_molstruc_2025_143414
crossref_primary_10_1007_s10661_025_13818_9
crossref_primary_10_1016_j_physb_2025_416887
crossref_primary_10_1016_j_cis_2024_103338
crossref_primary_10_1016_j_jtice_2024_105481
crossref_primary_10_1016_j_ecoenv_2024_117380
crossref_primary_10_1016_j_indcrop_2024_118845
crossref_primary_10_1051_e3sconf_202456411011
crossref_primary_10_18586_msufbd_1652087
crossref_primary_10_1016_j_jhazmat_2025_138577
crossref_primary_10_1051_bioconf_202410901003
crossref_primary_10_1007_s00027_024_01121_7
crossref_primary_10_3390_w16223305
crossref_primary_10_1016_j_cartre_2025_100465
crossref_primary_10_1016_j_jwpe_2025_107233
crossref_primary_10_1016_j_seppur_2025_131853
crossref_primary_10_1007_s41101_025_00377_w
crossref_primary_10_1007_s11356_023_30805_0
crossref_primary_10_2166_wpt_2024_171
crossref_primary_10_1002_elan_202400107
crossref_primary_10_59675_P215
crossref_primary_10_3390_jox15020059
crossref_primary_10_1016_j_ecoenv_2024_117390
crossref_primary_10_1016_j_desal_2024_118324
crossref_primary_10_1016_j_scca_2025_100093
crossref_primary_10_3390_pr13051364
Cites_doi 10.1016/j.jes.2021.10.010
10.21967/jbb.v4i1.180
10.1016/j.biortech.2017.07.020
10.1016/j.molliq.2019.111197
10.1016/j.cclet.2020.07.050
10.1016/j.jhazmat.2018.01.011
10.1021/acs.est.6b00632
10.1016/j.envpol.2022.119869
10.1007/s11157-018-09490-w
10.1016/j.biortech.2020.122808
10.1016/j.micromeso.2012.06.007
10.3390/ijerph14010094
10.1007/s13201-018-0661-6
10.1016/j.scitotenv.2020.144604
10.1016/j.powtec.2020.02.069
10.1016/j.chemosphere.2021.132369
10.1016/j.jhazmat.2016.09.022
10.1016/j.cej.2013.07.036
10.1088/1757-899X/870/1/012023
10.1016/j.jcis.2004.08.028
10.1016/j.chemosphere.2021.131959
10.1016/j.apcatb.2016.07.023
10.1039/D2RA00796G
10.1016/j.chemosphere.2019.124942
10.1016/j.jhazmat.2021.127158
10.1016/j.apt.2017.04.028
10.1016/j.jhazmat.2022.128375
10.1016/j.jclepro.2020.120322
10.1016/j.jksus.2021.101653
10.1016/j.psep.2022.02.061
10.1007/s11356-019-05990-6
10.1039/D2RA07263G
10.1016/j.envres.2021.111911
10.1007/s11270-020-04863-w
10.1016/j.cej.2019.01.061
10.1016/j.envres.2022.113162
10.1016/j.envres.2022.113456
10.1007/s10653-019-00431-2
10.1016/j.apsusc.2020.147776
10.1016/j.scitotenv.2019.134883
10.1016/j.electacta.2015.08.103
10.1016/j.scitotenv.2022.158870
10.1111/raq.12639
10.1007/s00420-003-0499-5
10.30684/etj.29.3.15
10.1016/j.arabjc.2021.103366
10.1016/j.jhazmat.2019.121446
10.1016/j.jenvman.2014.02.007
10.1016/j.jenvman.2022.115214
10.1016/j.cej.2021.131584
10.1016/j.seppur.2021.119510
10.1007/s40710-020-00476-x
10.1016/j.chemosphere.2021.132230
10.1016/j.envpol.2022.118939
10.1016/j.chemosphere.2019.04.160
10.1016/j.chemosphere.2019.01.161
10.1016/j.scitotenv.2019.134509
10.1016/j.seppur.2021.119831
10.1016/j.psep.2017.11.005
10.1016/j.jhazmat.2021.127012
10.1016/j.cej.2020.127139
10.1016/j.bj.2018.03.003
10.1016/S0043-1354(02)00208-7
10.1016/j.seppur.2020.117885
10.1038/s41545-020-00095-x
10.1007/s40726-020-00135-7
10.1016/j.jclepro.2020.122462
10.1039/D2RA05832D
10.1039/C7RA10185F
10.1016/j.cej.2017.05.031
10.1007/s13762-013-0299-8
10.1016/j.fuel.2018.11.102
10.1016/j.jhazmat.2021.127244
10.1016/j.jece.2021.106088
10.1007/s13201-016-0382-7
10.1016/j.micromeso.2019.109667
10.1016/j.ijbiomac.2021.08.186
10.3390/w13040517
10.1080/09593330.2018.1435739
10.1016/j.cej.2019.04.005
10.1007/s10311-018-0785-9
10.1016/j.reactfunctpolym.2021.105129
10.1016/j.apcatb.2013.07.038
10.1016/j.jwpe.2020.101339
10.1016/j.biortech.2020.122886
10.1016/j.tibtech.2019.04.007
10.1016/j.jwpe.2022.103023
10.1016/j.biortech.2016.05.057
10.1016/j.eti.2020.100692
10.1016/j.cej.2020.126774
10.3390/w15030478
10.1016/j.jhazmat.2011.03.063
10.1016/j.cej.2019.122703
10.2166/wst.2004.0270
10.1007/s11356-020-08173-w
10.1016/j.jclepro.2022.131441
10.1016/j.seppur.2021.120099
10.1016/j.jaap.2021.105081
10.1016/j.chemosphere.2014.05.077
10.3390/coatings9080465
10.1016/j.cej.2021.131721
10.1016/j.jhazmat.2021.126878
10.1016/j.watres.2013.09.050
10.1016/j.cej.2019.122060
10.1016/j.psep.2022.12.030
10.1016/j.jclepro.2020.123805
10.1016/j.jclepro.2020.122411
10.1016/j.jhazmat.2021.126722
10.1016/j.biortech.2020.124011
10.1016/j.jaap.2022.105542
10.1039/D1TA06612A
10.1007/s11356-017-8715-0
10.1016/j.scitotenv.2017.09.016
10.1016/j.cep.2022.108812
10.1016/j.jiec.2019.03.029
10.1016/j.envadv.2022.100204
10.1016/j.biortech.2017.07.082
10.1016/j.scitotenv.2019.04.416
10.1007/s13762-012-0113-z
10.1088/1742-6596/1996/1/012011
10.1016/j.heliyon.2019.e02320
10.1016/j.powtec.2016.02.019
10.1016/j.procbio.2012.02.025
10.1016/j.cej.2021.131708
10.1007/978-981-13-3426-9_15
10.1016/B978-0-12-814154-0.00005-0
10.1016/j.jece.2017.05.029
10.1016/j.envint.2019.01.067
10.1016/j.cej.2012.08.045
10.1016/j.ijhydene.2017.05.156
10.1007/s11356-020-09868-w
10.1016/j.cej.2021.129946
10.1016/j.scitotenv.2021.150606
10.3390/nano12040678
10.1016/j.jhazmat.2019.04.031
10.1080/15320383.2019.1592108
10.1016/j.chemosphere.2020.126539
10.1039/D3RA01660A
10.1016/j.cej.2021.131468
10.1016/j.cej.2018.04.161
10.1016/j.molliq.2016.04.128
10.1016/j.jenvman.2014.11.005
10.3390/plants11050595
10.1016/j.cej.2022.139071
10.1007/978-3-7643-8340-4_6
10.1016/j.eti.2020.100774
10.1080/03067319.2020.1722811
10.1016/j.scitotenv.2019.03.011
10.1016/j.cej.2019.123911
10.1016/j.carbpol.2020.115881
10.1016/j.biortech.2019.122468
10.1016/j.cej.2019.123639
10.1515/revce-2016-0021
10.1039/D1RA07034G
10.1016/j.jhazmat.2021.127312
10.1016/j.jwpe.2020.101561
10.1016/j.chemosphere.2023.138508
10.1016/j.jhazmat.2022.128841
10.1016/j.apcatb.2021.120375
10.1016/j.envpol.2018.02.020
10.1016/j.seppur.2019.01.074
10.1016/j.rser.2021.111265
10.1016/j.biortech.2014.07.014
10.1016/j.chemosphere.2014.04.043
10.1016/j.biortech.2012.11.132
10.1016/j.seppur.2022.122484
10.1016/j.fuel.2017.12.054
10.1016/j.cej.2016.10.137
10.1016/j.biortech.2021.126081
10.1016/j.fuel.2019.04.096
10.1016/j.micromeso.2019.05.062
10.1016/j.cej.2012.06.116
10.1016/j.micromeso.2021.111553
10.1016/j.clema.2022.100045
10.1016/j.biortech.2019.122030
10.1016/B978-0-323-85763-5.00024-6
10.1016/j.chemosphere.2022.134788
10.1016/j.biortech.2014.03.073
10.1016/j.jhazmat.2020.122515
10.1016/j.micromeso.2019.06.009
10.1016/j.wri.2023.100202
10.1016/j.scitotenv.2021.151774
10.1007/s11356-017-0956-4
10.1016/j.cej.2021.131688
10.1016/B978-0-323-95919-3.00014-8
10.1016/j.jmrt.2019.04.009
10.1016/j.cej.2013.10.088
10.1016/j.scitotenv.2021.151442
10.1016/j.chemosphere.2020.129129
10.1016/j.scitotenv.2021.150116
10.1016/j.chemosphere.2020.126331
10.1016/j.jhazmat.2021.126225
10.1007/s12517-021-07443-2
10.5937/JMMA1901067T
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2023
This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2023
– notice: This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d3ra00723e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 1761
ExternalDocumentID PMC10258679
37312989
10_1039_D3RA00723E
d3ra00723e
Genre Journal Article
Review
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAYXX
ABIQK
AFPKN
AGMRB
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c429t-3f121739f024955b9196319d060baa89f1f81db9a1e7c48f3fcddd0cf2dd48253
ISICitedReferencesCount 454
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001003285200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2046-2069
IngestDate Tue Nov 04 02:06:45 EST 2025
Fri Sep 05 11:56:41 EDT 2025
Sun Nov 09 06:59:42 EST 2025
Mon Jul 21 05:56:34 EDT 2025
Tue Nov 18 21:10:32 EST 2025
Sat Nov 29 06:30:18 EST 2025
Tue Dec 17 20:58:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-3f121739f024955b9196319d060baa89f1f81db9a1e7c48f3fcddd0cf2dd48253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7042-7534
0000-0002-6866-4116
OpenAccessLink http://dx.doi.org/10.1039/d3ra00723e
PMID 37312989
PQID 2826077374
PQPubID 2047525
PageCount 16
ParticipantIDs crossref_citationtrail_10_1039_D3RA00723E
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10258679
pubmed_primary_37312989
crossref_primary_10_1039_D3RA00723E
rsc_primary_d3ra00723e
proquest_journals_2826077374
proquest_miscellaneous_2825812173
PublicationCentury 2000
PublicationDate 2023-06-09
PublicationDateYYYYMMDD 2023-06-09
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-09
  day: 09
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2023
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Luptakova (D3RA00723E/cit12/1) 2012; 47
Fung (D3RA00723E/cit57/1) 2018; 41
Wang (D3RA00723E/cit26/1) 2022; 427
Zhen (D3RA00723E/cit206/1) 2012; 209
Jain (D3RA00723E/cit148/1) 2022; 12
Ayala (D3RA00723E/cit100/1) 2019; 45
Xie (D3RA00723E/cit54/1) 2016; 7
Abdullahi (D3RA00723E/cit173/1) 2017; 28
Gupta (D3RA00723E/cit146/1) 2020; 38
Araucz (D3RA00723E/cit70/1) 2020; 251
Ayala (D3RA00723E/cit101/1) 2019; 40
Amalina (D3RA00723E/cit112/1) 2022; 3
Abdulla (D3RA00723E/cit4/1) 2020; 612
Aziz (D3RA00723E/cit181/1) 2019; 228
Deng (D3RA00723E/cit80/1) 2019
Yuan (D3RA00723E/cit41/1) 2020; 27
Xu (D3RA00723E/cit32/1) 2022; 212
Megha (D3RA00723E/cit79/1) 2023; 77
Chauhan (D3RA00723E/cit19/1) 2023; 78
Bayuo (D3RA00723E/cit30/1) 2023; 13
Kaith (D3RA00723E/cit164/1) 2022; 53
Hu (D3RA00723E/cit50/1) 2018; 25
Duan (D3RA00723E/cit97/1) 2020; 37
Maarof (D3RA00723E/cit84/1) 2017; 33
Chen (D3RA00723E/cit78/1) 2023; 451
Montalvo (D3RA00723E/cit165/1) 2020; 301
Sun (D3RA00723E/cit85/1) 2020; 385
Li (D3RA00723E/cit125/1) 2022; 310
Zhang (D3RA00723E/cit98/1) 2023; 305
Li (D3RA00723E/cit46/1) 2020; 27
Chen (D3RA00723E/cit72/1) 2023; 124
Kyzas (D3RA00723E/cit21/1) 2016; 220
Panahi (D3RA00723E/cit122/1) 2020; 270
Yoldi (D3RA00723E/cit167/1) 2020; 366
Mani (D3RA00723E/cit53/1) 2014; 11
Janjhi (D3RA00723E/cit73/1) 2023
Yoldi (D3RA00723E/cit170/1) 2019; 287
Yang (D3RA00723E/cit171/1) 2021; 536
Yaashikaa (D3RA00723E/cit35/1) 2022; 287
Tran (D3RA00723E/cit22/1) 2017; 42
Ma (D3RA00723E/cit136/1) 2014; 169
Zhang (D3RA00723E/cit141/1) 2013; 130
Visa (D3RA00723E/cit169/1) 2016; 294
Fei (D3RA00723E/cit179/1) 2022; 10
Saini (D3RA00723E/cit7/1) 2020
Ramírez Calderón (D3RA00723E/cit58/1) 2020; 6
Rai (D3RA00723E/cit55/1) 2019; 125
Reddy (D3RA00723E/cit103/1) 2019; 18
Fang (D3RA00723E/cit109/1) 2022; 300
Purnomo (D3RA00723E/cit168/1) 2012; 162
Zhao (D3RA00723E/cit194/1) 2015; 180
Yu (D3RA00723E/cit121/1) 2017; 7
Yaashikaa (D3RA00723E/cit113/1) 2019; 292
Yang (D3RA00723E/cit174/1) 2022; 424
Vithanage (D3RA00723E/cit133/1) 2015; 151
Chakraborty (D3RA00723E/cit88/1) 2022; 102
Liu (D3RA00723E/cit202/1) 2021; 406
Tchounwou (D3RA00723E/cit45/1) 2012; 101
Wang (D3RA00723E/cit188/1) 2019; 370
Weber (D3RA00723E/cit107/1) 2018; 217
Aziz (D3RA00723E/cit182/1) 2017; 313
Mustafa (D3RA00723E/cit110/1) 2023; 170
Dilpazeer (D3RA00723E/cit43/1) 2023; 15
Singh (D3RA00723E/cit17/1) 2022
Qiu (D3RA00723E/cit63/1) 2021; 155
BrbootI (D3RA00723E/cit14/1) 2011; 29
Imdad (D3RA00723E/cit87/1) 2022
Wang (D3RA00723E/cit177/1) 2020; 240
Liang (D3RA00723E/cit190/1) 2019; 374
Saleh (D3RA00723E/cit60/1) 2022; 17
Du (D3RA00723E/cit176/1) 2020; 31
Leong (D3RA00723E/cit178/1) 2020; 303
Qu (D3RA00723E/cit143/1) 2022
Cheng (D3RA00723E/cit127/1) 2022; 343
Liu (D3RA00723E/cit203/1) 2021; 257
Wu (D3RA00723E/cit124/1) 2018; 348
Rafique (D3RA00723E/cit151/1) 2022
Zhao (D3RA00723E/cit193/1) 2014; 144
Ahmed (D3RA00723E/cit135/1) 2016; 214
Kamali (D3RA00723E/cit106/1) 2021; 420
Rajendran (D3RA00723E/cit49/1) 2022; 287
Liu (D3RA00723E/cit128/1) 2020; 257
Wang (D3RA00723E/cit187/1) 2019; 26
Belova (D3RA00723E/cit157/1) 2019; 5
Khulbe (D3RA00723E/cit62/1) 2018; 8
Hoang (D3RA00723E/cit11/1) 2022; 287
Funan (D3RA00723E/cit77/1) 2023; 5
Xu (D3RA00723E/cit180/1) 2022; 429
Aziz (D3RA00723E/cit184/1) 2018; 113
Karim (D3RA00723E/cit185/1) 2021; 958
Yao (D3RA00723E/cit44/1) 2019; 375
Zhang (D3RA00723E/cit129/1) 2019; 252
Liu (D3RA00723E/cit201/1) 2022; 280
Li (D3RA00723E/cit36/1) 2022; 424
Ahmadijokani (D3RA00723E/cit8/1) 2022; 316
Aziz (D3RA00723E/cit92/1) 2021; 14
Tasić (D3RA00723E/cit163/1) 2019; 55
Zeng (D3RA00723E/cit195/1) 2016; 50
Xiang (D3RA00723E/cit114/1) 2020; 252
Godwin (D3RA00723E/cit94/1) 2019; 4
Bortoloti (D3RA00723E/cit66/1) 2022; 8
Adil (D3RA00723E/cit31/1) 2022; 12
Irannajad (D3RA00723E/cit160/1) 2021; 8
Han (D3RA00723E/cit71/1) 2022; 423
Luo (D3RA00723E/cit6/1) 2022; 422
Ayangbenro (D3RA00723E/cit47/1) 2017; 14
Wang (D3RA00723E/cit34/1) 2021; 266
Yang (D3RA00723E/cit140/1) 2014; 48
Kamali (D3RA00723E/cit105/1) 2022; 427
Yang (D3RA00723E/cit120/1) 2018; 348
Fan (D3RA00723E/cit2/1) 2021; 416
Li (D3RA00723E/cit13/1) 2019; 28
Wang (D3RA00723E/cit191/1) 2020; 381
Su (D3RA00723E/cit126/1) 2021; 768
Ren (D3RA00723E/cit153/1) 2022
Lv (D3RA00723E/cit155/1) 2022; 329
Uchimiya (D3RA00723E/cit137/1) 2011; 190
Abdullah (D3RA00723E/cit83/1) 2019; 76
Yi (D3RA00723E/cit144/1) 2020; 298
Aziz (D3RA00723E/cit200/1) 2019; 216
Xu (D3RA00723E/cit118/1) 2019; 239
Placido (D3RA00723E/cit16/1) 2022; 11
Peyravi (D3RA00723E/cit20/1) 2023
Zhou (D3RA00723E/cit138/1) 2013; 231
Xue (D3RA00723E/cit139/1) 2012; 200
Erdem (D3RA00723E/cit91/1) 2004; 280
Qin (D3RA00723E/cit104/1) 2022; 818
Bosso (D3RA00723E/cit152/1) 2002; 36
Hussain (D3RA00723E/cit130/1) 2020; 42
Xu (D3RA00723E/cit186/1) 2020; 392
Bilal (D3RA00723E/cit29/1) 2021; 278
Chen (D3RA00723E/cit197/1) 2017; 324
Qu (D3RA00723E/cit1/1) 2018; 237
Xu (D3RA00723E/cit132/1) 2014; 111
Mao (D3RA00723E/cit95/1) 2020; 393
Ayala (D3RA00723E/cit99/1) 2019; 8
Cheng (D3RA00723E/cit111/1) 2019; 37
Kansara (D3RA00723E/cit89/1) 2016; 12
Alka (D3RA00723E/cit64/1) 2021; 278
Carolin (D3RA00723E/cit28/1) 2017; 5
Syeda (D3RA00723E/cit68/1) 2022; 807
Miranda (D3RA00723E/cit38/1) 2022; 804
Bhat (D3RA00723E/cit81/1) 2022; 303
Cao (D3RA00723E/cit204/1) 2019; 362
Qasem (D3RA00723E/cit15/1) 2021; 4
Liu (D3RA00723E/cit207/1) 2017; 321
Elzwayie (D3RA00723E/cit42/1) 2017; 24
Pan (D3RA00723E/cit69/1) 2022; 423
Hama Aziz (D3RA00723E/cit198/1) 2019; 9
He (D3RA00723E/cit131/1) 2018; 612
Dong (D3RA00723E/cit142/1) 2022; 806
Sun (D3RA00723E/cit67/1) 2022; 170
Nobaharan (D3RA00723E/cit75/1) 2021; 13
Feng (D3RA00723E/cit9/1) 2022; 284
Shou (D3RA00723E/cit33/1) 2022; 212
Zaynab (D3RA00723E/cit5/1) 2022; 34
Ali (D3RA00723E/cit65/1) 2013; 10
Ji (D3RA00723E/cit90/1) 2022
Velarde (D3RA00723E/cit175/1) 2023
Hadjittofi (D3RA00723E/cit134/1) 2014; 159
Mihaly-Cozmuta (D3RA00723E/cit158/1) 2014; 137
Vardhan (D3RA00723E/cit27/1) 2019; 290
Hsu (D3RA00723E/cit74/1) 2023; 855
Bayuo (D3RA00723E/cit147/1) 2022; 12
Collins (D3RA00723E/cit172/1) 2020; 291
Yoon (D3RA00723E/cit123/1) 2017; 246
Hoang (D3RA00723E/cit116/1) 2021; 148
Ayala (D3RA00723E/cit102/1) 2020; 384
Obaid (D3RA00723E/cit154/1) 2018; 5
Lian (D3RA00723E/cit117/1) 2020; 317
Liu (D3RA00723E/cit159/1) 2021; 406
Aziz (D3RA00723E/cit199/1) 2021
Cui (D3RA00723E/cit145/1) 2022; 12
Vallejo (D3RA00723E/cit25/1) 2015; 118
Aziz (D3RA00723E/cit183/1) 2023; 13
Shah (D3RA00723E/cit48/1) 2020; 18
Qiang (D3RA00723E/cit166/1) 2019; 287
Dai (D3RA00723E/cit149/1) 2019; 223
Wang (D3RA00723E/cit189/1) 2022; 427
Suty (D3RA00723E/cit24/1) 2004; 49
Otunola (D3RA00723E/cit40/1) 2020; 18
Zorpas (D3RA00723E/cit161/1) 2021; 14
Khan (D3RA00723E/cit23/1) 2020; 269
Ikeda (D3RA00723E/cit56/1) 2004; 77
Liang (D3RA00723E/cit192/1) 2021; 296
Wang (D3RA00723E/cit150/1) 2019; 668
Xu (D3RA00723E/cit93/1) 2017; 200
Roy (D3RA00723E/cit3/1) 2021; 16
Zhao (D3RA00723E/cit205/1) 2014; 239
Zhao (D3RA00723E/cit52/1) 2020; 704
Sizmur (D3RA00723E/cit119/1) 2017; 246
Li (D3RA00723E/cit51/1) 2022; 14
Xiang (D3RA00723E/cit18/1) 2022; 49
Sakhi (D3RA00723E/cit86/1) 2018
Chen (D3RA00723E/cit115/1) 2022; 160
Rad (D3RA00723E/cit162/1) 2021; 9
Niu (D3RA00723E/cit37/1) 2020; 700
Fan (D3RA00723E/cit39/1) 2022; 203
Zhu (D3RA00723E/cit76/1) 2019; 678
Pohl (D3RA00723E/cit61/1) 2020; 231
Taamneh (D3RA00723E/cit156/1) 2017; 7
Jiao (D3RA00723E/cit10/1) 2022; 421
Aktar (D3RA00723E/cit108/1) 2022; 164
Choi (D3RA00723E/cit96/1) 2020; 234
Geng (D3RA00723E/cit59/1) 2021; 190
Hu (D3RA00723E/cit196/1) 2022; 428
Crini (D3RA00723E/cit82/1) 2019; 17
References_xml – issn: 2020
  end-page: p 357-387
  publication-title: Bioremediation of industrial waste for environmental safety
  doi: Saini Dhania
– issn: 2022
  end-page: p 253-276
  publication-title: Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water
  doi: Singh Kumar Dhanjal Parihar Ramamurthy Singh
– issn: 2023
  end-page: p 331-351
  publication-title: Metals in Water
  doi: Peyravi Rezaei
– issn: 2018
  doi: Sakhi Rakhila Elmchaouri Abouri Souabi Jada
– issn: 2019
  end-page: p 125-153
  publication-title: Nanohybrid and Nanoporous Materials for Aquatic Pollution Control
  doi: Deng Feng Tang Zeng Chen Zhang
– volume: 124
  start-page: 268
  year: 2023
  ident: D3RA00723E/cit72/1
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2021.10.010
– volume: 4
  start-page: 31
  year: 2019
  ident: D3RA00723E/cit94/1
  publication-title: J. Bioresour. Bioprod.
  doi: 10.21967/jbb.v4i1.180
– volume: 246
  start-page: 69
  year: 2017
  ident: D3RA00723E/cit123/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.07.020
– volume: 290
  start-page: 111197
  year: 2019
  ident: D3RA00723E/cit27/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111197
– volume: 31
  start-page: 2575
  year: 2020
  ident: D3RA00723E/cit176/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.07.050
– volume: 348
  start-page: 10
  year: 2018
  ident: D3RA00723E/cit124/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.01.011
– volume: 50
  start-page: 6459
  year: 2016
  ident: D3RA00723E/cit195/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00632
– volume: 310
  start-page: 119869
  year: 2022
  ident: D3RA00723E/cit125/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.119869
– volume: 18
  start-page: 127
  year: 2019
  ident: D3RA00723E/cit103/1
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-018-09490-w
– volume: 301
  start-page: 122808
  year: 2020
  ident: D3RA00723E/cit165/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.122808
– volume: 162
  start-page: 6
  year: 2012
  ident: D3RA00723E/cit168/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2012.06.007
– volume: 14
  start-page: 94
  year: 2017
  ident: D3RA00723E/cit47/1
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph14010094
– volume: 8
  start-page: 1
  year: 2018
  ident: D3RA00723E/cit62/1
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-018-0661-6
– volume: 768
  start-page: 144604
  year: 2021
  ident: D3RA00723E/cit126/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144604
– volume: 366
  start-page: 175
  year: 2020
  ident: D3RA00723E/cit167/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.02.069
– volume: 287
  start-page: 132369
  year: 2022
  ident: D3RA00723E/cit49/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132369
– volume: 321
  start-page: 290
  year: 2017
  ident: D3RA00723E/cit207/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.09.022
– volume: 77
  start-page: 188
  year: 2023
  ident: D3RA00723E/cit79/1
  publication-title: Mater. Today: Proc.
– volume: 231
  start-page: 512
  year: 2013
  ident: D3RA00723E/cit138/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.07.036
– volume: 612
  start-page: 012023
  year: 2020
  ident: D3RA00723E/cit4/1
  publication-title: IOP Conference Series: Earth and Environmental Science
  doi: 10.1088/1757-899X/870/1/012023
– volume: 280
  start-page: 309
  year: 2004
  ident: D3RA00723E/cit91/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.08.028
– volume: 287
  start-page: 131959
  year: 2022
  ident: D3RA00723E/cit11/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131959
– volume: 200
  start-page: 439
  year: 2017
  ident: D3RA00723E/cit93/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.07.023
– volume: 12
  start-page: 11233
  year: 2022
  ident: D3RA00723E/cit147/1
  publication-title: RSC Adv.
  doi: 10.1039/D2RA00796G
– volume: 240
  start-page: 124942
  year: 2020
  ident: D3RA00723E/cit177/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124942
– volume: 423
  start-page: 127158
  year: 2022
  ident: D3RA00723E/cit69/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127158
– volume: 28
  start-page: 1827
  year: 2017
  ident: D3RA00723E/cit173/1
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2017.04.028
– start-page: 128375
  year: 2022
  ident: D3RA00723E/cit90/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.128375
– volume: 257
  start-page: 120322
  year: 2020
  ident: D3RA00723E/cit128/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.120322
– volume: 34
  start-page: 101653
  year: 2022
  ident: D3RA00723E/cit5/1
  publication-title: J. King Saud Univ., Sci.
  doi: 10.1016/j.jksus.2021.101653
– volume: 160
  start-page: 704
  year: 2022
  ident: D3RA00723E/cit115/1
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.02.061
– volume: 26
  start-page: 29736
  year: 2019
  ident: D3RA00723E/cit187/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-05990-6
– volume: 13
  start-page: 115
  year: 2023
  ident: D3RA00723E/cit183/1
  publication-title: RSC Adv.
  doi: 10.1039/D2RA07263G
– volume: 203
  start-page: 111911
  year: 2022
  ident: D3RA00723E/cit39/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.111911
– volume: 231
  start-page: 1
  year: 2020
  ident: D3RA00723E/cit61/1
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1007/s11270-020-04863-w
– volume: 362
  start-page: 487
  year: 2019
  ident: D3RA00723E/cit204/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.061
– volume: 212
  start-page: 113162
  year: 2022
  ident: D3RA00723E/cit33/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.113162
– volume: 212
  start-page: 113456
  year: 2022
  ident: D3RA00723E/cit32/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.113456
– volume: 42
  start-page: 2519
  year: 2020
  ident: D3RA00723E/cit130/1
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-019-00431-2
– volume: 536
  start-page: 147776
  year: 2021
  ident: D3RA00723E/cit171/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147776
– volume: 704
  start-page: 134883
  year: 2020
  ident: D3RA00723E/cit52/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134883
– volume: 180
  start-page: 129
  year: 2015
  ident: D3RA00723E/cit194/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.08.103
– volume: 855
  start-page: 158870
  year: 2023
  ident: D3RA00723E/cit74/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.158870
– volume: 14
  start-page: 1028
  year: 2022
  ident: D3RA00723E/cit51/1
  publication-title: Rev. Aquac.
  doi: 10.1111/raq.12639
– volume: 77
  start-page: 227
  year: 2004
  ident: D3RA00723E/cit56/1
  publication-title: Int. Arch. Occup. Environ. Health
  doi: 10.1007/s00420-003-0499-5
– volume: 29
  start-page: 595
  year: 2011
  ident: D3RA00723E/cit14/1
  publication-title: J. Eng. Technol.
  doi: 10.30684/etj.29.3.15
– volume: 45
  start-page: 141
  year: 2019
  ident: D3RA00723E/cit100/1
  publication-title: Environ. Prot. Eng.
– start-page: 103366
  year: 2021
  ident: D3RA00723E/cit199/1
  publication-title: Arabian J. Chem.
  doi: 10.1016/j.arabjc.2021.103366
– volume: 384
  start-page: 121446
  year: 2020
  ident: D3RA00723E/cit102/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121446
– volume: 137
  start-page: 69
  year: 2014
  ident: D3RA00723E/cit158/1
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2014.02.007
– volume: 316
  start-page: 115214
  year: 2022
  ident: D3RA00723E/cit8/1
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2022.115214
– volume: 14
  start-page: 103366
  year: 2021
  ident: D3RA00723E/cit92/1
  publication-title: Arabian J. Chem.
  doi: 10.1016/j.arabjc.2021.103366
– volume: 427
  start-page: 131584
  year: 2022
  ident: D3RA00723E/cit189/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131584
– volume: 278
  start-page: 119510
  year: 2021
  ident: D3RA00723E/cit29/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119510
– volume: 8
  start-page: 7
  year: 2021
  ident: D3RA00723E/cit160/1
  publication-title: Environ. Processes
  doi: 10.1007/s40710-020-00476-x
– volume: 287
  start-page: 132230
  year: 2022
  ident: D3RA00723E/cit35/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132230
– volume: 300
  start-page: 118939
  year: 2022
  ident: D3RA00723E/cit109/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.118939
– volume: 228
  start-page: 377
  year: 2019
  ident: D3RA00723E/cit181/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.04.160
– volume: 223
  start-page: 12
  year: 2019
  ident: D3RA00723E/cit149/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.01.161
– volume: 700
  start-page: 134509
  year: 2020
  ident: D3RA00723E/cit37/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134509
– volume: 280
  start-page: 119831
  year: 2022
  ident: D3RA00723E/cit201/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119831
– volume: 113
  start-page: 319
  year: 2018
  ident: D3RA00723E/cit184/1
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2017.11.005
– volume: 423
  start-page: 127012
  year: 2022
  ident: D3RA00723E/cit71/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127012
– volume: 406
  start-page: 127139
  year: 2021
  ident: D3RA00723E/cit159/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127139
– volume: 41
  start-page: 88
  year: 2018
  ident: D3RA00723E/cit57/1
  publication-title: Biomed. J.
  doi: 10.1016/j.bj.2018.03.003
– volume: 36
  start-page: 4795
  year: 2002
  ident: D3RA00723E/cit152/1
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(02)00208-7
– volume: 257
  start-page: 117885
  year: 2021
  ident: D3RA00723E/cit203/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117885
– volume: 12
  start-page: 143
  year: 2016
  ident: D3RA00723E/cit89/1
  publication-title: Environ. Sci. Indian J.
– volume: 4
  start-page: 1
  year: 2021
  ident: D3RA00723E/cit15/1
  publication-title: npj Clean Water
  doi: 10.1038/s41545-020-00095-x
– volume: 6
  start-page: 8
  year: 2020
  ident: D3RA00723E/cit58/1
  publication-title: Curr. Pollut. Rep.
  doi: 10.1007/s40726-020-00135-7
– volume: 270
  start-page: 122462
  year: 2020
  ident: D3RA00723E/cit122/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.122462
– volume: 12
  start-page: 32197
  year: 2022
  ident: D3RA00723E/cit148/1
  publication-title: RSC Adv.
  doi: 10.1039/D2RA05832D
– volume: 7
  start-page: 53135
  year: 2017
  ident: D3RA00723E/cit121/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA10185F
– volume: 324
  start-page: 74
  year: 2017
  ident: D3RA00723E/cit197/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.05.031
– volume: 11
  start-page: 843
  year: 2014
  ident: D3RA00723E/cit53/1
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-013-0299-8
– volume: 239
  start-page: 982
  year: 2019
  ident: D3RA00723E/cit118/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.11.102
– volume: 53
  start-page: 174
  year: 2022
  ident: D3RA00723E/cit164/1
  publication-title: Mater. Today: Proc.
– volume: 424
  start-page: 127244
  year: 2022
  ident: D3RA00723E/cit174/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127244
– volume: 9
  start-page: 106088
  year: 2021
  ident: D3RA00723E/cit162/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106088
– volume: 7
  start-page: 2021
  year: 2017
  ident: D3RA00723E/cit156/1
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-016-0382-7
– volume: 291
  start-page: 109667
  year: 2020
  ident: D3RA00723E/cit172/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2019.109667
– volume: 190
  start-page: 170
  year: 2021
  ident: D3RA00723E/cit59/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.08.186
– volume: 13
  start-page: 517
  year: 2021
  ident: D3RA00723E/cit75/1
  publication-title: Water
  doi: 10.3390/w13040517
– volume: 40
  start-page: 2037
  year: 2019
  ident: D3RA00723E/cit101/1
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2018.1435739
– volume: 370
  start-page: 1298
  year: 2019
  ident: D3RA00723E/cit188/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.005
– volume: 17
  start-page: 145
  year: 2019
  ident: D3RA00723E/cit82/1
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-018-0785-9
– volume: 170
  start-page: 105129
  year: 2022
  ident: D3RA00723E/cit67/1
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2021.105129
– volume: 144
  start-page: 478
  year: 2014
  ident: D3RA00723E/cit193/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2013.07.038
– volume: 37
  start-page: 101339
  year: 2020
  ident: D3RA00723E/cit97/1
  publication-title: J. Water Process. Eng.
  doi: 10.1016/j.jwpe.2020.101339
– volume: 303
  start-page: 122886
  year: 2020
  ident: D3RA00723E/cit178/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.122886
– volume: 37
  start-page: 1255
  year: 2019
  ident: D3RA00723E/cit111/1
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2019.04.007
– volume: 49
  start-page: 103023
  year: 2022
  ident: D3RA00723E/cit18/1
  publication-title: J. Water Process. Eng.
  doi: 10.1016/j.jwpe.2022.103023
– volume: 214
  start-page: 836
  year: 2016
  ident: D3RA00723E/cit135/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.05.057
– volume: 18
  start-page: 100692
  year: 2020
  ident: D3RA00723E/cit40/1
  publication-title: Environ. Technol. Innovation
  doi: 10.1016/j.eti.2020.100692
– volume: 406
  start-page: 126774
  year: 2021
  ident: D3RA00723E/cit202/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126774
– volume: 15
  start-page: 478
  year: 2023
  ident: D3RA00723E/cit43/1
  publication-title: Water
  doi: 10.3390/w15030478
– volume: 190
  start-page: 432
  year: 2011
  ident: D3RA00723E/cit137/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.03.063
– volume: 381
  start-page: 122703
  year: 2020
  ident: D3RA00723E/cit191/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122703
– volume: 49
  start-page: 227
  year: 2004
  ident: D3RA00723E/cit24/1
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2004.0270
– volume: 27
  start-page: 18392
  year: 2020
  ident: D3RA00723E/cit46/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-08173-w
– start-page: 131441
  year: 2022
  ident: D3RA00723E/cit153/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2022.131441
– volume: 284
  start-page: 120099
  year: 2022
  ident: D3RA00723E/cit9/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.120099
– volume: 17
  start-page: 100617
  year: 2022
  ident: D3RA00723E/cit60/1
  publication-title: Environ. Nanotechnol., Monit. Manage.
– volume: 155
  start-page: 105081
  year: 2021
  ident: D3RA00723E/cit63/1
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2021.105081
– volume: 118
  start-page: 44
  year: 2015
  ident: D3RA00723E/cit25/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.05.077
– volume: 9
  start-page: 465
  year: 2019
  ident: D3RA00723E/cit198/1
  publication-title: Coatings
  doi: 10.3390/coatings9080465
– volume: 427
  start-page: 131721
  year: 2022
  ident: D3RA00723E/cit26/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131721
– volume: 422
  start-page: 126878
  year: 2022
  ident: D3RA00723E/cit6/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126878
– volume: 48
  start-page: 396
  year: 2014
  ident: D3RA00723E/cit140/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.09.050
– start-page: 1
  year: 2022
  ident: D3RA00723E/cit151/1
  publication-title: Environ. Sci. Pollut. Res.
– volume: 375
  start-page: 122060
  year: 2019
  ident: D3RA00723E/cit44/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122060
– volume: 170
  start-page: 436
  year: 2023
  ident: D3RA00723E/cit110/1
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2022.12.030
– year: 2018
  ident: D3RA00723E/cit86/1
– volume: 278
  start-page: 123805
  year: 2021
  ident: D3RA00723E/cit64/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.123805
– volume: 269
  start-page: 122411
  year: 2020
  ident: D3RA00723E/cit23/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.122411
– volume: 7
  start-page: 755
  year: 2016
  ident: D3RA00723E/cit54/1
  publication-title: Front. Plant Sci.
– volume: 421
  start-page: 126722
  year: 2022
  ident: D3RA00723E/cit10/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126722
– volume: 317
  start-page: 124011
  year: 2020
  ident: D3RA00723E/cit117/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.124011
– volume: 164
  start-page: 105542
  year: 2022
  ident: D3RA00723E/cit108/1
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2022.105542
– volume: 10
  start-page: 1047
  year: 2022
  ident: D3RA00723E/cit179/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA06612A
– volume: 24
  start-page: 12104
  year: 2017
  ident: D3RA00723E/cit42/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-8715-0
– volume: 612
  start-page: 1177
  year: 2018
  ident: D3RA00723E/cit131/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.016
– start-page: 108812
  year: 2022
  ident: D3RA00723E/cit87/1
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2022.108812
– volume: 76
  start-page: 17
  year: 2019
  ident: D3RA00723E/cit83/1
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2019.03.029
– volume: 8
  start-page: 100204
  year: 2022
  ident: D3RA00723E/cit66/1
  publication-title: Environ. Adv.
  doi: 10.1016/j.envadv.2022.100204
– volume: 246
  start-page: 34
  year: 2017
  ident: D3RA00723E/cit119/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.07.082
– volume: 5
  start-page: 13
  year: 2023
  ident: D3RA00723E/cit77/1
  publication-title: Environ. Earth Sci.
– volume: 678
  start-page: 253
  year: 2019
  ident: D3RA00723E/cit76/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.04.416
– volume: 5
  start-page: 17930
  year: 2018
  ident: D3RA00723E/cit154/1
  publication-title: Mater. Today: Proc.
– volume: 10
  start-page: 377
  year: 2013
  ident: D3RA00723E/cit65/1
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-012-0113-z
– volume: 958
  start-page: 012011
  year: 2021
  ident: D3RA00723E/cit185/1
  publication-title: IOP Conference Series: Earth and Environmental Science
  doi: 10.1088/1742-6596/1996/1/012011
– volume: 5
  start-page: e02320
  year: 2019
  ident: D3RA00723E/cit157/1
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e02320
– volume: 294
  start-page: 338
  year: 2016
  ident: D3RA00723E/cit169/1
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.02.019
– volume: 47
  start-page: 1633
  year: 2012
  ident: D3RA00723E/cit12/1
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2012.02.025
– volume: 427
  start-page: 131708
  year: 2022
  ident: D3RA00723E/cit105/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131708
– start-page: 357
  volume-title: Bioremediation of industrial waste for environmental safety
  year: 2020
  ident: D3RA00723E/cit7/1
  doi: 10.1007/978-981-13-3426-9_15
– start-page: 125
  volume-title: Nanohybrid and Nanoporous Materials for Aquatic Pollution Control
  year: 2019
  ident: D3RA00723E/cit80/1
  doi: 10.1016/B978-0-12-814154-0.00005-0
– volume: 5
  start-page: 2782
  year: 2017
  ident: D3RA00723E/cit28/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2017.05.029
– volume: 125
  start-page: 365
  year: 2019
  ident: D3RA00723E/cit55/1
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.01.067
– volume: 209
  start-page: 547
  year: 2012
  ident: D3RA00723E/cit206/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.08.045
– volume: 42
  start-page: 27741
  year: 2017
  ident: D3RA00723E/cit22/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.05.156
– volume: 27
  start-page: 35556
  year: 2020
  ident: D3RA00723E/cit41/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-09868-w
– volume: 420
  start-page: 129946
  year: 2021
  ident: D3RA00723E/cit106/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129946
– volume: 807
  start-page: 150606
  year: 2022
  ident: D3RA00723E/cit68/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150606
– volume: 12
  start-page: 678
  year: 2022
  ident: D3RA00723E/cit145/1
  publication-title: Nanomaterials
  doi: 10.3390/nano12040678
– volume: 374
  start-page: 167
  year: 2019
  ident: D3RA00723E/cit190/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.04.031
– volume: 28
  start-page: 380
  year: 2019
  ident: D3RA00723E/cit13/1
  publication-title: Soil Sediment Contam.: Int. J.
  doi: 10.1080/15320383.2019.1592108
– volume: 252
  start-page: 126539
  year: 2020
  ident: D3RA00723E/cit114/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126539
– volume: 13
  start-page: 13052
  year: 2023
  ident: D3RA00723E/cit30/1
  publication-title: RSC Adv.
  doi: 10.1039/D3RA01660A
– volume: 428
  start-page: 131468
  year: 2022
  ident: D3RA00723E/cit196/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131468
– volume: 348
  start-page: 191
  year: 2018
  ident: D3RA00723E/cit120/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.161
– volume: 220
  start-page: 657
  year: 2016
  ident: D3RA00723E/cit21/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.04.128
– volume: 151
  start-page: 443
  year: 2015
  ident: D3RA00723E/cit133/1
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2014.11.005
– volume: 11
  start-page: 595
  year: 2022
  ident: D3RA00723E/cit16/1
  publication-title: Plants
  doi: 10.3390/plants11050595
– volume: 451
  start-page: 139071
  year: 2023
  ident: D3RA00723E/cit78/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139071
– volume: 101
  start-page: 133
  year: 2012
  ident: D3RA00723E/cit45/1
  publication-title: Molecular, Clinical and Environmental Toxicology
  doi: 10.1007/978-3-7643-8340-4_6
– volume: 18
  start-page: 100774
  year: 2020
  ident: D3RA00723E/cit48/1
  publication-title: Environ. Technol. Innovation
  doi: 10.1016/j.eti.2020.100774
– volume: 102
  start-page: 342
  year: 2022
  ident: D3RA00723E/cit88/1
  publication-title: Int. J. Environ. Anal. Chem.
  doi: 10.1080/03067319.2020.1722811
– volume: 668
  start-page: 1298
  year: 2019
  ident: D3RA00723E/cit150/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.011
– volume: 385
  start-page: 123911
  year: 2020
  ident: D3RA00723E/cit85/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123911
– volume: 234
  start-page: 115881
  year: 2020
  ident: D3RA00723E/cit96/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.115881
– volume: 298
  start-page: 122468
  year: 2020
  ident: D3RA00723E/cit144/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122468
– volume: 392
  start-page: 123639
  year: 2020
  ident: D3RA00723E/cit186/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123639
– volume: 33
  start-page: 359
  year: 2017
  ident: D3RA00723E/cit84/1
  publication-title: Rev. Chem. Eng.
  doi: 10.1515/revce-2016-0021
– volume: 12
  start-page: 1433
  year: 2022
  ident: D3RA00723E/cit31/1
  publication-title: RSC Adv.
  doi: 10.1039/D1RA07034G
– volume: 424
  start-page: 127312
  year: 2022
  ident: D3RA00723E/cit36/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127312
– volume: 38
  start-page: 101561
  year: 2020
  ident: D3RA00723E/cit146/1
  publication-title: J. Water Process. Eng.
  doi: 10.1016/j.jwpe.2020.101561
– start-page: 138508
  year: 2023
  ident: D3RA00723E/cit175/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.138508
– start-page: 128841
  year: 2022
  ident: D3RA00723E/cit143/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.128841
– volume: 296
  start-page: 120375
  year: 2021
  ident: D3RA00723E/cit192/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120375
– volume: 237
  start-page: 639
  year: 2018
  ident: D3RA00723E/cit1/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.02.020
– volume: 216
  start-page: 51
  year: 2019
  ident: D3RA00723E/cit200/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.01.074
– volume: 148
  start-page: 111265
  year: 2021
  ident: D3RA00723E/cit116/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2021.111265
– volume: 169
  start-page: 403
  year: 2014
  ident: D3RA00723E/cit136/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.07.014
– volume: 111
  start-page: 320
  year: 2014
  ident: D3RA00723E/cit132/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.04.043
– volume: 130
  start-page: 457
  year: 2013
  ident: D3RA00723E/cit141/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.132
– volume: 78
  start-page: 1
  year: 2023
  ident: D3RA00723E/cit19/1
  publication-title: Mater. Today: Proc.
– volume: 305
  start-page: 122484
  year: 2023
  ident: D3RA00723E/cit98/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122484
– volume: 217
  start-page: 240
  year: 2018
  ident: D3RA00723E/cit107/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.12.054
– volume: 313
  start-page: 1033
  year: 2017
  ident: D3RA00723E/cit182/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.137
– volume: 343
  start-page: 126081
  year: 2022
  ident: D3RA00723E/cit127/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.126081
– volume: 252
  start-page: 101
  year: 2019
  ident: D3RA00723E/cit129/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.04.096
– volume: 287
  start-page: 77
  year: 2019
  ident: D3RA00723E/cit166/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2019.05.062
– volume: 200
  start-page: 673
  year: 2012
  ident: D3RA00723E/cit139/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.06.116
– volume: 329
  start-page: 111553
  year: 2022
  ident: D3RA00723E/cit155/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2021.111553
– volume: 3
  start-page: 100045
  year: 2022
  ident: D3RA00723E/cit112/1
  publication-title: Cleaner Mater.
  doi: 10.1016/j.clema.2022.100045
– volume: 292
  start-page: 122030
  year: 2019
  ident: D3RA00723E/cit113/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122030
– start-page: 253
  volume-title: Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water
  year: 2022
  ident: D3RA00723E/cit17/1
  doi: 10.1016/B978-0-323-85763-5.00024-6
– volume: 303
  start-page: 134788
  year: 2022
  ident: D3RA00723E/cit81/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.134788
– volume: 159
  start-page: 460
  year: 2014
  ident: D3RA00723E/cit134/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.03.073
– volume: 393
  start-page: 122515
  year: 2020
  ident: D3RA00723E/cit95/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122515
– volume: 287
  start-page: 183
  year: 2019
  ident: D3RA00723E/cit170/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2019.06.009
– start-page: 100202
  year: 2023
  ident: D3RA00723E/cit73/1
  publication-title: Water Resour. Ind.
  doi: 10.1016/j.wri.2023.100202
– volume: 818
  start-page: 151774
  year: 2022
  ident: D3RA00723E/cit104/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.151774
– volume: 25
  start-page: 5921
  year: 2018
  ident: D3RA00723E/cit50/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-0956-4
– volume: 429
  start-page: 131688
  year: 2022
  ident: D3RA00723E/cit180/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131688
– start-page: 331
  volume-title: Metals in Water
  year: 2023
  ident: D3RA00723E/cit20/1
  doi: 10.1016/B978-0-323-95919-3.00014-8
– volume: 8
  start-page: 2732
  year: 2019
  ident: D3RA00723E/cit99/1
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2019.04.009
– volume: 239
  start-page: 53
  year: 2014
  ident: D3RA00723E/cit205/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.10.088
– volume: 806
  start-page: 151442
  year: 2022
  ident: D3RA00723E/cit142/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.151442
– volume: 266
  start-page: 129129
  year: 2021
  ident: D3RA00723E/cit34/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.129129
– volume: 804
  start-page: 150116
  year: 2022
  ident: D3RA00723E/cit38/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150116
– volume: 251
  start-page: 126331
  year: 2020
  ident: D3RA00723E/cit70/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126331
– volume: 16
  start-page: 100602
  year: 2021
  ident: D3RA00723E/cit3/1
  publication-title: Environ. Nanotechnol., Monit. Manage.
– volume: 416
  start-page: 126225
  year: 2021
  ident: D3RA00723E/cit2/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126225
– volume: 14
  start-page: 1
  year: 2021
  ident: D3RA00723E/cit161/1
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-021-07443-2
– volume: 55
  start-page: 67
  year: 2019
  ident: D3RA00723E/cit163/1
  publication-title: J. Min. Metall., Sect. A
  doi: 10.5937/JMMA1901067T
SSID ssj0000651261
Score 2.7325697
SecondaryResourceType review_article
Snippet Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17595
SubjectTerms Abrasion
Aquatic environment
Bioaccumulation
Carcinogens
Chemistry
Climate change
Contaminants
Coordination compounds
Heavy metals
Industrial wastes
Ion exchangers
Metals
Mine wastes
Municipal landfills
Neurological system
Oxidation
Pollution sources
Reproductive system
Toxicity
Toxicology
Urban runoff
Urbanization
Volcanic eruptions
Wastewater
Title Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review
URI https://www.ncbi.nlm.nih.gov/pubmed/37312989
https://www.proquest.com/docview/2826077374
https://www.proquest.com/docview/2825812173
https://pubmed.ncbi.nlm.nih.gov/PMC10258679
Volume 13
WOSCitedRecordID wos001003285200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELXaBcFeEF8LgaUygguqok3ifHlvVVlUacWCYJF6q5zY0VbbJiVNuy0HJP4HP5axEyepChIcuERV4sRq5mUyMxm_h9BrEViOgDjUFOD7Tdd3fZP5kW8GIvGimBM7jkuxieDiIhyP6cdO56deC7OeBWkabjZ08V9NDfvA2HLp7D-Yu74o7IDfYHTYgtlh-1eGHwm23kplaLnGSgoZt9sZ2deVomhtrW9T2jyKSEK3m8-yGzPOlkU_F_NsLckEKuLxkg5CzJQSWCGqrwxFtoGTi225bjpvPjZo3u_PQ91qsGwc3pz1B9-mqnx9ni1Z3h9NryF6bgAAYWvCyth6y3hTov1Q6b2cX0EKwVvVXLhkVeO-ZjdFu5zhENV2VTpNodyeAxk7GLQUcKl9NGlh0Wl7XAh_SpXOvXeBRSSVKic5k_ToRLQHwR1ZzBUASEBsyULfvA_rLkV9qItuOTCL9JnvvzcVPAjebMg_NectoSfNXIfojj57N-DZy2L2m3G7udaeUTHO5X10r0pO8KAE1QPUEelDdHeoNQEfoR8KXFiBC9fgwtMUAxRwBS7cAtcprqGFAVpYQwtX0MINtHCR4RpaWEELa2idYoZLYD1GX96dXQ5HZiXiYcYQ6hQmSWzIeglNJDel50VUunybcsu3IsZCmtgJpEwRZbYIYjdMSBJzzq04cTh3Q8cjR-ggzVLxFGHGIxFB-Mpc4bmcQmgdcI8wwj0aM-5TA73Rd3oSVwz3UmhlNlGdFoRO3pJPA2WgMwO9qscuSl6X34461gabVI_4cuJARm4FAQlcA72sD4Mh5Kc2lopspcZ4ofrjBnpS2reeRgPDQOGO5esBkvF990g6vVLM75ANeJIh00BHAJL6hAZ3z_4423N02Dxux-igyFfiBbodr4vpMu-hbjAOe6og1VMo_wX7V9Wf
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heavy+metal+pollution+in+the+aquatic+environment%3A+efficient+and+low-cost+removal+approaches+to+eliminate+their+toxicity%3A+a+review&rft.jtitle=RSC+advances&rft.au=Hama+Aziz%2C+Kosar+Hikmat&rft.au=Mustafa%2C+Fryad+S&rft.au=Omer%2C+Khalid+M&rft.au=Hama%2C+Sarkawt&rft.date=2023-06-09&rft.eissn=2046-2069&rft.volume=13&rft.issue=26&rft.spage=17595&rft_id=info:doi/10.1039%2Fd3ra00723e&rft_id=info%3Apmid%2F37312989&rft.externalDocID=37312989
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon