Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks

This study focuses on studying the effects of fly ash and silica fume replacement content on the strength of concrete cured for a long-term period of time by neural networks (NNs). Applicability of NNs to evaluate the effects of FA and SF for a long period of time is investigated. The investigations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Construction & building materials Jg. 21; H. 2; S. 384 - 394
Hauptverfasser: Pala, Murat, Özbay, Erdoğan, Öztaş, Ahmet, Yuce, M. Ishak
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2007
Elsevier B.V
Schlagworte:
ISSN:0950-0618, 1879-0526
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study focuses on studying the effects of fly ash and silica fume replacement content on the strength of concrete cured for a long-term period of time by neural networks (NNs). Applicability of NNs to evaluate the effects of FA and SF for a long period of time is investigated. The investigations covered concrete mixes at different water cementitious materials ratio, which contained low and high volumes of FA, and with or without the additional small amount of SF. 24 different mixes with 144 different samples were gathered form the literature for this purpose. These samples consist concretes that were cured for 3, 7, 28, 56 and 180 days. A NN model is constructed trained and tested using these data. The data used in the NN model are arranged in a format of eight input parameters that cover the fly ash replacement ratio (FA), silica fume replacement ratio (SF), total cementitious material (TCM), fine aggregate (ssa), coarse aggregate (ca), water content (W), high rate water reducing agent (HRWRA) and age of samples (AS) and an output parameter which is compressive strength of concrete ( f c). A NN program was devised in MATLAB and the NN model was constructed in this program. The results showed that NNs have strong potential as a feasible tool for evaluation of the effect of cementitious material on the compressive strength of concrete. It was found that FA content contributed little at early ages but much at later ages to the strength of concrete. It can also be concluded that the enhancement effect of low content of SF on compressive strength was not significant.
AbstractList This study focuses on studying the effects of fly ash and silica fume replacement content on the strength of concrete cured for a long-term period of time by neural networks (NNs). Applicability of NNs to evaluate the effects of FA and SF for a long period of time is investigated. The investigations covered concrete mixes at different water cementitious materials ratio, which contained low and high volumes of FA, and with or without the additional small amount of SF. 24 different mixes with 144 different samples were gathered form the literature for this purpose. These samples consist concretes that were cured for 3, 7, 28, 56 and 180 days. A NN model is constructed trained and tested using these data. The data used in the NN model are arranged in a format of eight input parameters that cover the fly ash replacement ratio (FA), silica fume replacement ratio (SF), total cementitious material (TCM), fine aggregate (ssa), coarse aggregate (ca), water content (W), high rate water reducing agent (HRWRA) and age of samples (AS) and an output parameter which is compressive strength of concrete ( f c). A NN program was devised in MATLAB and the NN model was constructed in this program. The results showed that NNs have strong potential as a feasible tool for evaluation of the effect of cementitious material on the compressive strength of concrete. It was found that FA content contributed little at early ages but much at later ages to the strength of concrete. It can also be concluded that the enhancement effect of low content of SF on compressive strength was not significant.
The effects of fly ash (FA) and silica fume (SF) replacement content on the strength of concrete cured for a long period of time was studied using neural networks (NNs). The investigations covered concrete mixes with different water-cement ratios, and which contained low and high volumes of FA, with or without an additional small amount of SF. 24 different mixes with 144 different samples were sourced from the literature for this purpose. These samples consist of concretes that were cured for 3, 7, 28, 56 and 180 days. A NN model was constructed, trained and tested using these data. The data used in the NN model are arranged in a format of eight input parameters that cover the fly ash replacement ratio, silica fume replacement ratio, total cementitious material, fine aggregate, coarse aggregate, water content, high rate water reducing agent and age of samples and an output parameter which is the compressive strength of concrete (fc). A NN program was devised in MATLAB and the NN model was constructed in this program. The results showed that NNs are a feasible tool for evaluating the effect of cementitious material on the compressive strength of concrete. It was found that the FA content contributed little to the strength at early ages but much at later ages. It was also concluded that the enhancement effect of a low content of SF on compressive strength was not significant. 24 refs.
Audience Trade
Author Öztaş, Ahmet
Özbay, Erdoğan
Yuce, M. Ishak
Pala, Murat
Author_xml – sequence: 1
  givenname: Murat
  surname: Pala
  fullname: Pala, Murat
  email: pala@gantep.edu.tr
  organization: Technical Programs Department, Kilis MYO, University of Gaziantep, 79000 Kilis, Turkey
– sequence: 2
  givenname: Erdoğan
  surname: Özbay
  fullname: Özbay, Erdoğan
  email: ozbay@gantep.edu.tr
  organization: Technical Programs Department, Kilis MYO, University of Gaziantep, 79000 Kilis, Turkey
– sequence: 3
  givenname: Ahmet
  surname: Öztaş
  fullname: Öztaş, Ahmet
  organization: Civil Engineering Department, University of Gaziantep, 27310 Gaziantep, Turkey
– sequence: 4
  givenname: M. Ishak
  surname: Yuce
  fullname: Yuce, M. Ishak
  organization: Civil Engineering Department, University of Gaziantep, 27310 Gaziantep, Turkey
BookMark eNqNkU2LFDEQhoOs4Ozqf4gXb91WfyTdOckw-AULXvQc0kllNmN30ibplfn3ZhgPIntYcggU7_NQ1HtLbnzwSMjbBuoGGv7-VOvgp83NZlG5bgFYDWMNIF6QXTMOogLW8huyA8GgAt6Mr8htSicA4C1vd2Tdr2tULqmZBkvn4I9VxrhQtBZ1Tpehnc9UpQeqvKHJzU4rarcFafBUh2WNmJJ7RJpyRH_MDxek7KQjZqTTmXrcYrF7zL9D_Jlek5dWzQnf_P3vyI9PH78fvlT33z5_PezvK923IlfdZHsmurEbOhhGiwxB2JEZMD2Oph0a3XMYmJqMET3vdQNCdJ1uh6ltG8awuyPvrt41hl8bpiwXlzTOs_IYtiRbMYwCGCvB6ho8qhml8zbkqPQRPZa1y7GtK-N9wwbOOs6Hkq-fyJdncHH6SeDDFdAxpBTRSu2yyi74ArpZNiAvVcqT_KdKealSwihLlcUg_jOs0S0qnp_FHq4slmM_OowyaYdeo3GxNCxNcM-w_AHBl8Ok
CitedBy_id crossref_primary_10_1016_j_rineng_2024_102503
crossref_primary_10_1617_s11527_010_9615_7
crossref_primary_10_1007_s41939_022_00124_x
crossref_primary_10_3233_JIFS_221544
crossref_primary_10_1007_s00419_025_02902_8
crossref_primary_10_1016_j_matpr_2022_03_193
crossref_primary_10_1007_s00521_012_1136_6
crossref_primary_10_1016_j_conbuildmat_2010_05_001
crossref_primary_10_1002_suco_202200779
crossref_primary_10_1016_j_conbuildmat_2012_09_026
crossref_primary_10_1016_j_measurement_2021_109790
crossref_primary_10_1016_j_conbuildmat_2010_11_071
crossref_primary_10_1155_2016_7648467
crossref_primary_10_1007_s40996_024_01544_0
crossref_primary_10_26634_jce_5_2_3350
crossref_primary_10_3233_JIFS_220736
crossref_primary_10_1007_s40996_022_00912_y
crossref_primary_10_1016_j_conbuildmat_2008_02_014
crossref_primary_10_1007_s00521_012_0898_1
crossref_primary_10_1016_j_commatsci_2011_02_003
crossref_primary_10_1016_j_conbuildmat_2010_11_108
crossref_primary_10_1016_j_eswa_2008_12_005
crossref_primary_10_1007_s00521_020_05244_4
crossref_primary_10_1016_j_jobe_2021_103393
crossref_primary_10_1007_s10462_022_10373_4
crossref_primary_10_1016_j_cemconcomp_2022_104647
crossref_primary_10_1007_s00521_012_0996_0
crossref_primary_10_1007_s00521_012_0931_4
crossref_primary_10_1016_j_jobe_2023_108160
crossref_primary_10_1016_j_commatsci_2007_06_011
crossref_primary_10_1007_s42452_019_1504_2
crossref_primary_10_1016_j_conbuildmat_2024_136176
crossref_primary_10_4028_www_scientific_net_AMM_405_408_2801
crossref_primary_10_1007_s00521_014_1623_z
crossref_primary_10_1016_j_conbuildmat_2013_08_078
crossref_primary_10_1007_s00521_012_1010_6
crossref_primary_10_1007_s40030_019_00411_w
crossref_primary_10_1007_s13369_020_04927_3
crossref_primary_10_1016_j_jmatprotec_2007_08_042
crossref_primary_10_1016_j_advengsoft_2009_01_005
crossref_primary_10_1016_j_conbuildmat_2023_133665
crossref_primary_10_1016_j_conbuildmat_2018_03_063
crossref_primary_10_1016_j_conbuildmat_2020_121082
crossref_primary_10_1680_macr_2007_00016
crossref_primary_10_1007_s41939_023_00181_w
crossref_primary_10_1016_j_compositesb_2010_12_004
crossref_primary_10_1007_s00521_012_1082_3
crossref_primary_10_1080_19648189_2022_2068657
crossref_primary_10_1016_j_measurement_2020_108951
crossref_primary_10_1016_j_advengsoft_2008_12_008
crossref_primary_10_1016_j_conbuildmat_2020_120949
crossref_primary_10_1016_j_conbuildmat_2021_124467
crossref_primary_10_1007_s41939_023_00169_6
crossref_primary_10_1016_j_conbuildmat_2012_08_043
crossref_primary_10_1016_j_conbuildmat_2012_04_063
crossref_primary_10_3233_JIFS_230907
crossref_primary_10_1007_s13369_020_04669_2
crossref_primary_10_3390_app112210826
crossref_primary_10_1007_s00500_021_05626_3
crossref_primary_10_1016_j_cscm_2023_e02321
crossref_primary_10_1002_suco_202300078
crossref_primary_10_1007_s41939_023_00219_z
crossref_primary_10_1016_j_cemconres_2008_02_007
crossref_primary_10_1007_s00521_011_0760_x
crossref_primary_10_1016_j_conbuildmat_2018_05_201
crossref_primary_10_1080_14328917_2017_1317394
crossref_primary_10_3390_buildings12060796
crossref_primary_10_1016_j_cscm_2022_e00998
crossref_primary_10_1016_j_heliyon_2024_e25056
crossref_primary_10_1002_suco_202200424
crossref_primary_10_1016_j_commatsci_2007_03_010
crossref_primary_10_1617_s11527_016_0972_8
crossref_primary_10_1016_j_matpr_2023_04_371
crossref_primary_10_1016_j_compgeo_2011_04_005
crossref_primary_10_1016_j_cscm_2023_e02294
crossref_primary_10_1016_j_conbuildmat_2008_01_014
crossref_primary_10_1016_j_conbuildmat_2025_142362
crossref_primary_10_3390_app10207330
crossref_primary_10_1016_j_ijmst_2014_01_015
crossref_primary_10_1007_s00521_012_0945_y
crossref_primary_10_3233_JIFS_221342
crossref_primary_10_1007_s11431_010_4266_z
crossref_primary_10_1016_j_asoc_2023_111174
crossref_primary_10_1016_j_nxmate_2025_101018
crossref_primary_10_1007_s10853_020_05250_w
crossref_primary_10_1080_14680629_2020_1822202
crossref_primary_10_1016_j_matpr_2023_03_024
crossref_primary_10_1002_suco_70136
crossref_primary_10_1007_s00521_012_1085_0
crossref_primary_10_1038_s41598_024_67850_9
crossref_primary_10_1016_j_conbuildmat_2025_143602
crossref_primary_10_1007_s43674_024_00072_8
crossref_primary_10_1007_s12517_021_08637_4
crossref_primary_10_1061__ASCE_MT_1943_5533_0003741
crossref_primary_10_1155_2019_3069046
crossref_primary_10_1016_j_jobe_2024_110566
crossref_primary_10_3390_ma9050396
crossref_primary_10_1016_j_commatsci_2007_07_011
crossref_primary_10_3390_ma14195637
crossref_primary_10_1002_suco_202300452
crossref_primary_10_1016_j_matdes_2011_01_064
crossref_primary_10_1016_j_conbuildmat_2024_139407
crossref_primary_10_1016_j_conbuildmat_2006_11_007
crossref_primary_10_1016_j_conbuildmat_2017_05_169
crossref_primary_10_1016_j_rcar_2024_12_012
crossref_primary_10_1155_2020_8850535
crossref_primary_10_1016_j_conbuildmat_2015_03_059
crossref_primary_10_1016_j_cscm_2023_e02731
crossref_primary_10_1016_j_conbuildmat_2013_02_064
crossref_primary_10_1007_s44416_025_00014_8
crossref_primary_10_1016_j_tsep_2023_101803
crossref_primary_10_2478_cee_2024_0034
crossref_primary_10_1007_s13369_023_08396_2
crossref_primary_10_1155_2018_5207962
crossref_primary_10_1016_j_istruc_2023_01_019
crossref_primary_10_3390_ma14143781
crossref_primary_10_1016_j_matdes_2008_04_005
crossref_primary_10_1061__ASCE_MT_1943_5533_0001462
crossref_primary_10_1155_2018_5481705
crossref_primary_10_1016_j_conbuildmat_2017_05_111
crossref_primary_10_1016_j_cemconres_2016_11_016
crossref_primary_10_1016_j_conbuildmat_2020_118676
crossref_primary_10_1007_s40069_013_0038_z
crossref_primary_10_1016_S1005_0302_12_60027_9
crossref_primary_10_1016_j_conbuildmat_2019_08_042
crossref_primary_10_1155_2014_875082
crossref_primary_10_1016_j_cemconres_2021_106449
crossref_primary_10_1155_2023_5076429
crossref_primary_10_1007_s12034_012_0380_9
crossref_primary_10_1007_s13349_021_00531_7
crossref_primary_10_1007_s41062_024_01644_w
crossref_primary_10_1016_j_conbuildmat_2011_07_028
crossref_primary_10_1016_j_advengsoft_2023_103532
crossref_primary_10_1080_10298436_2025_2450081
crossref_primary_10_1186_s40069_018_0246_7
crossref_primary_10_1186_s40069_023_00655_8
crossref_primary_10_1007_s00521_011_0700_9
crossref_primary_10_1016_j_ceramint_2010_10_037
crossref_primary_10_1016_j_matpr_2018_10_257
crossref_primary_10_1520_ACEM20180023
crossref_primary_10_1007_s00521_011_0761_9
crossref_primary_10_3390_ma12223708
crossref_primary_10_1007_s00521_012_1126_8
crossref_primary_10_1007_s00521_012_0995_1
crossref_primary_10_1007_s11831_021_09644_0
crossref_primary_10_1007_s40030_018_0291_x
crossref_primary_10_1016_j_conbuildmat_2016_07_031
crossref_primary_10_1016_j_advengsoft_2008_05_002
crossref_primary_10_1016_j_conbuildmat_2019_02_005
crossref_primary_10_1016_j_conbuildmat_2008_07_021
crossref_primary_10_1155_2021_6658932
crossref_primary_10_1007_s00521_014_1763_1
crossref_primary_10_1177_0142331208092284
crossref_primary_10_1016_j_conbuildmat_2020_119472
crossref_primary_10_1371_journal_pone_0262930
crossref_primary_10_3233_JIFS_222805
crossref_primary_10_1016_j_commatsci_2007_04_009
crossref_primary_10_1016_j_jclepro_2019_02_010
Cites_doi 10.1016/S0958-9465(97)00020-6
10.1016/j.cemconres.2004.05.024
10.1016/0008-8846(94)90053-1
10.1016/S0893-6080(05)80056-5
10.1016/S0045-7825(02)00221-9
10.1016/j.engstruct.2004.01.011
10.1016/j.ijproman.2004.04.002
10.1016/S0008-8846(98)00165-3
10.1016/j.apenergy.2004.02.003
10.1108/eb021106
10.1016/S0008-8846(97)00269-X
10.1016/S0958-9465(03)00017-9
10.1016/j.cemconres.2004.07.037
10.1016/S0045-7949(01)00039-6
10.1016/j.cemconres.2003.08.017
ContentType Journal Article
Copyright 2005 Elsevier Ltd
COPYRIGHT 2007 Elsevier B.V.
Copyright_xml – notice: 2005 Elsevier Ltd
– notice: COPYRIGHT 2007 Elsevier B.V.
DBID AAYXX
CITATION
7QQ
7SR
8FD
FR3
JG9
KR7
DOI 10.1016/j.conbuildmat.2005.08.009
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Ceramic Abstracts
Engineering Research Database
Technology Research Database
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0526
EndPage 394
ExternalDocumentID A157653667
10_1016_j_conbuildmat_2005_08_009
S0950061805002539
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADOJD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IAO
IEA
IGG
IHE
IHM
IOF
ISM
ITC
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
R2-
RIG
RNS
ROL
RPZ
RZL
SDF
SDG
SES
SET
SEW
SMS
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
VH1
WUQ
XI7
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AHDLI
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BAIFH
BBTPI
CITATION
EFKBS
~HD
7QQ
7SR
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c429t-3bf45938373078fe5e09f85d0d4e8d271c46075abdd9464c109933c27b22155e3
ISICitedReferencesCount 195
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000244618000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-0618
IngestDate Sat Sep 27 19:20:10 EDT 2025
Sat Nov 29 12:52:44 EST 2025
Sat Nov 29 11:05:10 EST 2025
Sat Nov 29 07:08:30 EST 2025
Tue Nov 18 20:49:28 EST 2025
Fri Feb 23 02:14:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fly ash
Compressive strength
Scaled conjugate gradient algorithm
Long-term cured concrete
Neural networks
Silica fume
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-3bf45938373078fe5e09f85d0d4e8d271c46075abdd9464c109933c27b22155e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29789055
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_29789055
gale_infotracgeneralonefile_A157653667
gale_infotracacademiconefile_A157653667
crossref_citationtrail_10_1016_j_conbuildmat_2005_08_009
crossref_primary_10_1016_j_conbuildmat_2005_08_009
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2005_08_009
PublicationCentury 2000
PublicationDate 2007-02-01
PublicationDateYYYYMMDD 2007-02-01
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-02-01
  day: 01
PublicationDecade 2000
PublicationTitle Construction & building materials
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier B.V
Publisher_xml – name: Elsevier Ltd
– name: Elsevier B.V
References Rafig, Bugmann, Easterbrook (bib19) 2001; 79
Mansour (bib8) 2004; 26
Lippman RP. An introduction to computing with neural nets. In: Artificial neural networks. The computer society theoretical concepts. Washington; 1988. p. 36–54.
Jung, Jamshid (bib10) 2001; 30
Sohabhon, Spethen (bib15) 1999; 6
Yeh (bib9) 1998; 28
Liu, Huang, Sung, Lee (bib20) 2002; 191
Wu, Lim (bib16) 1993
Atis (bib1) 2005; 35
Abraham (bib22) 2003
Moller (bib23) 1993; 6
Toutanji, Dalette, Aggoun, Duval, Danson (bib2) 2004; 34
Mazloom, Ramezanianpour, Brooks (bib6) 2004; 26
Sozen, Arcaklioglu (bib17) 2005; 80
Anderson (bib13) 1995
Lam, Wong, Poon (bib3) 1998; 28
Babu, Rao (bib4) 1994; 24
Gunaydin, Dogan (bib11) 2004; 22
Arbib (bib12) 1995
.
Hagan, Demuth, Beale (bib24) 1996
Sabir (bib5) 1997; 19
Bhanja, Sengupta (bib7) 2005; 35
Oztas A, Pala M, Ozbay E, Kanca E, Caglar N, Bhatti MA. Predicting the compressive strength and slump of high strength concrete using neural network, J Construct Building Mater, in press.
Estebon, M.D., Perceptrons: An Associative Learning Network. Spring 1997
Wu (10.1016/j.conbuildmat.2005.08.009_bib16) 1993
Bhanja (10.1016/j.conbuildmat.2005.08.009_bib7) 2005; 35
Anderson (10.1016/j.conbuildmat.2005.08.009_bib13) 1995
10.1016/j.conbuildmat.2005.08.009_bib18
Rafig (10.1016/j.conbuildmat.2005.08.009_bib19) 2001; 79
Yeh (10.1016/j.conbuildmat.2005.08.009_bib9) 1998; 28
Liu (10.1016/j.conbuildmat.2005.08.009_bib20) 2002; 191
10.1016/j.conbuildmat.2005.08.009_bib14
Babu (10.1016/j.conbuildmat.2005.08.009_bib4) 1994; 24
Sabir (10.1016/j.conbuildmat.2005.08.009_bib5) 1997; 19
Jung (10.1016/j.conbuildmat.2005.08.009_bib10) 2001; 30
Arbib (10.1016/j.conbuildmat.2005.08.009_bib12) 1995
Mazloom (10.1016/j.conbuildmat.2005.08.009_bib6) 2004; 26
Sohabhon (10.1016/j.conbuildmat.2005.08.009_bib15) 1999; 6
Moller (10.1016/j.conbuildmat.2005.08.009_bib23) 1993; 6
Gunaydin (10.1016/j.conbuildmat.2005.08.009_bib11) 2004; 22
10.1016/j.conbuildmat.2005.08.009_bib21
Abraham (10.1016/j.conbuildmat.2005.08.009_bib22) 2003
Atis (10.1016/j.conbuildmat.2005.08.009_bib1) 2005; 35
Sozen (10.1016/j.conbuildmat.2005.08.009_bib17) 2005; 80
Hagan (10.1016/j.conbuildmat.2005.08.009_bib24) 1996
Lam (10.1016/j.conbuildmat.2005.08.009_bib3) 1998; 28
Mansour (10.1016/j.conbuildmat.2005.08.009_bib8) 2004; 26
Toutanji (10.1016/j.conbuildmat.2005.08.009_bib2) 2004; 34
References_xml – year: 1995
  ident: bib13
  article-title: An introduction to neural networks. A bradford book
– volume: 26
  start-page: 347
  year: 2004
  end-page: 354
  ident: bib6
  article-title: Effect of silica fume on mechanical properties of high-strength concrete
  publication-title: Cement Concrete Compos
– year: 1995
  ident: bib12
  article-title: The handbook of brain theory and neural networks
– year: 1996
  ident: bib24
  article-title: Neural network design
– volume: 35
  start-page: 743
  year: 2005
  end-page: 747
  ident: bib7
  article-title: Influence of silica fume on the tensile strength of concrete
  publication-title: Cement Concrete Res
– reference: Estebon, M.D., Perceptrons: An Associative Learning Network. Spring 1997 (
– volume: 28
  start-page: 271
  year: 1998
  end-page: 283
  ident: bib3
  article-title: Effect of FA and SF on compressive and fracture behaviors of concrete
  publication-title: Cement Concrete Res
– volume: 6
  start-page: 133
  year: 1999
  end-page: 144
  ident: bib15
  article-title: Applicaiton of ANN to forecast construction duration of buildings at the predesign stage
  publication-title: Eng Construct Architect Manage
– reference: Lippman RP. An introduction to computing with neural nets. In: Artificial neural networks. The computer society theoretical concepts. Washington; 1988. p. 36–54.
– volume: 28
  start-page: 1797
  year: 1998
  end-page: 1808
  ident: bib9
  article-title: Modeling of strength of HPC using ANN
  publication-title: Cement Concrete Res
– volume: 30
  start-page: 1335
  year: 2001
  end-page: 1353
  ident: bib10
  article-title: Genetic algorithm in structural damage detection
  publication-title: Computers Struct
– volume: 80
  start-page: 35
  year: 2005
  end-page: 45
  ident: bib17
  article-title: Solar potential in Turkey
  publication-title: Appl Energy
– start-page: 1129
  year: 2003
  end-page: 1134
  ident: bib22
  article-title: A web usage mining framework using hierarchical intelligent systems
  publication-title: The IEEE international conference on fuzzy systems FUZZ-IEEE03
– volume: 79
  start-page: 1541
  year: 2001
  end-page: 1552
  ident: bib19
  article-title: Neural Network design for engineering applications
  publication-title: Comput Struct
– volume: 34
  start-page: 311
  year: 2004
  end-page: 319
  ident: bib2
  article-title: Effect of supplementary cementitious materials on the compressive strength and a durability of short term cured concrete
  publication-title: Cement Concrete Res
– volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: bib23
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Networks
– volume: 26
  start-page: 781
  year: 2004
  end-page: 799
  ident: bib8
  article-title: Predicting the shear strength of RC beams using ANN
  publication-title: Eng Struct
– volume: 191
  start-page: 2831
  year: 2002
  end-page: 2845
  ident: bib20
  article-title: Detection of cracks using neural networks and computational mechanics
  publication-title: Computer Meth Appl Mech Eng
– volume: 24
  start-page: 277
  year: 1994
  end-page: 284
  ident: bib4
  article-title: Early strength of FA concrete
  publication-title: Cement Concrete Res
– volume: 19
  start-page: 285
  year: 1997
  end-page: 294
  ident: bib5
  article-title: Mechanical properties and frost resistance of SF concrete
  publication-title: Cement Concrete Compos
– volume: 35
  start-page: 1112
  year: 2005
  end-page: 1121
  ident: bib1
  article-title: Strength properties of high-volume fly ash roller compacted and workable concrete and influence of curing condition
  publication-title: Cement Concrete Res
– reference: Oztas A, Pala M, Ozbay E, Kanca E, Caglar N, Bhatti MA. Predicting the compressive strength and slump of high strength concrete using neural network, J Construct Building Mater, in press.
– volume: 22
  start-page: 595
  year: 2004
  end-page: 602
  ident: bib11
  article-title: A neural network approach for early cost estimation of structural systems of buildings
  publication-title: Int J Project Manage
– start-page: 61
  year: 1993
  end-page: 66
  ident: bib16
  article-title: Prediciton maximum scour depth at the spur dikes with adaptive neural networks
  publication-title: Neural networks and combinatorial optimization in civil and structural engineering
– reference: ).
– year: 1995
  ident: 10.1016/j.conbuildmat.2005.08.009_bib13
– start-page: 1129
  year: 2003
  ident: 10.1016/j.conbuildmat.2005.08.009_bib22
  article-title: A web usage mining framework using hierarchical intelligent systems
– volume: 19
  start-page: 285
  year: 1997
  ident: 10.1016/j.conbuildmat.2005.08.009_bib5
  article-title: Mechanical properties and frost resistance of SF concrete
  publication-title: Cement Concrete Compos
  doi: 10.1016/S0958-9465(97)00020-6
– volume: 35
  start-page: 743
  issue: 4
  year: 2005
  ident: 10.1016/j.conbuildmat.2005.08.009_bib7
  article-title: Influence of silica fume on the tensile strength of concrete
  publication-title: Cement Concrete Res
  doi: 10.1016/j.cemconres.2004.05.024
– volume: 24
  start-page: 277
  year: 1994
  ident: 10.1016/j.conbuildmat.2005.08.009_bib4
  article-title: Early strength of FA concrete
  publication-title: Cement Concrete Res
  doi: 10.1016/0008-8846(94)90053-1
– start-page: 61
  year: 1993
  ident: 10.1016/j.conbuildmat.2005.08.009_bib16
  article-title: Prediciton maximum scour depth at the spur dikes with adaptive neural networks
– volume: 6
  start-page: 525
  year: 1993
  ident: 10.1016/j.conbuildmat.2005.08.009_bib23
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 191
  start-page: 2831
  year: 2002
  ident: 10.1016/j.conbuildmat.2005.08.009_bib20
  article-title: Detection of cracks using neural networks and computational mechanics
  publication-title: Computer Meth Appl Mech Eng
  doi: 10.1016/S0045-7825(02)00221-9
– year: 1996
  ident: 10.1016/j.conbuildmat.2005.08.009_bib24
– ident: 10.1016/j.conbuildmat.2005.08.009_bib14
– volume: 26
  start-page: 781
  year: 2004
  ident: 10.1016/j.conbuildmat.2005.08.009_bib8
  article-title: Predicting the shear strength of RC beams using ANN
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2004.01.011
– volume: 22
  start-page: 595
  issue: 7
  year: 2004
  ident: 10.1016/j.conbuildmat.2005.08.009_bib11
  article-title: A neural network approach for early cost estimation of structural systems of buildings
  publication-title: Int J Project Manage
  doi: 10.1016/j.ijproman.2004.04.002
– ident: 10.1016/j.conbuildmat.2005.08.009_bib18
– volume: 28
  start-page: 1797
  issue: 12
  year: 1998
  ident: 10.1016/j.conbuildmat.2005.08.009_bib9
  article-title: Modeling of strength of HPC using ANN
  publication-title: Cement Concrete Res
  doi: 10.1016/S0008-8846(98)00165-3
– volume: 30
  start-page: 1335
  issue: 6
  year: 2001
  ident: 10.1016/j.conbuildmat.2005.08.009_bib10
  article-title: Genetic algorithm in structural damage detection
  publication-title: Computers Struct
– year: 1995
  ident: 10.1016/j.conbuildmat.2005.08.009_bib12
– volume: 80
  start-page: 35
  year: 2005
  ident: 10.1016/j.conbuildmat.2005.08.009_bib17
  article-title: Solar potential in Turkey
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2004.02.003
– volume: 6
  start-page: 133
  issue: 2
  year: 1999
  ident: 10.1016/j.conbuildmat.2005.08.009_bib15
  article-title: Applicaiton of ANN to forecast construction duration of buildings at the predesign stage
  publication-title: Eng Construct Architect Manage
  doi: 10.1108/eb021106
– volume: 28
  start-page: 271
  year: 1998
  ident: 10.1016/j.conbuildmat.2005.08.009_bib3
  article-title: Effect of FA and SF on compressive and fracture behaviors of concrete
  publication-title: Cement Concrete Res
  doi: 10.1016/S0008-8846(97)00269-X
– volume: 26
  start-page: 347
  year: 2004
  ident: 10.1016/j.conbuildmat.2005.08.009_bib6
  article-title: Effect of silica fume on mechanical properties of high-strength concrete
  publication-title: Cement Concrete Compos
  doi: 10.1016/S0958-9465(03)00017-9
– volume: 35
  start-page: 1112
  issue: 6
  year: 2005
  ident: 10.1016/j.conbuildmat.2005.08.009_bib1
  article-title: Strength properties of high-volume fly ash roller compacted and workable concrete and influence of curing condition
  publication-title: Cement Concrete Res
  doi: 10.1016/j.cemconres.2004.07.037
– volume: 79
  start-page: 1541
  year: 2001
  ident: 10.1016/j.conbuildmat.2005.08.009_bib19
  article-title: Neural Network design for engineering applications
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(01)00039-6
– ident: 10.1016/j.conbuildmat.2005.08.009_bib21
– volume: 34
  start-page: 311
  year: 2004
  ident: 10.1016/j.conbuildmat.2005.08.009_bib2
  article-title: Effect of supplementary cementitious materials on the compressive strength and a durability of short term cured concrete
  publication-title: Cement Concrete Res
  doi: 10.1016/j.cemconres.2003.08.017
SSID ssj0006262
Score 2.323654
Snippet This study focuses on studying the effects of fly ash and silica fume replacement content on the strength of concrete cured for a long-term period of time by...
The effects of fly ash (FA) and silica fume (SF) replacement content on the strength of concrete cured for a long period of time was studied using neural...
SourceID proquest
gale
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 384
SubjectTerms Compressive strength
Fly ash
Long-term cured concrete
Mechanical properties
Neural networks
Neurons
Scaled conjugate gradient algorithm
Silica fume
Title Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks
URI https://dx.doi.org/10.1016/j.conbuildmat.2005.08.009
https://www.proquest.com/docview/29789055
Volume 21
WOSCitedRecordID wos000244618000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhhA8IK6iXI3E4CGKlDpXS7x0JVkLbVK1KbRPUa6IqcoK66axf8E_5ji201RsojzwElWRHcU9X3w-H_ucD6E3JEkS0yGp2unkVDVIQtUkLTL4rmJDK2gG61ytEpuwfd-Zz-m41folc2HOl3ZZOhcXdPVfTQ33wNgsdfYfzF0_FG7AbzA6XMHscN3J8N3xeNIdTPmBnmHgH6nAWEcKEFK3F1ZK5d5woXSn_aqy1HTAcokVbzZylcBXesGossngswtkceL6R2GfdekFfm_ihq5yuFB8dzaBp_tu-CWYfJo26S2T_5QFaStQJUJ1WwFizAe_2bNaxlvR2OAyiX9u5UYEl2ueblajbHHGY_4jEeyV4QpbnnBuxB2Z0o2YdMUUTDoNqJHGfKpz_TjhmnWuh_zHrM8DEMdgtLIaFgxJRMvYQVm6cXVye98PIm82HEahOw8PdG_1XWUyZGy7_kD_wCFxA-0T26QwUe53B-78Y-3eYQVIeAFHPo5b6PXm0OA1b3Ad6bmaBVTUJryH7oo1Ce5yLN1Hrbx8gO40KlU-RKsaVTjwcI0qLFDFbgKqMKAKA6owRxVmqMKBjxuowhJVrItEFT5cYI4qLFH1CM08N-z1VSHWoaZAadaqnhSGSVm8A7yGU-RmrtHCMTMtM3InI3YnNSygp3GSZdSwjJTtyOp6SuyEAOs0c_0x2itPyvwJwpamg2cgsBbJwb-YMdMIyIBaWo5dJEmctpEj_80oFZXsmaDKMpJHFo-jhiGY0qoZMbFVjbYRqbuueDmXXTq9lyaLBC_lfDMCAO7S_R0zc8QgC6-ZxiLxBQbLaq9F3Q6s-U3dsuw2ervV8iuvPH9Vw1cSMhG4A7bHF5f5ydlpRCjLbDfNp39t8Qzd3nyfz9EezA75C3QzPV9_O_3xUqD-N3WEwuw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=APPRAISAL+OF+LONG-TERM+EFFECTS+OF+FLY+ASH+AND+SILICA+FUME+ON+COMPRESSIVE+STRENGTH+OF+CONCRETE+BY+NEURAL+NETWORKS&rft.jtitle=Construction+%26+building+materials&rft.au=Pala%2C+M&rft.au=Ozbay%2C+E&rft.au=Oztas%2C+A&rft.au=Yuce%2C+M+I&rft.date=2007-02-01&rft.issn=0950-0618&rft.volume=21&rft.issue=2&rft.spage=384&rft.epage=394&rft_id=info:doi/10.1016%2Fj.conbuildmat.2005.08.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon