Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms—Support vector regression forecast combinations

•We introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model.•In the RG-SVR, a GA is applied for optimal parameter selection and feature subset combination.•We introduce a GA fitness function for financial forecasting purposes.•The RG-SVR model is benchmarked against GA-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 247; H. 3; S. 831 - 846
Hauptverfasser: Sermpinis, Georgios, Stasinakis, Charalampos, Theofilatos, Konstantinos, Karathanasopoulos, Andreas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 16.12.2015
Elsevier Sequoia S.A
Schlagworte:
ISSN:0377-2217, 1872-6860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model.•In the RG-SVR, a GA is applied for optimal parameter selection and feature subset combination.•We introduce a GA fitness function for financial forecasting purposes.•The RG-SVR model is benchmarked against GA-SVR and simple SVR algorithms. The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model for optimal parameter selection and feature subset combination. The algorithm is applied to the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed methodology genetically searches over a feature space (pool of individual forecasts) and then combines the optimal feature subsets (SVR forecast combinations) for each exchange rate. This is achieved by applying a fitness function specialized for financial purposes and adopting a sliding window approach. The individual forecasts are derived from several linear and non-linear models. RG-SVR is benchmarked against genetically and non-genetically optimized SVRs and SVMs models that are dominating the relevant literature, along with the robust ARBF-PSO neural network. The statistical and trading performance of all models is investigated during the period of 1999–2012. As it turns out, RG-SVR presents the best performance in terms of statistical accuracy and trading efficiency for all the exchange rates under study. This superiority confirms the success of the implemented fitness function and training procedure, while it validates the benefits of the proposed algorithm.
AbstractList The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model for optimal parameter selection and feature subset combination. The algorithm is applied to the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed methodology genetically searches over a feature space (pool of individual forecasts) and then combines the optimal feature subsets (SVR forecast combinations) for each exchange rate. This is achieved by applying a fitness function specialized for financial purposes and adopting a sliding window approach. The individual forecasts are derived from several linear and non-linear models. RG-SVR is benchmarked against genetically and non-genetically optimized SVRs and SVMs models that are dominating the relevant literature, along with the robust ARBF-PSO neural network. The statistical and trading performance of all models is investigated during the period of 1999-2012. As it turns out, RG-SVR presents the best performance in terms of statistical accuracy and trading efficiency for all the exchange rates under study. This superiority confirms the success of the implemented fitness function and training procedure, while it validates the benefits of the proposed algorithm.
•We introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model.•In the RG-SVR, a GA is applied for optimal parameter selection and feature subset combination.•We introduce a GA fitness function for financial forecasting purposes.•The RG-SVR model is benchmarked against GA-SVR and simple SVR algorithms. The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model for optimal parameter selection and feature subset combination. The algorithm is applied to the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed methodology genetically searches over a feature space (pool of individual forecasts) and then combines the optimal feature subsets (SVR forecast combinations) for each exchange rate. This is achieved by applying a fitness function specialized for financial purposes and adopting a sliding window approach. The individual forecasts are derived from several linear and non-linear models. RG-SVR is benchmarked against genetically and non-genetically optimized SVRs and SVMs models that are dominating the relevant literature, along with the robust ARBF-PSO neural network. The statistical and trading performance of all models is investigated during the period of 1999–2012. As it turns out, RG-SVR presents the best performance in terms of statistical accuracy and trading efficiency for all the exchange rates under study. This superiority confirms the success of the implemented fitness function and training procedure, while it validates the benefits of the proposed algorithm.
Author Theofilatos, Konstantinos
Sermpinis, Georgios
Stasinakis, Charalampos
Karathanasopoulos, Andreas
Author_xml – sequence: 1
  givenname: Georgios
  surname: Sermpinis
  fullname: Sermpinis, Georgios
  email: georgios.sermpinis@glasgow.ac.uk, sermpinis@hotmail.com
  organization: University of Glasgow Business School, University of Glasgow, Adam Smith Building, Glasgow G12 8QQ, UK
– sequence: 2
  givenname: Charalampos
  surname: Stasinakis
  fullname: Stasinakis, Charalampos
  email: charalampos.stasinakis@glasgow.ac.uk
  organization: University of Glasgow Business School, University of Glasgow, Adam Smith Building, Glasgow G12 8QQ, UK
– sequence: 3
  givenname: Konstantinos
  surname: Theofilatos
  fullname: Theofilatos, Konstantinos
  email: theofilk@ceid.upatras.gr
  organization: Pattern Recognition Laboratory, Department of Computer Engineering & Informatics, University of Patras, 26500 Patras, Greece
– sequence: 4
  givenname: Andreas
  surname: Karathanasopoulos
  fullname: Karathanasopoulos, Andreas
  email: a.karathanasopoulos@uel.ac.uk
  organization: Andreas Karathanasopoulos Royal Docklands Business School, University of East London, UK
BookMark eNp9kM1u1DAQgC1UJLZbXoCTJa4k2M6PsxIXVBWKVFSp0LPl2JOso6y9jL2F3ngFpD4hT4LDIg499DQez3wzmu-UnPjggZBXnJWc8fbtVMIUsBSMNyVrS9aIZ2TFOymKtmvZCVmxSspCCC5fkNMYJ8ZyJ29W5NfnYGF2fnxDh4BgdEw5odpbmlDb5Z22QC9ubyj8MFvtR6CoE0T63aUt3d736CzFMC8z6AgekjNUz2PAXN_F3z8fvhz2-4CJ3oFJASnCiBCjC_7_RmrCrndep_wZz8jzQc8RXv6La3L74eLr-WVxdf3x0_n7q8LUYpOKqmFG90PXVa3u6oqbrtf1sBmMraVtQNf9AEK3smp7IWzTDpKB6HNFZrCGvlqT18e5ewzfDhCTmsIBfV6puGSbumEy02sijl0GQ4wIg9qj22m8V5ypRb2a1KJeLeoVa1VWn6HuEWRc-ntddurmp9F3RxTy6XcOUEXjwBuwLrtKygb3FP4H-munIw
CODEN EJORDT
CitedBy_id crossref_primary_10_1007_s11042_020_10139_6
crossref_primary_10_1109_ACCESS_2019_2894735
crossref_primary_10_1016_j_jmse_2019_02_001
crossref_primary_10_1016_j_eswa_2022_119152
crossref_primary_10_1002_for_3187
crossref_primary_10_1016_j_irfa_2020_101629
crossref_primary_10_1002_for_3067
crossref_primary_10_1016_j_engappai_2023_106408
crossref_primary_10_1016_j_jempfin_2019_07_004
crossref_primary_10_1109_TSMC_2018_2799869
crossref_primary_10_1016_j_physa_2018_05_135
crossref_primary_10_1016_j_applthermaleng_2017_09_007
crossref_primary_10_1016_j_ijpe_2021_108389
crossref_primary_10_1002_ijfe_1879
crossref_primary_10_3390_math11143085
crossref_primary_10_1016_j_swevo_2017_05_003
crossref_primary_10_1002_for_2445
crossref_primary_10_1109_ACCESS_2025_3554641
crossref_primary_10_1007_s00521_016_2766_x
crossref_primary_10_1016_j_ejor_2016_07_059
crossref_primary_10_1016_j_scitotenv_2020_139438
crossref_primary_10_1080_1350486X_2019_1593866
crossref_primary_10_1016_j_eswa_2017_12_004
crossref_primary_10_1109_ACCESS_2022_3143767
crossref_primary_10_1016_j_ejor_2016_09_005
crossref_primary_10_1016_j_eswa_2025_128877
crossref_primary_10_1016_j_physa_2017_07_017
crossref_primary_10_1016_j_knosys_2022_108407
crossref_primary_10_1007_s10479_023_05754_z
crossref_primary_10_1016_j_intfin_2024_102067
crossref_primary_10_1108_MF_07_2023_0454
crossref_primary_10_1007_s10614_023_10432_0
crossref_primary_10_1007_s11042_023_14497_9
crossref_primary_10_1155_2020_4181045
crossref_primary_10_21078_JSSI_2018_289_13
crossref_primary_10_3233_JIFS_212156
crossref_primary_10_3390_machines10060472
crossref_primary_10_1080_01605682_2019_1595193
crossref_primary_10_1016_j_jpowsour_2021_229727
crossref_primary_10_1016_j_physa_2019_01_026
crossref_primary_10_1109_ACCESS_2020_2966712
crossref_primary_10_1016_j_eswa_2021_115569
crossref_primary_10_1007_s10614_024_10809_9
crossref_primary_10_1108_IMDS_03_2019_0194
crossref_primary_10_1186_s40854_025_00754_3
crossref_primary_10_1016_j_aei_2024_102416
crossref_primary_10_1108_JM2_12_2019_0277
crossref_primary_10_1109_JSTARS_2023_3242310
crossref_primary_10_1016_j_aei_2020_101160
crossref_primary_10_1007_s00521_021_06121_4
crossref_primary_10_1080_14697688_2016_1211796
crossref_primary_10_1007_s10489_021_02217_5
crossref_primary_10_1007_s13198_021_01209_5
crossref_primary_10_1016_j_resourpol_2022_102734
crossref_primary_10_1016_j_enbuild_2017_08_077
crossref_primary_10_1016_j_apm_2016_08_001
crossref_primary_10_1515_jtse_2020_0013
crossref_primary_10_1016_j_energy_2024_133699
crossref_primary_10_1016_j_asoc_2017_12_047
crossref_primary_10_1016_j_engappai_2020_103783
crossref_primary_10_1080_10864415_2018_1512271
crossref_primary_10_1007_s10614_024_10754_7
crossref_primary_10_1016_j_ejor_2017_06_019
crossref_primary_10_3390_ijfs12020034
crossref_primary_10_2478_cait_2022_0044
crossref_primary_10_1007_s11063_017_9629_z
crossref_primary_10_1002_for_2560
crossref_primary_10_1016_j_engappai_2018_08_011
crossref_primary_10_1007_s00500_018_3336_1
crossref_primary_10_1007_s10479_018_2808_0
crossref_primary_10_1016_j_econmod_2018_12_013
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122903
crossref_primary_10_1007_s10614_020_09978_0
crossref_primary_10_3390_en14196043
Cites_doi 10.1016/S0893-6080(03)00169-2
10.1080/01621459.2000.10474239
10.1080/03081070601068595
10.1198/016214504000000098
10.1016/j.neucom.2013.08.012
10.1016/j.eswa.2010.06.001
10.1016/0165-1765(80)90024-5
10.1080/088395196118434
10.1111/j.1540-6261.1992.tb04665.x
10.1016/S0925-2312(02)00601-X
10.1016/j.ejor.2014.08.016
10.1109/IJCNN.2000.859420
10.1016/0167-8655(89)90037-8
10.1016/j.patcog.2004.03.013
10.1016/j.ejor.2009.03.036
10.1080/14697680903386348
10.1016/j.eswa.2005.12.008
10.1016/j.eswa.2005.09.024
10.1016/j.ejor.2011.03.009
10.1109/TNN.2007.891629
10.1016/S0925-2312(01)00644-0
10.1016/j.eswa.2005.09.070
10.1080/13518470903037771
10.1162/089976600300015565
10.1198/073500102753410444
10.1016/S0169-2070(97)00044-7
10.1016/j.dss.2009.02.001
10.1016/j.eswa.2008.10.065
10.1016/j.ejor.2006.04.051
10.1198/016214507000000617
10.1016/j.tourman.2005.12.018
10.1016/j.eswa.2011.07.100
10.1080/07350015.1992.10509922
10.4236/am.2012.330207
10.1207/s15516709cog1402_1
10.1057/jam.2013.2
10.1016/j.eswa.2010.02.071
10.1016/j.eswa.2010.08.004
10.1016/0925-2312(95)00039-9
10.1257/aer.91.4.1095
10.1016/j.ejor.2014.06.043
10.1016/j.ejor.2012.10.020
10.1198/016214505000000781
ContentType Journal Article
Copyright 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS)
Copyright Elsevier Sequoia S.A. Dec 16, 2015
Copyright_xml – notice: 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS)
– notice: Copyright Elsevier Sequoia S.A. Dec 16, 2015
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ejor.2015.06.052
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 846
ExternalDocumentID 3797421631
10_1016_j_ejor_2015_06_052
S0377221715005858
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AALRI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c429t-350cabf8836a8431c8ba4f9fcd47d5ea4bfe2a6736b22d56f70e2bd5e750c4eb3
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000361412300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sun Nov 09 07:38:43 EST 2025
Sat Nov 29 01:41:13 EST 2025
Tue Nov 18 21:30:45 EST 2025
Fri Feb 23 02:27:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Exchange rates
Support vector regression
Forecast combinations
Feature subset
Genetic algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-350cabf8836a8431c8ba4f9fcd47d5ea4bfe2a6736b22d56f70e2bd5e750c4eb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1709450767
PQPubID 45678
PageCount 16
ParticipantIDs proquest_journals_1709450767
crossref_primary_10_1016_j_ejor_2015_06_052
crossref_citationtrail_10_1016_j_ejor_2015_06_052
elsevier_sciencedirect_doi_10_1016_j_ejor_2015_06_052
PublicationCentury 2000
PublicationDate 2015-12-16
PublicationDateYYYYMMDD 2015-12-16
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-16
  day: 16
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle European journal of operational research
PublicationYear 2015
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References Sermpinis, Theofilatos, Karathanasopoulos, Georgopoulos, Dunis (bib0041) 2013; 225
Wu, Tzeng, Goo, Fang (bib0052) 2007; 32
Cao, Chua, Guan (bib0002) 2003
Hsu, Hsieh, Chih, Hsu (bib0019) 2009; 36
Huck, Guégan (bib0018) 2005; 26
Smola, Murata, Schölkopf, Muller (bib0044) 1998
Holland (bib0017) 1975
Dunis, Likothanassis, Karathanasopoulos, Sermpinis, Theofilatos (bib0009) 2013; 14
Huang, Chuang, Wu, Lai (bib0020) 2010; 37
Tenti (bib0047) 1996; 10
Lee, Lin, Wahba (bib0028) 2004; 99
Geng, Bose, Chen (bib0015) 2015; 241
Jiang, He (bib0024) 2012; 39
Dunis, Laws, Sermpinis (bib0007) 2010; 16
Yeh, Huang, Lee (bib0054) 2011; 38
Wu, Liu (bib0051) 2007; 102
Vapnik (bib0049) 1995
Kaastra, Boyd (bib0025) 1996; 10
Ghosh, Shin (bib0016) 1991; 1
Lu (bib0031) 2014; 128
Yao, Crook, Andreeva (bib0053) 2015; 240
Schölkopf, Smola (bib0039) 2002
Sun, Bebis, Miller (bib0045) 2004; 37
Diebold, Mariano (bib0005) 1995; 20
Liu, Shen (bib0029) 2006; 101
Froot, Schafrstein, Stein (bib0014) 1992; 47
Cherkassky, Ma (bib0003) 2004; 17
Basak, Pal, Patranabis (bib0001) 2007; 11
Lu, Lee, Chiu (bib0032) 2009; 47
Kwon, Moon (bib0027) 2007; 18
Trafalis, Ince (bib0048) 2000; 1
Dunis, Laws, Sermpinis (bib0008) 2011; 11
Lin, Pai (bib0034) 2010; 37
Chen, Wang (bib0004) 2007; 28
Lo (bib0030) 2000; 95
Schölkopf, Bartlett, Smola, Williamson (bib0038) 1999; 11
Jarque, Bera (bib0023) 1980; 6
Martens, Baesens, van Gestel, Vanthienen (bib0033) 2007; 183
Fix, E., & Hodges, J. L. (1951). Discriminatory analysis, nonparametric discrimination: Consistency properties: Technical Report 4. Randolph Field, Texas: USAF School of Aviation Medicine.
Fisman (bib0012) 2001; 91
Duan, Keerthi, Poo (bib0006) 2003; 51
Ince, Trafalis (bib0022) 2008; 37
Kim, Sohn (bib0026) 2010; 201
Huang, Wang (bib0021) 2006; 31
Pai, Lin, Hong, Chen (bib0036) 2006; 17
Elman (bib0011) 1990; 14
Yuan (bib0055) 2012; 3
Siedlecki, Sklansky (bib0043) 1989; 10
Pesaran, Timmermann (bib0037) 1992; 10
Suykens, De Brabanter, Lukas, Vandewalle (bib0046) 2002; 48
Dunis, Nathani (bib0010) 2007; 16
Schölkopf, Smola, Williamson, Bartlett (bib0040) 2000; 12
Zhang, Patuwo, Hu (bib0056) 1998; 14
Shapiro (bib0042) 2000; 26
Min, Lee, Han (bib0035) 2006; 31
Wu, Akbarov (bib0050) 2011; 213
Basak (10.1016/j.ejor.2015.06.052_bib0001) 2007; 11
Hsu (10.1016/j.ejor.2015.06.052_bib0019) 2009; 36
Cherkassky (10.1016/j.ejor.2015.06.052_bib0003) 2004; 17
Schölkopf (10.1016/j.ejor.2015.06.052_bib0039) 2002
Huang (10.1016/j.ejor.2015.06.052_bib0020) 2010; 37
Dunis (10.1016/j.ejor.2015.06.052_bib0007) 2010; 16
Lo (10.1016/j.ejor.2015.06.052_bib0030) 2000; 95
Lin (10.1016/j.ejor.2015.06.052_bib0034) 2010; 37
Vapnik (10.1016/j.ejor.2015.06.052_bib0049) 1995
Wu (10.1016/j.ejor.2015.06.052_bib0052) 2007; 32
Yeh (10.1016/j.ejor.2015.06.052_bib0054) 2011; 38
Kaastra (10.1016/j.ejor.2015.06.052_bib0025) 1996; 10
Kim (10.1016/j.ejor.2015.06.052_bib0026) 2010; 201
Wu (10.1016/j.ejor.2015.06.052_bib0051) 2007; 102
Dunis (10.1016/j.ejor.2015.06.052_bib0008) 2011; 11
Huang (10.1016/j.ejor.2015.06.052_bib0021) 2006; 31
Lu (10.1016/j.ejor.2015.06.052_bib0031) 2014; 128
Liu (10.1016/j.ejor.2015.06.052_bib0029) 2006; 101
Tenti (10.1016/j.ejor.2015.06.052_bib0047) 1996; 10
Dunis (10.1016/j.ejor.2015.06.052_bib0010) 2007; 16
Fisman (10.1016/j.ejor.2015.06.052_bib0012) 2001; 91
Schölkopf (10.1016/j.ejor.2015.06.052_bib0038) 1999; 11
Wu (10.1016/j.ejor.2015.06.052_bib0050) 2011; 213
Pesaran (10.1016/j.ejor.2015.06.052_bib0037) 1992; 10
Yao (10.1016/j.ejor.2015.06.052_bib0053) 2015; 240
Suykens (10.1016/j.ejor.2015.06.052_bib0046) 2002; 48
Jiang (10.1016/j.ejor.2015.06.052_bib0024) 2012; 39
Lu (10.1016/j.ejor.2015.06.052_bib0032) 2009; 47
Geng (10.1016/j.ejor.2015.06.052_bib0015) 2015; 241
Elman (10.1016/j.ejor.2015.06.052_bib0011) 1990; 14
Huck (10.1016/j.ejor.2015.06.052_bib0018) 2005; 26
10.1016/j.ejor.2015.06.052_bib0013
Siedlecki (10.1016/j.ejor.2015.06.052_bib0043) 1989; 10
Min (10.1016/j.ejor.2015.06.052_bib0035) 2006; 31
Diebold (10.1016/j.ejor.2015.06.052_bib0005) 1995; 20
Dunis (10.1016/j.ejor.2015.06.052_bib0009) 2013; 14
Ghosh (10.1016/j.ejor.2015.06.052_bib0016) 1991; 1
Schölkopf (10.1016/j.ejor.2015.06.052_bib0040) 2000; 12
Zhang (10.1016/j.ejor.2015.06.052_bib0056) 1998; 14
Kwon (10.1016/j.ejor.2015.06.052_bib0027) 2007; 18
Smola (10.1016/j.ejor.2015.06.052_bib0044) 1998
Chen (10.1016/j.ejor.2015.06.052_bib0004) 2007; 28
Lee (10.1016/j.ejor.2015.06.052_bib0028) 2004; 99
Jarque (10.1016/j.ejor.2015.06.052_bib0023) 1980; 6
Shapiro (10.1016/j.ejor.2015.06.052_bib0042) 2000; 26
Cao (10.1016/j.ejor.2015.06.052_bib0002) 2003
Trafalis (10.1016/j.ejor.2015.06.052_bib0048) 2000; 1
Pai (10.1016/j.ejor.2015.06.052_bib0036) 2006; 17
Ince (10.1016/j.ejor.2015.06.052_bib0022) 2008; 37
Martens (10.1016/j.ejor.2015.06.052_bib0033) 2007; 183
Duan (10.1016/j.ejor.2015.06.052_bib0006) 2003; 51
Sun (10.1016/j.ejor.2015.06.052_bib0045) 2004; 37
Holland (10.1016/j.ejor.2015.06.052_bib0017) 1975
Yuan (10.1016/j.ejor.2015.06.052_bib0055) 2012; 3
Sermpinis (10.1016/j.ejor.2015.06.052_bib0041) 2013; 225
Froot (10.1016/j.ejor.2015.06.052_bib0014) 1992; 47
References_xml – volume: 26
  start-page: 119
  year: 2000
  end-page: 132
  ident: bib0042
  article-title: A Hitchhiker's guide to the techniques of adaptive non-linear models
  publication-title: Insurance: Mathematics and Economics
– volume: 240
  start-page: 528
  year: 2015
  end-page: 538
  ident: bib0053
  article-title: Support vector regression for loss given default modeling
  publication-title: European Journal of Operational Research
– volume: 3
  start-page: 1480
  year: 2012
  end-page: 1486
  ident: bib0055
  article-title: Parameters optimization using genetic algorithms in support vector regression for sales volume forecasting
  publication-title: Applied Mathematics
– volume: 39
  start-page: 2256
  year: 2012
  end-page: 2262
  ident: bib0024
  article-title: Grey relational grade in local support vector regression for financial time series prediction
  publication-title: Expert Systems with Applications
– volume: 31
  start-page: 231
  year: 2006
  end-page: 240
  ident: bib0021
  article-title: A GA-based feature selection and parameters optimization for support vector machines
  publication-title: Expert Systems with Applications
– volume: 47
  start-page: 115
  year: 2009
  end-page: 125
  ident: bib0032
  article-title: Financial time series forecasting using independent component analysis and support vector regression
  publication-title: Decision Support Systems
– reference: Fix, E., & Hodges, J. L. (1951). Discriminatory analysis, nonparametric discrimination: Consistency properties: Technical Report 4. Randolph Field, Texas: USAF School of Aviation Medicine.
– volume: 99
  start-page: 67
  year: 2004
  end-page: 81
  ident: bib0028
  article-title: Multicategory support vector machines
  publication-title: Journal of the American Statistical Association
– volume: 31
  start-page: 652
  year: 2006
  end-page: 660
  ident: bib0035
  article-title: Hybrid genetic algorithms and support vector machines for bankruptcy prediction
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 203
  year: 2007
  end-page: 224
  ident: bib0001
  article-title: Support vector regression
  publication-title: Neural Information Processing—Letters and Reviews
– volume: 18
  start-page: 851
  year: 2007
  end-page: 864
  ident: bib0027
  article-title: A hybrid neurogenetic approach for stock forecasting
  publication-title: IEEE Transactions on Neural Networks
– volume: 16
  start-page: 541
  year: 2010
  end-page: 560
  ident: bib0007
  article-title: Modeling and trading the EUR/USD exchange rate at the ECB fixing
  publication-title: The European Journal of Finance
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: bib0011
  article-title: Finding structure in time
  publication-title: Cognitive Science
– volume: 1
  start-page: 348
  year: 2000
  end-page: 353
  ident: bib0048
  article-title: Support vector machine for regression and applications to financial forecasting
  publication-title: IEEE-INNS-ENNS International Joint Conference on Neural Networks
– volume: 37
  start-page: 2165
  year: 2004
  end-page: 2176
  ident: bib0045
  article-title: Object detection using feature subset selection
  publication-title: Pattern Recognition
– volume: 37
  start-page: 5430
  year: 2010
  end-page: 5435
  ident: bib0034
  article-title: A fuzzy support vector regression model for business cycle predictions
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 67
  year: 2005
  end-page: 86
  ident: bib0018
  article-title: On the use of nearest neighbors to forecast in finance
  publication-title: Revue de l'Association française de Finance
– volume: 102
  start-page: 974
  year: 2007
  end-page: 983
  ident: bib0051
  article-title: Robust truncated hinge loss support vector machines
  publication-title: Journal of the American Statistical Association
– volume: 14
  start-page: 35
  year: 1998
  end-page: 62
  ident: bib0056
  article-title: Forecasting with artificial neural networks: The state of the art
  publication-title: International Journal of Forecasting
– volume: 47
  start-page: 1461
  year: 1992
  end-page: 1484
  ident: bib0014
  article-title: Herd on the street: Informational inefficiencies in a market with short-term speculation
  publication-title: Journal of Finance
– volume: 6
  start-page: 255
  year: 1980
  end-page: 259
  ident: bib0023
  article-title: Efficient tests for normality, homoscedasticity and serial independence of regression residuals
  publication-title: Economics Letters
– volume: 51
  start-page: 41
  year: 2003
  end-page: 59
  ident: bib0006
  article-title: Evaluation of simple performance measures for tuning SVM hyperparameters
  publication-title: Neurocomputing
– volume: 28
  start-page: 215
  year: 2007
  end-page: 226
  ident: bib0004
  article-title: Support Vector Regression with genetic algorithms in forecasting tourism demand
  publication-title: Tourism Management
– volume: 16
  start-page: 93
  year: 2007
  end-page: 111
  ident: bib0010
  article-title: Quantitative trading of gold and silver using non-linear models
  publication-title: Neural Network World
– volume: 95
  start-page: 629
  year: 2000
  end-page: 635
  ident: bib0030
  article-title: Finance: A selective survey
  publication-title: Journal of the American Statistical Association
– volume: 20
  start-page: 134
  year: 1995
  end-page: 144
  ident: bib0005
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business and Economic Statistics
– volume: 37
  start-page: 8590
  year: 2010
  end-page: 8598
  ident: bib0020
  article-title: Chaos-based support vector regressions for exchange rate forecasting
  publication-title: Expert Systems with Applications
– year: 1975
  ident: bib0017
  article-title: Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control and artificial intelligence
– volume: 10
  start-page: 461
  year: 1992
  end-page: 465
  ident: bib0037
  article-title: A simple nonparametric test of predictive performance
  publication-title: Journal of Business and Economic Statistics
– volume: 11
  start-page: 330
  year: 1999
  end-page: 336
  ident: bib0038
  article-title: Shrinking the tube: A new support vector regression algorithm
  publication-title: Advances in neural information processing systems
– start-page: 105
  year: 1998
  end-page: 110
  ident: bib0044
  article-title: Asymptotically optimal choice of ε-loss for support vector machines
  publication-title: Proceedings of the international conference on artificial neural networks, perspectives in neural computing
– volume: 36
  start-page: 7947
  year: 2009
  end-page: 7951
  ident: bib0019
  article-title: A two-stage architecture for stock price forecasting by integrating self-organizing map and support vector regression
  publication-title: Expert Systems with Applications
– volume: 32
  start-page: 397
  year: 2007
  end-page: 408
  ident: bib0052
  article-title: A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
  publication-title: Expert Systems with Applications
– volume: 183
  start-page: 1466
  year: 2007
  end-page: 1476
  ident: bib0033
  article-title: Comprehensible credit scoring models using rule extraction from support vector machines
  publication-title: European Journal of Operational Research
– volume: 91
  start-page: 1095
  year: 2001
  end-page: 1102
  ident: bib0012
  article-title: Estimating the value of political connections
  publication-title: The American Economic Review
– volume: 48
  start-page: 85
  year: 2002
  end-page: 105
  ident: bib0046
  article-title: Weighted least squares support vector machines: Robustness and sparse approximation
  publication-title: Neurocomputing
– volume: 17
  start-page: 19
  year: 2006
  end-page: 32
  ident: bib0036
  article-title: A hybrid support vector machine regression for exchange rate prediction
  publication-title: International Journal of Information and Management Sciences
– volume: 225
  start-page: 528
  year: 2013
  end-page: 540
  ident: bib0041
  article-title: Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization
  publication-title: European Journal of Operational Research
– volume: 1
  start-page: 13
  year: 1991
  end-page: 18
  ident: bib0016
  article-title: The Pi-sigma network: An efficient higher-order neural networks for pattern classification and function approximation
  publication-title: Proceedings of International Joint Conference of Neural Networks
– volume: 11
  start-page: 615
  year: 2011
  end-page: 629
  ident: bib0008
  article-title: Higher order and recurrent neural architectures for trading the EUR/USD exchange rate
  publication-title: Quantitative Finance
– volume: 38
  start-page: 2177
  year: 2011
  end-page: 2186
  ident: bib0054
  article-title: A multiple-kernel support vector regression approach for stock market price forecasting
  publication-title: Expert Systems with Applications
– volume: 241
  start-page: 236
  year: 2015
  end-page: 247
  ident: bib0015
  article-title: Prediction of financial distress: An empirical study of listed Chinese companies using data mining
  publication-title: European Journal of Operational Research
– volume: 213
  start-page: 196
  year: 2011
  end-page: 204
  ident: bib0050
  article-title: Support vector regression for warranty claim forecasting
  publication-title: European Journal of Operational Research
– volume: 10
  start-page: 335
  year: 1989
  end-page: 347
  ident: bib0043
  article-title: A note on genetic algorithms for large-scale feature selection
  publication-title: Pattern Recognition Letters
– volume: 12
  start-page: 1207
  year: 2000
  end-page: 1245
  ident: bib0040
  article-title: New support vector machines
  publication-title: Neural Computation
– volume: 10
  start-page: 567
  year: 1996
  end-page: 582
  ident: bib0047
  article-title: Forecasting foreign exchange rates using recurrent neural networks
  publication-title: Applied Artificial Intelligence
– volume: 128
  start-page: 491
  year: 2014
  end-page: 499
  ident: bib0031
  article-title: Sales forecasting of computer products based on variable selection scheme and support vector regression
  publication-title: Neurocomputing
– volume: 14
  start-page: 52
  year: 2013
  end-page: 71
  ident: bib0009
  article-title: A hybrid genetic algorithm–support vector machine approach in the task of forecasting and trading
  publication-title: Journal of Asset Management
– start-page: 317
  year: 2003
  end-page: 323
  ident: bib0002
  article-title: C-ascending support vector machines for financial time series forecasting
  publication-title: IEEE international conference on computational intelligence for financial engineering proceedings
– volume: 17
  start-page: 113
  year: 2004
  end-page: 126
  ident: bib0003
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Networks
– volume: 10
  start-page: 215
  year: 1996
  end-page: 236
  ident: bib0025
  article-title: Designing a neural network for forecasting financial and economic time series
  publication-title: Neurocomputing
– volume: 201
  start-page: 838
  year: 2010
  end-page: 846
  ident: bib0026
  article-title: Support vector machines for default prediction of SMEs based on technology credit
  publication-title: European Journal of Operational Research
– volume: 37
  start-page: 677
  year: 2008
  end-page: 687
  ident: bib0022
  article-title: Short term forecasting with support vector machines and application to stock price prediction
  publication-title: International Journal of General Systems
– year: 2002
  ident: bib0039
  article-title: Learning with kernels
– volume: 101
  start-page: 500
  year: 2006
  end-page: 509
  ident: bib0029
  article-title: Multicategory ψ-learning
  publication-title: Journal of the American Statistical Association
– year: 1995
  ident: bib0049
  article-title: The nature of statistical learning theory
– volume: 17
  start-page: 113
  issue: 1
  year: 2004
  ident: 10.1016/j.ejor.2015.06.052_bib0003
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(03)00169-2
– volume: 95
  start-page: 629
  issue: 450
  year: 2000
  ident: 10.1016/j.ejor.2015.06.052_bib0030
  article-title: Finance: A selective survey
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2000.10474239
– volume: 37
  start-page: 677
  issue: 6
  year: 2008
  ident: 10.1016/j.ejor.2015.06.052_bib0022
  article-title: Short term forecasting with support vector machines and application to stock price prediction
  publication-title: International Journal of General Systems
  doi: 10.1080/03081070601068595
– volume: 99
  start-page: 67
  issue: 465
  year: 2004
  ident: 10.1016/j.ejor.2015.06.052_bib0028
  article-title: Multicategory support vector machines
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000000098
– volume: 128
  start-page: 491
  issue: 27
  year: 2014
  ident: 10.1016/j.ejor.2015.06.052_bib0031
  article-title: Sales forecasting of computer products based on variable selection scheme and support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.012
– volume: 37
  start-page: 8590
  issue: 12
  year: 2010
  ident: 10.1016/j.ejor.2015.06.052_bib0020
  article-title: Chaos-based support vector regressions for exchange rate forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.06.001
– volume: 11
  start-page: 330
  year: 1999
  ident: 10.1016/j.ejor.2015.06.052_bib0038
  article-title: Shrinking the tube: A new support vector regression algorithm
– volume: 11
  start-page: 203
  issue: 10
  year: 2007
  ident: 10.1016/j.ejor.2015.06.052_bib0001
  article-title: Support vector regression
  publication-title: Neural Information Processing—Letters and Reviews
– volume: 6
  start-page: 255
  issue: 3
  year: 1980
  ident: 10.1016/j.ejor.2015.06.052_bib0023
  article-title: Efficient tests for normality, homoscedasticity and serial independence of regression residuals
  publication-title: Economics Letters
  doi: 10.1016/0165-1765(80)90024-5
– volume: 10
  start-page: 567
  issue: 6
  year: 1996
  ident: 10.1016/j.ejor.2015.06.052_bib0047
  article-title: Forecasting foreign exchange rates using recurrent neural networks
  publication-title: Applied Artificial Intelligence
  doi: 10.1080/088395196118434
– volume: 16
  start-page: 93
  issue: 2
  year: 2007
  ident: 10.1016/j.ejor.2015.06.052_bib0010
  article-title: Quantitative trading of gold and silver using non-linear models
  publication-title: Neural Network World
– volume: 47
  start-page: 1461
  issue: 4
  year: 1992
  ident: 10.1016/j.ejor.2015.06.052_bib0014
  article-title: Herd on the street: Informational inefficiencies in a market with short-term speculation
  publication-title: Journal of Finance
  doi: 10.1111/j.1540-6261.1992.tb04665.x
– ident: 10.1016/j.ejor.2015.06.052_bib0013
– volume: 1
  start-page: 13
  year: 1991
  ident: 10.1016/j.ejor.2015.06.052_bib0016
  article-title: The Pi-sigma network: An efficient higher-order neural networks for pattern classification and function approximation
  publication-title: Proceedings of International Joint Conference of Neural Networks
– volume: 51
  start-page: 41
  year: 2003
  ident: 10.1016/j.ejor.2015.06.052_bib0006
  article-title: Evaluation of simple performance measures for tuning SVM hyperparameters
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00601-X
– volume: 241
  start-page: 236
  issue: 1
  year: 2015
  ident: 10.1016/j.ejor.2015.06.052_bib0015
  article-title: Prediction of financial distress: An empirical study of listed Chinese companies using data mining
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.08.016
– year: 1995
  ident: 10.1016/j.ejor.2015.06.052_bib0049
– volume: 1
  start-page: 348
  issue: 6
  year: 2000
  ident: 10.1016/j.ejor.2015.06.052_bib0048
  article-title: Support vector machine for regression and applications to financial forecasting
  publication-title: IEEE-INNS-ENNS International Joint Conference on Neural Networks
  doi: 10.1109/IJCNN.2000.859420
– volume: 10
  start-page: 335
  issue: 5
  year: 1989
  ident: 10.1016/j.ejor.2015.06.052_bib0043
  article-title: A note on genetic algorithms for large-scale feature selection
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(89)90037-8
– volume: 37
  start-page: 2165
  issue: 11
  year: 2004
  ident: 10.1016/j.ejor.2015.06.052_bib0045
  article-title: Object detection using feature subset selection
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2004.03.013
– volume: 201
  start-page: 838
  issue: 3
  year: 2010
  ident: 10.1016/j.ejor.2015.06.052_bib0026
  article-title: Support vector machines for default prediction of SMEs based on technology credit
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2009.03.036
– volume: 11
  start-page: 615
  issue: 4
  year: 2011
  ident: 10.1016/j.ejor.2015.06.052_bib0008
  article-title: Higher order and recurrent neural architectures for trading the EUR/USD exchange rate
  publication-title: Quantitative Finance
  doi: 10.1080/14697680903386348
– volume: 32
  start-page: 397
  issue: 2
  year: 2007
  ident: 10.1016/j.ejor.2015.06.052_bib0052
  article-title: A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.12.008
– volume: 31
  start-page: 231
  issue: 2
  year: 2006
  ident: 10.1016/j.ejor.2015.06.052_bib0021
  article-title: A GA-based feature selection and parameters optimization for support vector machines
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.024
– volume: 213
  start-page: 196
  issue: 1
  year: 2011
  ident: 10.1016/j.ejor.2015.06.052_bib0050
  article-title: Support vector regression for warranty claim forecasting
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2011.03.009
– volume: 18
  start-page: 851
  issue: 3
  year: 2007
  ident: 10.1016/j.ejor.2015.06.052_bib0027
  article-title: A hybrid neurogenetic approach for stock forecasting
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2007.891629
– volume: 26
  start-page: 119
  issue: 2–3
  year: 2000
  ident: 10.1016/j.ejor.2015.06.052_bib0042
  article-title: A Hitchhiker's guide to the techniques of adaptive non-linear models
  publication-title: Insurance: Mathematics and Economics
– volume: 48
  start-page: 85
  issue: 1–4
  year: 2002
  ident: 10.1016/j.ejor.2015.06.052_bib0046
  article-title: Weighted least squares support vector machines: Robustness and sparse approximation
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00644-0
– year: 2002
  ident: 10.1016/j.ejor.2015.06.052_bib0039
– start-page: 317
  year: 2003
  ident: 10.1016/j.ejor.2015.06.052_bib0002
  article-title: C-ascending support vector machines for financial time series forecasting
– volume: 31
  start-page: 652
  issue: 3
  year: 2006
  ident: 10.1016/j.ejor.2015.06.052_bib0035
  article-title: Hybrid genetic algorithms and support vector machines for bankruptcy prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.070
– volume: 16
  start-page: 541
  issue: 6
  year: 2010
  ident: 10.1016/j.ejor.2015.06.052_bib0007
  article-title: Modeling and trading the EUR/USD exchange rate at the ECB fixing
  publication-title: The European Journal of Finance
  doi: 10.1080/13518470903037771
– volume: 12
  start-page: 1207
  issue: 5
  year: 2000
  ident: 10.1016/j.ejor.2015.06.052_bib0040
  article-title: New support vector machines
  publication-title: Neural Computation
  doi: 10.1162/089976600300015565
– volume: 20
  start-page: 134
  issue: 1
  year: 1995
  ident: 10.1016/j.ejor.2015.06.052_bib0005
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business and Economic Statistics
  doi: 10.1198/073500102753410444
– volume: 14
  start-page: 35
  year: 1998
  ident: 10.1016/j.ejor.2015.06.052_bib0056
  article-title: Forecasting with artificial neural networks: The state of the art
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(97)00044-7
– volume: 47
  start-page: 115
  issue: 2
  year: 2009
  ident: 10.1016/j.ejor.2015.06.052_bib0032
  article-title: Financial time series forecasting using independent component analysis and support vector regression
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2009.02.001
– volume: 36
  start-page: 7947
  issue: 4
  year: 2009
  ident: 10.1016/j.ejor.2015.06.052_bib0019
  article-title: A two-stage architecture for stock price forecasting by integrating self-organizing map and support vector regression
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.10.065
– volume: 183
  start-page: 1466
  issue: 3
  year: 2007
  ident: 10.1016/j.ejor.2015.06.052_bib0033
  article-title: Comprehensible credit scoring models using rule extraction from support vector machines
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.04.051
– volume: 102
  start-page: 974
  issue: 479
  year: 2007
  ident: 10.1016/j.ejor.2015.06.052_bib0051
  article-title: Robust truncated hinge loss support vector machines
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214507000000617
– volume: 26
  start-page: 67
  year: 2005
  ident: 10.1016/j.ejor.2015.06.052_bib0018
  article-title: On the use of nearest neighbors to forecast in finance
  publication-title: Revue de l'Association française de Finance
– volume: 28
  start-page: 215
  issue: 1
  year: 2007
  ident: 10.1016/j.ejor.2015.06.052_bib0004
  article-title: Support Vector Regression with genetic algorithms in forecasting tourism demand
  publication-title: Tourism Management
  doi: 10.1016/j.tourman.2005.12.018
– year: 1975
  ident: 10.1016/j.ejor.2015.06.052_bib0017
– volume: 39
  start-page: 2256
  issue: 3
  year: 2012
  ident: 10.1016/j.ejor.2015.06.052_bib0024
  article-title: Grey relational grade in local support vector regression for financial time series prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.07.100
– volume: 17
  start-page: 19
  issue: 2
  year: 2006
  ident: 10.1016/j.ejor.2015.06.052_bib0036
  article-title: A hybrid support vector machine regression for exchange rate prediction
  publication-title: International Journal of Information and Management Sciences
– volume: 10
  start-page: 461
  issue: 4
  year: 1992
  ident: 10.1016/j.ejor.2015.06.052_bib0037
  article-title: A simple nonparametric test of predictive performance
  publication-title: Journal of Business and Economic Statistics
  doi: 10.1080/07350015.1992.10509922
– volume: 3
  start-page: 1480
  issue: 10
  year: 2012
  ident: 10.1016/j.ejor.2015.06.052_bib0055
  article-title: Parameters optimization using genetic algorithms in support vector regression for sales volume forecasting
  publication-title: Applied Mathematics
  doi: 10.4236/am.2012.330207
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  ident: 10.1016/j.ejor.2015.06.052_bib0011
  article-title: Finding structure in time
  publication-title: Cognitive Science
  doi: 10.1207/s15516709cog1402_1
– volume: 14
  start-page: 52
  issue: 1
  year: 2013
  ident: 10.1016/j.ejor.2015.06.052_bib0009
  article-title: A hybrid genetic algorithm–support vector machine approach in the task of forecasting and trading
  publication-title: Journal of Asset Management
  doi: 10.1057/jam.2013.2
– volume: 37
  start-page: 5430
  issue: 7
  year: 2010
  ident: 10.1016/j.ejor.2015.06.052_bib0034
  article-title: A fuzzy support vector regression model for business cycle predictions
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.02.071
– volume: 38
  start-page: 2177
  issue: 3
  year: 2011
  ident: 10.1016/j.ejor.2015.06.052_bib0054
  article-title: A multiple-kernel support vector regression approach for stock market price forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.08.004
– start-page: 105
  year: 1998
  ident: 10.1016/j.ejor.2015.06.052_bib0044
  article-title: Asymptotically optimal choice of ε-loss for support vector machines
– volume: 10
  start-page: 215
  issue: 3
  year: 1996
  ident: 10.1016/j.ejor.2015.06.052_bib0025
  article-title: Designing a neural network for forecasting financial and economic time series
  publication-title: Neurocomputing
  doi: 10.1016/0925-2312(95)00039-9
– volume: 91
  start-page: 1095
  issue: 4
  year: 2001
  ident: 10.1016/j.ejor.2015.06.052_bib0012
  article-title: Estimating the value of political connections
  publication-title: The American Economic Review
  doi: 10.1257/aer.91.4.1095
– volume: 240
  start-page: 528
  issue: 2
  year: 2015
  ident: 10.1016/j.ejor.2015.06.052_bib0053
  article-title: Support vector regression for loss given default modeling
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.06.043
– volume: 225
  start-page: 528
  issue: 3
  year: 2013
  ident: 10.1016/j.ejor.2015.06.052_bib0041
  article-title: Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and particle swarm optimization
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.10.020
– volume: 101
  start-page: 500
  issue: 474
  year: 2006
  ident: 10.1016/j.ejor.2015.06.052_bib0029
  article-title: Multicategory ψ-learning
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214505000000781
SSID ssj0001515
Score 2.501537
Snippet •We introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model.•In the RG-SVR, a GA is applied for optimal parameter selection and...
The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model for optimal parameter selection and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 831
SubjectTerms Currency transactions
Decision making models
Exchange rates
Feature subset
Forecast combinations
Forecasting techniques
Foreign exchange rates
Genetic algorithms
Regression analysis
Studies
Support vector regression
Title Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms—Support vector regression forecast combinations
URI https://dx.doi.org/10.1016/j.ejor.2015.06.052
https://www.proquest.com/docview/1709450767
Volume 247
WOSCitedRecordID wos000361412300015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLX2gRBIfA0Qg4H8wFvJlDhJ7TxOqAiYNCHYpL5FTuKMljSpkqwqb_wFJH4hv4R7YzstHUyAxEtUJU6c5p7Yxzf3nkvIc5iBOEty_KqbpU7gMelImNccwE-W-JnP3UR2xSb4yYkYj6N3W9u3bC7MouBlKZbLaP5fTQ37wNiYOvsX5u4vCjvgNxgdtmB22P6R4bG6WWEqlQAjValsWpuJ2NZdyHzHNkdn7wdqqRN_BygYYRLdPn7GJC4MO-wy1aEf1Ym6FudVDcdnjY2PCLAiKLD3waLz_A9qda6Dasu-X4xYh6X3mlfwVx8BDCGGHbV1TRoNot5XDUPabI4qKL0ff1L1qwEgzA108snKJUhMDp3NVw1QgCCfFLLVMYXHmhPDU1k1OUYJdHgWsqnm1UWhG3bRnvInz4gXYpSJTtzU7rpLKTs6TYxzhzGdMHqo9KgvOHOGQhc2sNMC00qgBv_-2iAvzLxl-IJ2oV6airRXZHqophXqznphpxOr5Xo3JL4_4E3hPQE7d2H9JrbJLuNhBKP07tGb0fhtzy2QfnbfxcyfMGlgOmJxs6ffUa0N0tExqdO75LZZAtEjDd17ZEuVe-S6zcDYI3dspRFqJp49cnNNNvM--Woh_oKuAZwCwKkBOAWAUwA4tQCnHcApApxqgFMDcGoATlcA__7lm4E21dCmK2j3PdJ1aD8gZ69Gpy9fO6a0iJMCAWsdP3RTmeRC-EMpgEOnIpFBHuVpFvAsVDJIcsUkxjwmjGXhMOeuYgkcAYKdBirxH5KdsirVI0JF4vuwTsmSKPSDLBdRCrOml7kSCyOkPNonnrVCnBrdfSz_UsQ2wHIao-VitFyMUaYh2yeD_py5Vp25snVojRsb3qz5cAxYvPK8A4uE2LztTexxNwpgkTjkj__xsk_IjdXbeEB22vpCPSXX0kU7aepnBtE_ADA5_Q8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling%2C+forecasting+and+trading+the+EUR+exchange+rates+with+hybrid+rolling+genetic+algorithms%E2%80%94Support+vector+regression+forecast+combinations&rft.jtitle=European+journal+of+operational+research&rft.au=Sermpinis%2C+Georgios&rft.au=Stasinakis%2C+Charalampos&rft.au=Theofilatos%2C+Konstantinos&rft.au=Karathanasopoulos%2C+Andreas&rft.date=2015-12-16&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=247&rft.issue=3&rft.spage=831&rft.epage=846&rft_id=info:doi/10.1016%2Fj.ejor.2015.06.052&rft.externalDocID=S0377221715005858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon