GMP: A Genetic Mission Planner for Heterogeneous Multirobot System Applications

The use of multiagent systems (MASs) in real-world applications keeps increasing, and diffuses into new domains, thanks to technological advances, increased acceptance, and demanding productivity requirements. Being able to automate the generation of mission plans for MASs is critical for managing c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 52; H. 10; S. 10627 - 10638
Hauptverfasser: Miloradovic, Branko, Curuklu, Baran, Ekstrom, Mikael, Papadopoulos, Alessandro Vittorio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The use of multiagent systems (MASs) in real-world applications keeps increasing, and diffuses into new domains, thanks to technological advances, increased acceptance, and demanding productivity requirements. Being able to automate the generation of mission plans for MASs is critical for managing complex missions in realistic settings. In addition, finding the right level of abstraction to represent any generic MAS mission is important for being able to provide general solution to the automated planning problem. In this article, we show how a mission for heterogeneous MASs can be cast as an extension of the traveling salesperson problem (TSP), and we propose a mixed-integer linear programming formulation. In order to solve this problem, a genetic mission planner (GMP), with a local plan refinement algorithm, is proposed. In addition, the comparative evaluation of CPLEX and GMP is presented in terms of timing and optimality of the obtained solutions. The algorithms are benchmarked on a proposed set of different problem instances. The results show that, in the presence of timing constraints, GMP outperforms CPLEX in the majority of test instances.
AbstractList The use of multiagent systems (MASs) in real-world applications keeps increasing, and diffuses into new domains, thanks to technological advances, increased acceptance, and demanding productivity requirements. Being able to automate the generation of mission plans for MASs is critical for managing complex missions in realistic settings. In addition, finding the right level of abstraction to represent any generic MAS mission is important for being able to provide general solution to the automated planning problem. In this article, we show how a mission for heterogeneous MASs can be cast as an extension of the traveling salesperson problem (TSP), and we propose a mixed-integer linear programming formulation. In order to solve this problem, a genetic mission planner (GMP), with a local plan refinement algorithm, is proposed. In addition, the comparative evaluation of CPLEX and GMP is presented in terms of timing and optimality of the obtained solutions. The algorithms are benchmarked on a proposed set of different problem instances. The results show that, in the presence of timing constraints, GMP outperforms CPLEX in the majority of test instances.
The use of multiagent systems (MASs) in real-world applications keeps increasing, and diffuses into new domains, thanks to technological advances, increased acceptance, and demanding productivity requirements. Being able to automate the generation of mission plans for MASs is critical for managing complex missions in realistic settings. In addition, finding the right level of abstraction to represent any generic MAS mission is important for being able to provide general solution to the automated planning problem. In this article, we show how a mission for heterogeneous MASs can be cast as an extension of the traveling salesperson problem (TSP), and we propose a mixed-integer linear programming formulation. In order to solve this problem, a genetic mission planner (GMP), with a local plan refinement algorithm, is proposed. In addition, the comparative evaluation of CPLEX and GMP is presented in terms of timing and optimality of the obtained solutions. The algorithms are benchmarked on a proposed set of different problem instances. The results show that, in the presence of timing constraints, GMP outperforms CPLEX in the majority of test instances.The use of multiagent systems (MASs) in real-world applications keeps increasing, and diffuses into new domains, thanks to technological advances, increased acceptance, and demanding productivity requirements. Being able to automate the generation of mission plans for MASs is critical for managing complex missions in realistic settings. In addition, finding the right level of abstraction to represent any generic MAS mission is important for being able to provide general solution to the automated planning problem. In this article, we show how a mission for heterogeneous MASs can be cast as an extension of the traveling salesperson problem (TSP), and we propose a mixed-integer linear programming formulation. In order to solve this problem, a genetic mission planner (GMP), with a local plan refinement algorithm, is proposed. In addition, the comparative evaluation of CPLEX and GMP is presented in terms of timing and optimality of the obtained solutions. The algorithms are benchmarked on a proposed set of different problem instances. The results show that, in the presence of timing constraints, GMP outperforms CPLEX in the majority of test instances.
Author Ekstrom, Mikael
Papadopoulos, Alessandro Vittorio
Curuklu, Baran
Miloradovic, Branko
Author_xml – sequence: 1
  givenname: Branko
  orcidid: 0000-0002-9051-929X
  surname: Miloradovic
  fullname: Miloradovic, Branko
  email: branko.miloradovic@mdh.se
  organization: Division of Intelligent Future Technologies, Mälardalen University, Västerås, Sweden
– sequence: 2
  givenname: Baran
  surname: Curuklu
  fullname: Curuklu, Baran
  email: baran.curuklu@mdh.se
  organization: Division of Intelligent Future Technologies, Mälardalen University, Västerås, Sweden
– sequence: 3
  givenname: Mikael
  orcidid: 0000-0002-5832-5452
  surname: Ekstrom
  fullname: Ekstrom, Mikael
  email: mikael.ekstrom@mdh.se
  organization: Division of Intelligent Future Technologies, Mälardalen University, Västerås, Sweden
– sequence: 4
  givenname: Alessandro Vittorio
  orcidid: 0000-0002-1364-8127
  surname: Papadopoulos
  fullname: Papadopoulos, Alessandro Vittorio
  email: alessandro.papadopoulos@mdh.se
  organization: Division of Intelligent Future Technologies, Mälardalen University, Västerås, Sweden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33983890$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54306$$DView record from Swedish Publication Index (Mälardalens högskola)
BookMark eNp9kUtr3DAUhUVJyWOaHxACQZBNFp2pHrZkdTeZppNChgSSFroSsn2dKNiWK8mU_PtoOpNZZFFtJMR37uWcc4T2etcDQieUzCgl6svD4vfljBFGZ5xIoij_gA4ZFcWUMZnv7d5CHqDjEJ5JOkX6UsU-OuBcFbxQ5BDdLld3X_EcL6GHaCu8siFY1-O71vQ9eNw4j68hgnePiXBjwKuxjda70kV8_xIidHg-DK2tTEy68Al9bEwb4Hh7T9DP71cPi-vpze3yx2J-M60ypuKUG8rqEjgxSvBcMSOFLLkAyQWpa0pLUTEwRQ4sqxXQSnLTEDCNVLRhxBA-QZ83c8NfGMZSD952xr9oZ6z-Zn_NtfOPuqufdJ5xIhJ-scEH7_6MEKLubKigTS7XpjTLWUFlJlKME3T-Dn12o--TGc0kFTwrKM0SdbalxrKDerf_LdkEyA1QeReCh0ZXNv7LKHpjW02JXteo1zXqdY16W2NS0nfKt-H_05xuNBYAdrxK3qUU_BXcZqYL
CODEN ITCEB8
CitedBy_id crossref_primary_10_1177_01423312241295828
crossref_primary_10_1109_TII_2023_3268760
crossref_primary_10_1016_j_autcon_2021_103990
crossref_primary_10_1109_TCYB_2025_3531433
crossref_primary_10_1109_ACCESS_2023_3254900
crossref_primary_10_3390_electronics13071354
crossref_primary_10_1109_TITS_2025_3578626
crossref_primary_10_1016_j_neucom_2023_126795
crossref_primary_10_1109_TEVC_2024_3364493
crossref_primary_10_3389_frobt_2022_816355
crossref_primary_10_1109_TSMC_2023_3239953
crossref_primary_10_1016_j_asoc_2023_110218
crossref_primary_10_1139_dsa_2024_0007
crossref_primary_10_1109_ACCESS_2023_3315130
Cites_doi 10.1609/icaps.v22i1.13515
10.1109/IEEECONF38699.2020.9389393
10.1109/TITS.2020.2972389
10.1177/0278364913496484
10.1007/978-3-030-37584-3_6
10.1287/opre.2.4.393
10.1016/j.cor.2007.11.008
10.1109/TCYB.2015.2418052
10.5220/0007309002370244
10.1109/JIOT.2020.3024223
10.1109/IROS.2014.6942590
10.1016/S0305-0548(02)00051-5
10.1109/JAS.2017.7510415
10.1109/TEVC.2011.2160400
10.1007/s00500-016-2376-7
10.1002/rob.21819
10.1007/978-3-030-33792-6_32
10.1109/TITS.2019.2910274
10.1109/TSMC.2016.2531648
10.1016/j.robot.2016.10.008
10.1023/A:1008779125567
10.1016/j.procir.2016.02.136
10.1109/TCYB.2014.2371918
10.1016/S0377-2217(97)00358-5
10.1109/JAS.2019.1911405
10.1007/978-3-642-13520-0_23
10.1109/CCDC.2015.7161668
10.1109/TITS.2017.2706720
10.1016/j.orl.2004.03.007
10.1109/LRA.2018.2794578
10.1177/0278364904045564
10.1017/CBO9780511804441
10.1109/TCSS.2018.2883764
10.1007/s13676-012-0010-0
10.15807/jorsj.34.152
10.1016/j.omega.2004.10.004
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ABGEM
ADTPV
AOWAS
D8T
DF7
ZZAVC
DOI 10.1109/TCYB.2021.3070913
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
SWEPUB Mälardalens högskola full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Mälardalens högskola
SwePub Articles full text
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed


Aerospace Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 10638
ExternalDocumentID oai_DiVA_org_mdh_54306
33983890
10_1109_TCYB_2021_3070913
9430776
Genre orig-research
Journal Article
GrantInformation_xml – fundername: FIESTA—Federated Choreography of an Integrated Embedded Systems Software Architecture, funded by the Swedish Knowledge Foundation
  funderid: 10.13039/100003077
– fundername: AFarCloud European Project
  grantid: 783221 (Call: H2020-ECSEL-2017-2)
– fundername: DPAC
  grantid: 20150022
  funderid: 10.13039/100003077
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ABGEM
ADTPV
AOWAS
D8T
DF7
ZZAVC
ID FETCH-LOGICAL-c429t-3a12dbe30a963592a767b36e7360dd11b6c2ea85e24d9e1c73af0eaf791f20a03
IEDL.DBID RIE
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733455200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 30 11:25:51 EDT 2025
Thu Oct 02 06:13:15 EDT 2025
Sun Nov 30 04:17:06 EST 2025
Thu Jan 02 22:55:34 EST 2025
Sat Nov 29 02:02:33 EST 2025
Tue Nov 18 20:45:16 EST 2025
Wed Aug 27 02:15:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-3a12dbe30a963592a767b36e7360dd11b6c2ea85e24d9e1c73af0eaf791f20a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1364-8127
0000-0002-5832-5452
0000-0002-9051-929X
OpenAccessLink https://ieeexplore.ieee.org/document/9430776
PMID 33983890
PQID 2716348114
PQPubID 85422
PageCount 12
ParticipantIDs pubmed_primary_33983890
ieee_primary_9430776
swepub_primary_oai_DiVA_org_mdh_54306
proquest_miscellaneous_2528174691
crossref_citationtrail_10_1109_TCYB_2021_3070913
proquest_journals_2716348114
crossref_primary_10_1109_TCYB_2021_3070913
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref33
ref10
ref32
ref2
Finke (ref11) 1984; 41
Saradatta (ref28) 2017; 9
ref1
ref17
ref39
ref16
ref19
ref18
Fügenschuh (ref30) 2019
ref24
Ascheuer (ref27) 2000; 17
ref23
ref45
ref26
Yuan (ref31) 2007
ref25
Brie (ref44)
ref20
ref42
ref22
ref21
Clausen (ref41) 1999
ref29
ref8
ref7
ref9
Gutin (ref38) 2006; 12
ref4
ref3
ref6
ref5
Mitchell (ref40) 2002; 1
Nisha (ref43)
References_xml – ident: ref5
  doi: 10.1609/icaps.v22i1.13515
– start-page: 7
  volume-title: Proc. Int. Conf. Soft Comput. Techn. Implement.
  ident: ref43
  article-title: Genetic algorithm applications on job shop scheduling problem: A review
– ident: ref39
  doi: 10.1109/IEEECONF38699.2020.9389393
– ident: ref21
  doi: 10.1109/TITS.2020.2972389
– ident: ref34
  doi: 10.1177/0278364913496484
– ident: ref22
  doi: 10.1007/978-3-030-37584-3_6
– ident: ref13
  doi: 10.1287/opre.2.4.393
– ident: ref16
  doi: 10.1016/j.cor.2007.11.008
– ident: ref24
  doi: 10.1109/TCYB.2015.2418052
– ident: ref12
  doi: 10.5220/0007309002370244
– ident: ref7
  doi: 10.1109/JIOT.2020.3024223
– ident: ref32
  doi: 10.1109/IROS.2014.6942590
– ident: ref42
  doi: 10.1016/S0305-0548(02)00051-5
– ident: ref20
  doi: 10.1109/JAS.2017.7510415
– ident: ref23
  doi: 10.1109/TEVC.2011.2160400
– ident: ref6
  doi: 10.1007/s00500-016-2376-7
– ident: ref1
  doi: 10.1002/rob.21819
– ident: ref36
  doi: 10.1007/978-3-030-33792-6_32
– ident: ref26
  doi: 10.1109/TITS.2019.2910274
– ident: ref19
  doi: 10.1109/TSMC.2016.2531648
– year: 2019
  ident: ref30
  article-title: Mission planning for unmanned aerial vehicles
– ident: ref35
  doi: 10.1016/j.robot.2016.10.008
– volume: 17
  start-page: 61
  issue: 1
  year: 2000
  ident: ref27
  article-title: A branch & cut algorithm for the asymmetric traveling salesman problem with precedence constraints
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1008779125567
– ident: ref29
  doi: 10.1016/j.procir.2016.02.136
– volume: 1
  start-page: 65
  volume-title: Handbook of Applied Optimization
  year: 2002
  ident: ref40
  article-title: Branch-and-cut algorithms for combinatorial optimization problems
– ident: ref9
  doi: 10.1109/TCYB.2014.2371918
– ident: ref10
  doi: 10.1016/S0377-2217(97)00358-5
– volume: 12
  volume-title: The Traveling Salesman Problem and Its Variations
  year: 2006
  ident: ref38
– volume: 41
  start-page: 167
  issue: 1
  year: 1984
  ident: ref11
  article-title: A two-commodity network flow approach to the traveling salesman problem
  publication-title: Congressus Numerantium
– ident: ref25
  doi: 10.1109/JAS.2019.1911405
– ident: ref45
  doi: 10.1007/978-3-642-13520-0_23
– ident: ref2
  doi: 10.1109/CCDC.2015.7161668
– ident: ref18
  doi: 10.1109/TITS.2017.2706720
– ident: ref37
  doi: 10.1016/j.orl.2004.03.007
– volume: 9
  start-page: 149
  issue: 2
  year: 2017
  ident: ref28
  article-title: A time-dependent atsp with time window and precedence constraints in air travel
  publication-title: J. Telecommun. Elect. Comput. Eng.
– ident: ref4
  doi: 10.1109/LRA.2018.2794578
– ident: ref33
  doi: 10.1177/0278364904045564
– start-page: 320
  volume-title: Proc. Int. Conf. Autom. Plan. Schedul.
  ident: ref44
  article-title: Genetic planning using variable length chromosomes
– ident: ref3
  doi: 10.1017/CBO9780511804441
– year: 2007
  ident: ref31
  article-title: Solving real-world vehicle routing problems using MILP and pgreedy heuristics
– ident: ref8
  doi: 10.1109/TCSS.2018.2883764
– ident: ref17
  doi: 10.1007/s13676-012-0010-0
– year: 1999
  ident: ref41
  article-title: Branch and bound algorithms-principles and examples
– ident: ref15
  doi: 10.15807/jorsj.34.152
– ident: ref14
  doi: 10.1016/j.omega.2004.10.004
SSID ssj0000816898
Score 2.4528413
Snippet The use of multiagent systems (MASs) in real-world applications keeps increasing, and diffuses into new domains, thanks to technological advances, increased...
SourceID swepub
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10627
SubjectTerms Algorithms
Automation
Extended colored traveling salesperson problem (ECTSP)
Extended Colored Traveling Salesperson Problem (ECTSP)Genetic Algorithm (GA)Multirobot Mission PlanningMultirobot Systems
genetic algorithm (GA)
Genetics
Integer programming
Linear programming
Mixed integer
Multiagent systems
Multiple robots
multirobot mission planning
multirobot systems
Optimization
Planning
Robots
Task analysis
Taxonomy
Urban areas
Title GMP: A Genetic Mission Planner for Heterogeneous Multirobot System Applications
URI https://ieeexplore.ieee.org/document/9430776
https://www.ncbi.nlm.nih.gov/pubmed/33983890
https://www.proquest.com/docview/2716348114
https://www.proquest.com/docview/2528174691
https://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54306
Volume 52
WOSCitedRecordID wos000733455200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQcuQCmPQKmMBBIg0vqR2DG3pVB6aemhoOVkOclErEQ31T74_YwdbwSoQuKQyIqdyLK_yczYnvkAXqhSmK40JudYNDnZt4L-g1WX68og57VQXreRbMKcn1fTqb3YgrdjLAwixsNneBiKcS-_7Zt1WCo7CqnCjdHbsE33IVZrXE-JBBKR-lZSISerwqRNTMHt0eXxt_fkDEpxGDBuRaDPUcpWpK75HxopUqzcZG3-lUo0qp-Tu__X8XtwJ5mZbDLgYhe2cH4fdpMgL9mrlG369R58_nR28Y5NWHhCjdnZLJyLnbPIZoQLRkYtOw1nZnqCGvbrJYsxu4u-7ldsyHfOJr_tgj-ALycfL49P88SykDeki1a58kK2NSruSRZLK73RplYajdK8bYWodSPRVyXKorUoGqN8x9F3xopOcs_VQ9iZ93N8DMxwtA1yxNIWBV0edUMWGrdV8FqsyYBvRto1KQV5YML44aIrwq0L8-TCPLk0Txm8GV-5HvJv_KvxXhj7sWEa9gz2N9PpkoQunSRHMQQhiyKD52M1yVbYMPFxPJ0sCbum0FZk8GiAwfjtDXoyeDngYqwJCbs_zL5OHEHAXbXfXUnd0E9u7ttTuC1DQEU8HrgPO6vFGp_BrebnarZcHBDQp9VBBPovVYX0XA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQX2lJaQlswEkiASOtHYsfclkJZRHfpYYvKyXKciVgJNmgf_H5sJxsBqpA4RIpiJ7JmvsnM2PMAeCpypupcqZRi5lJv3zL_HyzqVBYKKS2ZsLKKzSbUeFxcXemLDXjV58IgYgw-w-NwG8_yq8atwlbZSSgVrpS8ATfzLOO0zdbqd1RiC4nY_Jb7m9TbFao7xmRUn0xOv7zx7iBnxwHlmoUGOkLowits-odOik1WrrM3_yomGhXQ2db_LX0b7naGJhm0yNiBDZzdg51OlBfkeVdv-sUufHo_unhNBiQ88ZPJaBoiY2ck9jPCOfFmLRmGqJnGgw2b1YLErN15UzZL0lY8J4PfzsHvw-XZu8npMO36LKTOa6NlKizjVYmCWi-NueZWSVUKiUpIWlWMldJxtEWOPKs0MqeErSnaWmlWc2qp2IPNWTPDB0AURe2QIuY6y_xlUTpvo1FdBL9FqwTomtLGdUXIQy-MbyY6I1SbwCcT-GQ6PiXwsn_lR1uB41-TdwPt-4kd2RM4XLPTdDK6MNy7iiENmWUJPOmHvXSFIxMb6Wl47tGrMqlZAvstDPpvr9GTwLMWF_1IKNn9dvp5YDwEzPfqq8n9MuTD69f2GG4PJ6Nzc_5h_PEA7vCQXhGDBQ9hczlf4RHccj-X08X8UYT7L25y9rs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GMP%3A+A+Genetic+Mission+Planner+for+Heterogeneous+Multirobot+System+Applications&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Miloradovic%2C+Branko&rft.au=Curuklu%2C+Baran&rft.au=Ekstrom%2C+Mikael&rft.au=Papadopoulos%2C+Alessandro+Vittorio&rft.date=2022-10-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=10&rft.spage=10627&rft.epage=10638&rft_id=info:doi/10.1109%2FTCYB.2021.3070913&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2021_3070913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon