Slope stability prediction based on a long short-term memory neural network: comparisons with convolutional neural networks, support vector machines and random forest models

The numerical simulation and slope stability prediction are the focus of slope disaster research. Recently, machine learning models are commonly used in the slope stability prediction. However, these machine learning models have some problems, such as poor nonlinear performance, local optimum and in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of coal science & technology Ročník 10; číslo 1; s. 18 - 14
Hlavní autori: Huang, Faming, Xiong, Haowen, Chen, Shixuan, Lv, Zhitao, Huang, Jinsong, Chang, Zhilu, Catani, Filippo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore Springer Nature Singapore 01.12.2023
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:2095-8293, 2198-7823
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The numerical simulation and slope stability prediction are the focus of slope disaster research. Recently, machine learning models are commonly used in the slope stability prediction. However, these machine learning models have some problems, such as poor nonlinear performance, local optimum and incomplete factors feature extraction. These issues can affect the accuracy of slope stability prediction. Therefore, a deep learning algorithm called Long short-term memory (LSTM) has been innovatively proposed to predict slope stability. Taking the Ganzhou City in China as the study area, the landslide inventory and their characteristics of geotechnical parameters, slope height and slope angle are analyzed. Based on these characteristics, typical soil slopes are constructed using the Geo-Studio software. Five control factors affecting slope stability, including slope height, slope angle, internal friction angle, cohesion and volumetric weight, are selected to form different slope and construct model input variables. Then, the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors. Each slope stability coefficient and its corresponding control factors is a slope sample. As a result, a total of 2160 training samples and 450 testing samples are constructed. These sample sets are imported into LSTM for modelling and compared with the support vector machine (SVM), random forest (RF) and convolutional neural network (CNN). The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features. Furthermore, LSTM has a better prediction performance for slope stability compared to SVM, RF and CNN models.
AbstractList The numerical simulation and slope stability prediction are the focus of slope disaster research. Recently, machine learning models are commonly used in the slope stability prediction. However, these machine learning models have some problems, such as poor nonlinear performance, local optimum and incomplete factors feature extraction. These issues can affect the accuracy of slope stability prediction. Therefore, a deep learning algorithm called Long short-term memory (LSTM) has been innovatively proposed to predict slope stability. Taking the Ganzhou City in China as the study area, the landslide inventory and their characteristics of geotechnical parameters, slope height and slope angle are analyzed. Based on these characteristics, typical soil slopes are constructed using the Geo-Studio software. Five control factors affecting slope stability, including slope height, slope angle, internal friction angle, cohesion and volumetric weight, are selected to form different slope and construct model input variables. Then, the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors. Each slope stability coefficient and its corresponding control factors is a slope sample. As a result, a total of 2160 training samples and 450 testing samples are constructed. These sample sets are imported into LSTM for modelling and compared with the support vector machine (SVM), random forest (RF) and convolutional neural network (CNN). The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features. Furthermore, LSTM has a better prediction performance for slope stability compared to SVM, RF and CNN models.
Abstract The numerical simulation and slope stability prediction are the focus of slope disaster research. Recently, machine learning models are commonly used in the slope stability prediction. However, these machine learning models have some problems, such as poor nonlinear performance, local optimum and incomplete factors feature extraction. These issues can affect the accuracy of slope stability prediction. Therefore, a deep learning algorithm called Long short-term memory (LSTM) has been innovatively proposed to predict slope stability. Taking the Ganzhou City in China as the study area, the landslide inventory and their characteristics of geotechnical parameters, slope height and slope angle are analyzed. Based on these characteristics, typical soil slopes are constructed using the Geo-Studio software. Five control factors affecting slope stability, including slope height, slope angle, internal friction angle, cohesion and volumetric weight, are selected to form different slope and construct model input variables. Then, the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors. Each slope stability coefficient and its corresponding control factors is a slope sample. As a result, a total of 2160 training samples and 450 testing samples are constructed. These sample sets are imported into LSTM for modelling and compared with the support vector machine (SVM), random forest (RF) and convolutional neural network (CNN). The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features. Furthermore, LSTM has a better prediction performance for slope stability compared to SVM, RF and CNN models.
ArticleNumber 18
Author Huang, Faming
Catani, Filippo
Lv, Zhitao
Chang, Zhilu
Chen, Shixuan
Huang, Jinsong
Xiong, Haowen
Author_xml – sequence: 1
  givenname: Faming
  surname: Huang
  fullname: Huang, Faming
  organization: School of Civil Engineering and Architecture, Nanchang University
– sequence: 2
  givenname: Haowen
  surname: Xiong
  fullname: Xiong, Haowen
  organization: School of Civil Engineering and Architecture, Nanchang University
– sequence: 3
  givenname: Shixuan
  surname: Chen
  fullname: Chen, Shixuan
  organization: School of Civil Engineering and Architecture, Nanchang University
– sequence: 4
  givenname: Zhitao
  surname: Lv
  fullname: Lv, Zhitao
  email: lvzhitao@ncu.edu.cn
  organization: School of Civil Engineering and Architecture, Nanchang University
– sequence: 5
  givenname: Jinsong
  surname: Huang
  fullname: Huang, Jinsong
  organization: Discipline of Civil, Surveying and Environmental Engineering, Priority Research Centre for Geotechnical Science and Engineering, University of Newcastle
– sequence: 6
  givenname: Zhilu
  surname: Chang
  fullname: Chang, Zhilu
  organization: School of Civil Engineering and Architecture, Nanchang University
– sequence: 7
  givenname: Filippo
  surname: Catani
  fullname: Catani, Filippo
  organization: Department of Geosciences, University of Padova
BookMark eNp9UU1v1DAQjVCRKKV_gJMlroTajp3Y3FBFoVIlDsDZmtiTXS9JHGxvq_1R_Ee8G1QQh15mRqP33ny8l9XZHGasqteMvmOUdldJ0E7pmvKmplR2uhbPqnPOtKo7xZuzUlMta8V186K6TGlHKWVCc8HEefXr6xgWJClD70efD2SJ6LzNPsykh4SOlALIGOYNSdsQc50xTmTCKcQDmXEfYSwpP4T44z2xYVog-hTmRB583pbGfB_G_VHuhPsXnt6StF-Woknu0eYQyQR262dMBGZHYglhIkOImDKZgsMxvaqeDzAmvPyTL6rvNx-_XX-u7758ur3-cFdbwXWuOeq2k71zLdOAsm2RtQDOaWToYOC276W0UkrFse3btuu5slqAAolSOtFcVLerrguwM0v0E8SDCeDNqRHixkDM3o5oaAdccdaJpuGCqgEUG3rtFJOi1WpwRevNqrXE8HNfbjG7sI_lHclwpWkjixVNQfEVZWNIKeLwOJVRc3TZrC6b4rI5uWyOa6r_SNZnOD47R_Dj09RmpaYyZ95g_LvVE6zfTMLCzg
CitedBy_id crossref_primary_10_1016_j_cscm_2024_e04112
crossref_primary_10_3390_su15118835
crossref_primary_10_1038_s41598_024_69271_0
crossref_primary_10_3390_electronics14010126
crossref_primary_10_1007_s11069_025_07665_7
crossref_primary_10_1038_s41598_024_68704_0
crossref_primary_10_1007_s12145_024_01600_3
crossref_primary_10_1038_s41598_025_02501_1
crossref_primary_10_1007_s40808_024_02221_x
crossref_primary_10_1016_j_jobe_2024_110417
crossref_primary_10_1155_je_6652758
crossref_primary_10_1007_s11069_024_06839_z
crossref_primary_10_1007_s12145_024_01348_w
crossref_primary_10_1016_j_enggeo_2025_108219
crossref_primary_10_1186_s40677_024_00290_9
crossref_primary_10_3390_app15169158
crossref_primary_10_1038_s41598_024_72588_5
crossref_primary_10_1007_s40789_025_00790_5
crossref_primary_10_3390_w16152152
crossref_primary_10_1016_j_eswa_2023_122400
crossref_primary_10_1016_j_mtcomm_2024_109222
crossref_primary_10_1007_s00521_024_10471_0
crossref_primary_10_1007_s12145_024_01296_5
crossref_primary_10_1080_15376494_2024_2439557
crossref_primary_10_3390_su16156333
crossref_primary_10_1007_s10462_024_10836_w
crossref_primary_10_1007_s40996_025_02027_6
crossref_primary_10_1016_j_infrared_2023_105084
crossref_primary_10_3390_machines12040212
crossref_primary_10_1007_s10064_025_04281_4
crossref_primary_10_1007_s12517_024_12146_5
crossref_primary_10_1038_s41598_024_71367_6
crossref_primary_10_3390_app13106224
crossref_primary_10_3390_w16010143
crossref_primary_10_3390_pr13082610
crossref_primary_10_1080_17499518_2024_2356543
crossref_primary_10_1007_s00603_025_04567_9
crossref_primary_10_1007_s40571_025_01015_x
crossref_primary_10_1038_s41598_025_07494_5
crossref_primary_10_1007_s41939_024_00513_4
crossref_primary_10_1007_s11356_025_36406_3
crossref_primary_10_1177_17483026241309070
crossref_primary_10_1007_s40789_024_00678_w
crossref_primary_10_1016_j_desal_2025_118880
crossref_primary_10_1007_s12665_025_12414_x
crossref_primary_10_1007_s42452_025_06498_0
crossref_primary_10_1007_s40808_025_02454_4
crossref_primary_10_1016_j_envres_2023_117286
crossref_primary_10_1016_j_petsci_2025_09_020
crossref_primary_10_1007_s11069_024_06490_8
crossref_primary_10_1007_s42461_025_01344_8
crossref_primary_10_3390_app14156526
crossref_primary_10_1016_j_heliyon_2024_e36841
crossref_primary_10_1016_j_heliyon_2024_e35871
crossref_primary_10_1038_s41598_025_86989_7
crossref_primary_10_1016_j_aej_2025_06_023
crossref_primary_10_1007_s12145_024_01464_7
crossref_primary_10_1038_s43247_024_01602_5
crossref_primary_10_1007_s12145_024_01653_4
crossref_primary_10_1007_s00477_024_02745_9
crossref_primary_10_1007_s10064_024_03896_3
crossref_primary_10_1016_j_eswa_2024_125801
crossref_primary_10_1007_s40515_025_00621_9
crossref_primary_10_1007_s00521_025_11321_3
crossref_primary_10_1007_s13202_024_01761_3
crossref_primary_10_1038_s41598_024_64030_7
crossref_primary_10_1016_j_geoai_2025_100030
crossref_primary_10_1007_s42107_023_00704_3
crossref_primary_10_1016_j_enggeo_2025_108228
crossref_primary_10_1007_s11831_023_10024_z
crossref_primary_10_1016_j_engeos_2024_100300
crossref_primary_10_2478_amns_2024_3421
crossref_primary_10_1007_s12145_024_01550_w
crossref_primary_10_1186_s40677_024_00288_3
crossref_primary_10_1016_j_infrared_2023_104968
crossref_primary_10_3390_drones9090603
crossref_primary_10_1007_s10706_025_03091_5
crossref_primary_10_1007_s00477_024_02792_2
crossref_primary_10_1007_s12145_025_01899_6
crossref_primary_10_3390_s23167296
crossref_primary_10_1016_j_ress_2025_110813
Cites_doi 10.1109/access.2019.2912419
10.1108/rpj-03-2016-0041
10.1142/s0219530518500124
10.1023/a:1022627411411
10.1186/s12874-019-0863-0
10.1016/j.sandf.2018.10.008
10.1007/s00366-015-0400-7
10.1007/s11069-020-04141-2
10.1007/s10346-020-01473-9
10.1002/nag.2834
10.1016/j.enggeo.2019.105278
10.3390/s20236854
10.1007/s12583-021-1433-z
10.1016/j.jrmge.2022.07.009
10.1016/j.apm.2017.03.048
10.1038/s41598-019-56309-x
10.1016/j.enconman.2017.11.053
10.1007/s11263-019-01228-7
10.1109/TNSRE.2018.2876129
10.1186/s13638-017-0993-1
10.1007/s12583-020-1331-9
10.1016/j.energy.2019.116319
10.1007/s12583-021-1492-1
10.1007/s00500-018-3253-3
10.1080/19475705.2014.883440
10.1016/j.neucom.2018.08.067
10.1155/2020/8862243
10.3390/ijgi8090395
10.1007/s12583-020-1380-0
10.1155/2019/9476981
10.1007/s00366-019-00702-7
10.1007/s12583-020-1072-9
10.1007/s40948-020-00154-0
10.1007/s00521-019-04650-7
10.1007/s40789-022-00483-3
10.1007/s10064-020-01903-x
10.3390/app9214638
10.3390/ijgi9090539
10.1061/(asce)cp.1943-5487.0000739
10.1016/j.asoc.2017.07.011
10.3390/rs12244075
10.1016/j.gsf.2014.10.003
10.1016/j.neunet.2014.09.003
10.1007/s12517-021-06616-3
10.1007/s40789-022-00504-1
10.3390/rs14184436
10.1016/j.ssci.2019.05.046
10.1088/1748-9326/abe1f5
10.1109/access.2018.2843787
10.1016/j.geomorph.2022.108236
10.1177/0037549720943274
10.3389/feart.2021.731058
10.1007/s10346-019-01148-0
10.1007/s12665-014-3800-x
10.1680/jgele.18.00022
10.3390/su12083269
10.1080/19386362.2017.1305652
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/s40789-023-00579-4
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2198-7823
EndPage 14
ExternalDocumentID oai_doaj_org_article_07a282174332408fa81fb9d8154698fd
10_1007_s40789_023_00579_4
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41807285
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
92M
9D9
9DB
AAFWJ
AAKKN
AAXDM
ABEEZ
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AEUYN
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
AVWKF
BAPOH
BENPR
BHPHI
BKSAR
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
CHBEP
EBS
EJD
FA0
GROUPED_DOAJ
HCIFZ
IAO
IPNFZ
ISR
ITC
JUIAU
OK1
PCBAR
PIMPY
Q--
R-B
RIG
RSV
RT2
SOJ
T8R
U1F
U1G
U5B
U5L
~LW
AAYXX
ABJIA
AFFHD
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c429t-2e9675bdd619ae566e16aadd9e1edaf2cbb55c55582e6b667b28c94a8a5e55d43
IEDL.DBID C24
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000966734600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2095-8293
IngestDate Mon Nov 10 04:36:08 EST 2025
Wed Oct 08 14:21:26 EDT 2025
Sat Nov 29 02:30:50 EST 2025
Tue Nov 18 21:22:34 EST 2025
Fri Feb 21 02:44:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Long short-term memory
Machine learning model
Slope stability prediction
Geo-Studio software
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-2e9675bdd619ae566e16aadd9e1edaf2cbb55c55582e6b667b28c94a8a5e55d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s40789-023-00579-4
PQID 2890354923
PQPubID 2044255
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_07a282174332408fa81fb9d8154698fd
proquest_journals_2890354923
crossref_primary_10_1007_s40789_023_00579_4
crossref_citationtrail_10_1007_s40789_023_00579_4
springer_journals_10_1007_s40789_023_00579_4
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle International journal of coal science & technology
PublicationTitleAbbrev Int J Coal Sci Technol
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Wang, Xu, Gui, Yang, Pu (CR44) 2020; 12
Huang, Cao, Jiang, Zhou, Huang, Guo (CR14) 2020; 17
Tian, Zhang, Li, Lin, Yang (CR41) 2018; 318
Yang, Wu, Zheng (CR52) 2020; 80
Yin, Lin, Chen, Wang, Zhao (CR54) 2020; 96
Liu, Mi, Li (CR29) 2018; 156
Wu, Fang, Kang, Tao, Qiao (CR47) 2019; 9
Cortes, Vapnik (CR7) 1995; 20
Kumar, Basudhar (CR23) 2018; 8
Chen, Cui, Chen, Yuan, Kang, Zhu (CR6) 2021; 16
Kang, Xu, Li, Zhao (CR21) 2017; 60
Bui, Moayedi, Gör, Jaafari, Foong (CR4) 2019; 8
Kumar, Samui, Naithani (CR24) 2014; 7
Yang, Sun, Sun, Zheng (CR51) 2019; 261
Huang, Yin, He, Zhou, Zhang (CR13) 2016; 23
Yang, Zhang, Wang, Zhang (CR50) 2019; 2019
Amin, Sharif, Raza, Saba, Sial, Shad (CR3) 2019; 32
Ray, Kumar, Kumar, Rai, Khandelwal, Singh (CR35) 2020; 103
Gao, Raftari, Rashid, Mu’azu, Jusoh (CR10) 2019; 36
Xie, Zhou, Chai (CR49) 2019; 7
Zhang, Goh (CR55) 2016; 7
Lin, Zhou, Li (CR28) 2018; 6
Zhou (CR57) 2018; 16
He, Xu, Qi, Huang, Cheng, Xu, Yao, Lu, Dai (CR12) 2021; 32
Gordan, Armaghani, Hajihassani, Monjezi (CR11) 2016; 32
Schmidhuber (CR37) 2015; 61
Zhou, Li, Yang, Wang, Shi, Yao, Mitri (CR58) 2019; 118
Koopialipoor, Jahed Armaghani, Hedayat, Marto, Gordan (CR22) 2018; 23
Tan, Yu, Jiao, Lin, Lv, Cheng (CR40) 2021; 14
Huang, Xu, Zhang, Xue, Wang (CR16) 2021; 32
Wang, Wang, Zhu, Zhang (CR45) 2020; 6
Huang, Tao, Li, Lian, Catani, Huang, Li, Zhang (CR18) 2022; 14
Moayedi, Bui, Kalantar, Foong (CR31) 2019; 9
Jiang, Huang, Yao, Yang (CR19) 2017; 47
Liang, Sun, Sun, Gao (CR27) 2017; 2017
Akram, Li, Jin, Chen, Zhu, Zhao, Khaliq, Faheem, Ahmad (CR2) 2019; 189
Dai, Li, Wang, Lu, Xu, Jian (CR9) 2021; 32
Wang, Jiang, Liu, Shang, Zhang (CR43) 2018; 26
Wongvibulsin, Wu, Zeger (CR46) 2019; 20
Palenzuela Baena, Scifoni, Marsella, De Astis, Irigaray Fernández (CR32) 2019; 16
Tinoco, Gomes Correia, Cortez, Toll (CR42) 2018; 32
Chang, Catani, Huang, Liu, Meena, Huang, Zhou (CR5) 2022
Sun, Xu, Wen, Wang (CR39) 2020; 31
Yao, Moon, Bi (CR53) 2017; 23
Zhao, Deng, Li, Wang, Wei (CR56) 2020; 20
Abdalla, Attom, Hawileh (CR1) 2014; 73
Qian, Li, Chen, Lyamin, Jiang (CR34) 2019; 59
Jiang, Zhang, Wang, Wang, Han (CR20) 2022; 9
Qi, Tang (CR33) 2018; 42
Lu, Wei, Shang, Jing, Tang (CR30) 2020; 2020
Huang, Chen, Liu, Huang, Hong, Chen (CR17) 2022
Huang, Yang, Zhang, Li, Huang, Chen (CR15) 2020; 9
Rukhaiyar, Alam, Samadhiya (CR36) 2017
Wu, Chen, Lv, Xie, Chen, Gu (CR48) 2022; 9
Criss, Yao, Li, Tang (CR8) 2020; 31
Kwag, Hahm, Kim, Eem (CR25) 2020
Li, Shi, Huang, Hong, Song (CR26) 2021
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (CR38) 2020; 128
H Moayedi (579_CR31) 2019; 9
S Kwag (579_CR25) 2020
J Zhou (579_CR58) 2019; 118
W Gao (579_CR10) 2019; 36
D-X Zhou (579_CR57) 2018; 16
C Qi (579_CR33) 2018; 42
SH Jiang (579_CR19) 2017; 47
F Huang (579_CR18) 2022; 14
R Lu (579_CR30) 2020; 2020
F Tan (579_CR40) 2021; 14
F Huang (579_CR17) 2022
MW Akram (579_CR2) 2019; 189
C Dai (579_CR9) 2021; 32
Y Tian (579_CR41) 2018; 318
DL Sun (579_CR39) 2020; 31
X Yao (579_CR53) 2017; 23
X Yin (579_CR54) 2020; 96
ZG Qian (579_CR34) 2019; 59
W Zhang (579_CR55) 2016; 7
H Zhao (579_CR56) 2020; 20
J Tinoco (579_CR42) 2018; 32
Y Chen (579_CR6) 2021; 16
YD Huang (579_CR16) 2021; 32
RE Criss (579_CR8) 2020; 31
F Kang (579_CR21) 2017; 60
Y Yang (579_CR51) 2019; 261
P Wang (579_CR45) 2020; 6
J Schmidhuber (579_CR37) 2015; 61
Z Chang (579_CR5) 2022
C Cortes (579_CR7) 1995; 20
Y Lin (579_CR28) 2018; 6
M Koopialipoor (579_CR22) 2018; 23
S Kumar (579_CR23) 2018; 8
F Huang (579_CR14) 2020; 17
JY Jiang (579_CR20) 2022; 9
S Wongvibulsin (579_CR46) 2019; 20
J Amin (579_CR3) 2019; 32
L Wang (579_CR44) 2020; 12
D Bui (579_CR4) 2019; 8
P Xie (579_CR49) 2019; 7
F Huang (579_CR13) 2016; 23
H Liu (579_CR29) 2018; 156
H Wu (579_CR47) 2019; 9
A Ray (579_CR35) 2020; 103
JA Palenzuela Baena (579_CR32) 2019; 16
S Rukhaiyar (579_CR36) 2017
D Yang (579_CR50) 2019; 2019
XL He (579_CR12) 2021; 32
HS Wu (579_CR48) 2022; 9
W Li (579_CR26) 2021
Y Yang (579_CR52) 2020; 80
M Kumar (579_CR24) 2014; 7
RR Selvaraju (579_CR38) 2020; 128
JA Abdalla (579_CR1) 2014; 73
B Gordan (579_CR11) 2016; 32
H Liang (579_CR27) 2017; 2017
P Wang (579_CR43) 2018; 26
F Huang (579_CR15) 2020; 9
References_xml – volume: 7
  start-page: 54305
  year: 2019
  end-page: 54311
  ident: CR49
  article-title: The application of long short-term memory(LSTM) method on displacement prediction of multifactor-induced landslides
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2912419
– volume: 23
  start-page: 983
  year: 2017
  end-page: 997
  ident: CR53
  article-title: A hybrid machine learning approach for additive manufacturing design feature recommendation
  publication-title: Rapid Prototyp J
  doi: 10.1108/rpj-03-2016-0041
– volume: 16
  start-page: 895
  year: 2018
  end-page: 919
  ident: CR57
  article-title: Deep distributed convolutional neural networks: Universality
  publication-title: Anal Appl
  doi: 10.1142/s0219530518500124
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: CR7
  article-title: support-vector networks
  publication-title: Mach Learn
  doi: 10.1023/a:1022627411411
– volume: 20
  start-page: 1
  year: 2019
  ident: CR46
  article-title: Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-019-0863-0
– volume: 59
  start-page: 556
  year: 2019
  end-page: 569
  ident: CR34
  article-title: An artificial neural network approach to inhomogeneous soil slope stability predictions based on limit analysis methods
  publication-title: Soils Found
  doi: 10.1016/j.sandf.2018.10.008
– volume: 32
  start-page: 85
  year: 2016
  end-page: 97
  ident: CR11
  article-title: Prediction of seismic slope stability through combination of particle swarm optimization and neural network
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0400-7
– volume: 103
  start-page: 3523
  year: 2020
  end-page: 3540
  ident: CR35
  article-title: Stability prediction of Himalayan residual soil slope using artificial neural network
  publication-title: Nat Hazards
  doi: 10.1007/s11069-020-04141-2
– volume: 17
  start-page: 2919
  year: 2020
  end-page: 2930
  ident: CR14
  article-title: Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model
  publication-title: Landslides
  doi: 10.1007/s10346-020-01473-9
– volume: 42
  start-page: 1823
  year: 2018
  end-page: 1839
  ident: CR33
  article-title: A hybrid ensemble method for improved prediction of slope stability
  publication-title: Int J Numer Anal Meth Geomech
  doi: 10.1002/nag.2834
– volume: 261
  start-page: 105278
  year: 2019
  ident: CR51
  article-title: Sequential excavation analysis of soil-rock-mixture slopes using an improved numerical manifold method with multiple layers of mathematical cover systems
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2019.105278
– volume: 20
  start-page: 6854
  year: 2020
  ident: CR56
  article-title: Hierarchical spatial-spectral feature extraction with long short term memory (LSTM) for mineral identification using hyperspectral imagery
  publication-title: Sensors (basel)
  doi: 10.3390/s20236854
– volume: 32
  start-page: 1069
  year: 2021
  end-page: 1078
  ident: CR16
  article-title: An updated database and spatial distribution of landslides triggered by the Milin, Tibet M(w)6.4 earthquake of 18 November 2017
  publication-title: J Earth Sci
  doi: 10.1007/s12583-021-1433-z
– year: 2022
  ident: CR5
  article-title: Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2022.07.009
– volume: 47
  start-page: 710
  year: 2017
  end-page: 725
  ident: CR19
  article-title: Quantitative risk assessment of slope failure in 2-D spatially variable soils by limit equilibrium method
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2017.03.048
– volume: 9
  start-page: 20387
  year: 2019
  ident: CR47
  article-title: Predicting effective diffusivity of porous media from images by deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56309-x
– volume: 156
  start-page: 498
  year: 2018
  end-page: 514
  ident: CR29
  article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.11.053
– volume: 128
  start-page: 336
  year: 2020
  end-page: 359
  ident: CR38
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-019-01228-7
– volume: 26
  start-page: 2086
  year: 2018
  end-page: 2095
  ident: CR43
  article-title: LSTM-based EEG classification in motor imagery tasks
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2018.2876129
– volume: 2017
  start-page: 211
  year: 2017
  ident: CR27
  article-title: Text feature extraction based on deep learning: a review
  publication-title: EURASIP J Wirel Commun Netw
  doi: 10.1186/s13638-017-0993-1
– volume: 31
  start-page: 1051
  year: 2020
  end-page: 1057
  ident: CR8
  article-title: A predictive, two-parameter model for the movement of reservoir landslides
  publication-title: J Earth Sci
  doi: 10.1007/s12583-020-1331-9
– volume: 189
  start-page: 116319
  year: 2019
  ident: CR2
  article-title: CNN based automatic detection of photovoltaic cell defects in electroluminescence images
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116319
– volume: 32
  start-page: 1056
  year: 2021
  end-page: 1068
  ident: CR12
  article-title: Landslides triggered by the 2020 Qiaojia M(w)5.1 earthquake, Yunnan, China: distribution, influence factors and tectonic significance
  publication-title: J Earth Sci
  doi: 10.1007/s12583-021-1492-1
– volume: 23
  start-page: 5913
  year: 2018
  end-page: 5929
  ident: CR22
  article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3253-3
– volume: 7
  start-page: 186
  year: 2014
  end-page: 193
  ident: CR24
  article-title: Determination of stability of epimetamorphic rock slope using minimax probability machine
  publication-title: Geomat Nat Haz Risk
  doi: 10.1080/19475705.2014.883440
– volume: 318
  start-page: 297
  year: 2018
  end-page: 305
  ident: CR41
  article-title: LSTM-based traffic flow prediction with missing data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.067
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 13
  ident: CR30
  article-title: Stability analysis of jointed rock slope by strength reduction technique considering ubiquitous joint model
  publication-title: Adv Civil Eng
  doi: 10.1155/2020/8862243
– volume: 8
  start-page: 395
  year: 2019
  ident: CR4
  article-title: Predicting slope stability failure through machine learning paradigms
  publication-title: ISPRS Int J Geo-Inf
  doi: 10.3390/ijgi8090395
– volume: 32
  start-page: 1092
  year: 2021
  end-page: 1103
  ident: CR9
  article-title: Active landslide detection based on sentinel-1 data and InSAR technology in Zhouqu county, Gansu Province, Northwest China
  publication-title: J Earth Sci
  doi: 10.1007/s12583-020-1380-0
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 11
  ident: CR50
  article-title: A time-aware CNN-based personalized recommender system
  publication-title: Complexity
  doi: 10.1155/2019/9476981
– volume: 36
  start-page: 325
  year: 2019
  end-page: 344
  ident: CR10
  article-title: A predictive model based on an optimized ANN combined with ICA for predicting the stability of slopes
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00702-7
– volume: 31
  start-page: 1068
  year: 2020
  end-page: 1086
  ident: CR39
  article-title: An optimized random forest model and its generalization ability in landslide susceptibility mapping: application in two areas of Three Gorges Reservoir, China
  publication-title: J Earth Sci
  doi: 10.1007/s12583-020-1072-9
– volume: 6
  start-page: 33
  year: 2020
  ident: CR45
  article-title: Classification and extent determination of rock slope using deep learning
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
  doi: 10.1007/s40948-020-00154-0
– volume: 32
  start-page: 15965
  year: 2019
  end-page: 15973
  ident: CR3
  article-title: Brain tumor detection: a long short-term memory (LSTM)-based learning model
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04650-7
– volume: 9
  start-page: 12
  issue: 1
  year: 2022
  ident: CR20
  article-title: Web pillar stability in open-pit highwall mining
  publication-title: Int J Coal Sci Technol
  doi: 10.1007/s40789-022-00483-3
– volume: 80
  start-page: 345
  year: 2020
  end-page: 352
  ident: CR52
  article-title: Stability analysis of slopes using the vector sum numerical manifold method
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-020-01903-x
– volume: 9
  start-page: 4638
  year: 2019
  ident: CR31
  article-title: Machine-learning-based classification approaches toward recognizing slope stability failure
  publication-title: Appl Sci
  doi: 10.3390/app9214638
– volume: 9
  start-page: 539
  year: 2020
  ident: CR15
  article-title: Regional terrain complexity assessment based on principal component analysis and geographic information system: a case of Jiangxi Province, China
  publication-title: ISPRS Int J Geo-Inf
  doi: 10.3390/ijgi9090539
– volume: 32
  start-page: 04017088
  year: 2018
  ident: CR42
  article-title: Stability condition identification of rock and soil cutting slopes based on soft computing
  publication-title: J Comput Civ Eng
  doi: 10.1061/(asce)cp.1943-5487.0000739
– volume: 60
  start-page: 387
  year: 2017
  end-page: 396
  ident: CR21
  article-title: Slope stability evaluation using Gaussian processes with various covariance functions
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.07.011
– volume: 23
  start-page: 617
  year: 2016
  end-page: 626
  ident: CR13
  article-title: Influencing factor analysis and displacement prediction in reservoir landslides: a case study of Three Gorges Reservoir (China)
  publication-title: Tehnički Vjesnik
– volume: 12
  start-page: 4075
  year: 2020
  ident: CR44
  article-title: Learning rotation domain deep mutual information using convolutional LSTM for unsupervised PolSAR image classification
  publication-title: Rem Sens
  doi: 10.3390/rs12244075
– volume: 7
  start-page: 45
  year: 2016
  end-page: 52
  ident: CR55
  article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2014.10.003
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: CR37
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– volume: 14
  start-page: 220
  year: 2021
  ident: CR40
  article-title: Rapid assessment of landslide risk level based on deep learning
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-021-06616-3
– volume: 9
  start-page: 38
  issue: 1
  year: 2022
  ident: CR48
  article-title: Stability analysis of rib pillars in highwall mining under dynamic and static loads in open-pit coal mine
  publication-title: Int J Coal Sci Technol
  doi: 10.1007/s40789-022-00504-1
– volume: 14
  start-page: 4436
  year: 2022
  ident: CR18
  article-title: Landslide susceptibility prediction considering neighborhood characteristics of landslide spatial datasets and hydrological slope units using remote sensing and GIS technologies
  publication-title: Rem Sens
  doi: 10.3390/rs14184436
– volume: 118
  start-page: 505
  year: 2019
  end-page: 518
  ident: CR58
  article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2019.05.046
– volume: 16
  start-page: 044006
  year: 2021
  ident: CR6
  article-title: An LSTM-based neural network method of particulate pollution forecast in China
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/abe1f5
– volume: 6
  start-page: 31169
  year: 2018
  end-page: 31179
  ident: CR28
  article-title: Prediction of slope stability using four supervised learning methods
  publication-title: IEEE Access
  doi: 10.1109/access.2018.2843787
– year: 2022
  ident: CR17
  article-title: Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2022.108236
– volume: 96
  start-page: 841
  year: 2020
  end-page: 848
  ident: CR54
  article-title: Precise evaluation method for the stability analysis of multi-scale slopes
  publication-title: Simulation
  doi: 10.1177/0037549720943274
– year: 2021
  ident: CR26
  article-title: Uncertainties of collapse susceptibility prediction based on remote sensing and GIS: effects of different machine learning models
  publication-title: Front Earth Sci
  doi: 10.3389/feart.2021.731058
– volume: 16
  start-page: 969
  year: 2019
  end-page: 982
  ident: CR32
  article-title: Landslide susceptibility mapping on the islands of Vulcano and Lipari (Aeolian Archipelago, Italy), using a multi-classification approach on conditioning factors and a modified GIS matrix method for areas lacking in a landslide inventory
  publication-title: Landslides
  doi: 10.1007/s10346-019-01148-0
– volume: 73
  start-page: 5463
  year: 2014
  end-page: 5477
  ident: CR1
  article-title: Prediction of minimum factor of safety against slope failure in clayey soils using artificial neural network
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3800-x
– volume: 8
  start-page: 149
  year: 2018
  end-page: 154
  ident: CR23
  article-title: A neural network model for slope stability computations
  publication-title: Géotechnique Letters
  doi: 10.1680/jgele.18.00022
– year: 2020
  ident: CR25
  article-title: Development of a probabilistic seismic performance assessment model of slope using machine learning methods
  publication-title: Sustainability
  doi: 10.3390/su12083269
– year: 2017
  ident: CR36
  article-title: A PSO-ANN hybrid model for predicting factor of safety of slope
  publication-title: Int J Geotech Eng
  doi: 10.1080/19386362.2017.1305652
– volume: 16
  start-page: 969
  year: 2019
  ident: 579_CR32
  publication-title: Landslides
  doi: 10.1007/s10346-019-01148-0
– volume: 32
  start-page: 85
  year: 2016
  ident: 579_CR11
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0400-7
– volume: 20
  start-page: 273
  year: 1995
  ident: 579_CR7
  publication-title: Mach Learn
  doi: 10.1023/a:1022627411411
– volume: 36
  start-page: 325
  year: 2019
  ident: 579_CR10
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00702-7
– volume: 8
  start-page: 149
  year: 2018
  ident: 579_CR23
  publication-title: Géotechnique Letters
  doi: 10.1680/jgele.18.00022
– volume: 8
  start-page: 395
  year: 2019
  ident: 579_CR4
  publication-title: ISPRS Int J Geo-Inf
  doi: 10.3390/ijgi8090395
– volume: 47
  start-page: 710
  year: 2017
  ident: 579_CR19
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2017.03.048
– volume: 80
  start-page: 345
  year: 2020
  ident: 579_CR52
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-020-01903-x
– year: 2017
  ident: 579_CR36
  publication-title: Int J Geotech Eng
  doi: 10.1080/19386362.2017.1305652
– volume: 2017
  start-page: 211
  year: 2017
  ident: 579_CR27
  publication-title: EURASIP J Wirel Commun Netw
  doi: 10.1186/s13638-017-0993-1
– volume: 96
  start-page: 841
  year: 2020
  ident: 579_CR54
  publication-title: Simulation
  doi: 10.1177/0037549720943274
– year: 2021
  ident: 579_CR26
  publication-title: Front Earth Sci
  doi: 10.3389/feart.2021.731058
– volume: 60
  start-page: 387
  year: 2017
  ident: 579_CR21
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.07.011
– volume: 7
  start-page: 54305
  year: 2019
  ident: 579_CR49
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2912419
– volume: 318
  start-page: 297
  year: 2018
  ident: 579_CR41
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.067
– volume: 6
  start-page: 31169
  year: 2018
  ident: 579_CR28
  publication-title: IEEE Access
  doi: 10.1109/access.2018.2843787
– volume: 23
  start-page: 617
  year: 2016
  ident: 579_CR13
  publication-title: Tehnički Vjesnik
– volume: 23
  start-page: 5913
  year: 2018
  ident: 579_CR22
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3253-3
– volume: 73
  start-page: 5463
  year: 2014
  ident: 579_CR1
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3800-x
– volume: 32
  start-page: 1056
  year: 2021
  ident: 579_CR12
  publication-title: J Earth Sci
  doi: 10.1007/s12583-021-1492-1
– volume: 7
  start-page: 186
  year: 2014
  ident: 579_CR24
  publication-title: Geomat Nat Haz Risk
  doi: 10.1080/19475705.2014.883440
– volume: 261
  start-page: 105278
  year: 2019
  ident: 579_CR51
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2019.105278
– volume: 16
  start-page: 044006
  year: 2021
  ident: 579_CR6
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/abe1f5
– volume: 189
  start-page: 116319
  year: 2019
  ident: 579_CR2
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116319
– volume: 32
  start-page: 1069
  year: 2021
  ident: 579_CR16
  publication-title: J Earth Sci
  doi: 10.1007/s12583-021-1433-z
– volume: 9
  start-page: 38
  issue: 1
  year: 2022
  ident: 579_CR48
  publication-title: Int J Coal Sci Technol
  doi: 10.1007/s40789-022-00504-1
– volume: 2019
  start-page: 1
  year: 2019
  ident: 579_CR50
  publication-title: Complexity
  doi: 10.1155/2019/9476981
– volume: 32
  start-page: 04017088
  year: 2018
  ident: 579_CR42
  publication-title: J Comput Civ Eng
  doi: 10.1061/(asce)cp.1943-5487.0000739
– year: 2022
  ident: 579_CR5
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2022.07.009
– volume: 23
  start-page: 983
  year: 2017
  ident: 579_CR53
  publication-title: Rapid Prototyp J
  doi: 10.1108/rpj-03-2016-0041
– volume: 26
  start-page: 2086
  year: 2018
  ident: 579_CR43
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2018.2876129
– volume: 6
  start-page: 33
  year: 2020
  ident: 579_CR45
  publication-title: Geomech Geophys Geo-Energy Geo-Resour
  doi: 10.1007/s40948-020-00154-0
– volume: 14
  start-page: 4436
  year: 2022
  ident: 579_CR18
  publication-title: Rem Sens
  doi: 10.3390/rs14184436
– volume: 31
  start-page: 1068
  year: 2020
  ident: 579_CR39
  publication-title: J Earth Sci
  doi: 10.1007/s12583-020-1072-9
– volume: 128
  start-page: 336
  year: 2020
  ident: 579_CR38
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-019-01228-7
– year: 2022
  ident: 579_CR17
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2022.108236
– volume: 9
  start-page: 20387
  year: 2019
  ident: 579_CR47
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56309-x
– volume: 31
  start-page: 1051
  year: 2020
  ident: 579_CR8
  publication-title: J Earth Sci
  doi: 10.1007/s12583-020-1331-9
– year: 2020
  ident: 579_CR25
  publication-title: Sustainability
  doi: 10.3390/su12083269
– volume: 9
  start-page: 539
  year: 2020
  ident: 579_CR15
  publication-title: ISPRS Int J Geo-Inf
  doi: 10.3390/ijgi9090539
– volume: 12
  start-page: 4075
  year: 2020
  ident: 579_CR44
  publication-title: Rem Sens
  doi: 10.3390/rs12244075
– volume: 61
  start-page: 85
  year: 2015
  ident: 579_CR37
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– volume: 7
  start-page: 45
  year: 2016
  ident: 579_CR55
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2014.10.003
– volume: 20
  start-page: 6854
  year: 2020
  ident: 579_CR56
  publication-title: Sensors (basel)
  doi: 10.3390/s20236854
– volume: 32
  start-page: 1092
  year: 2021
  ident: 579_CR9
  publication-title: J Earth Sci
  doi: 10.1007/s12583-020-1380-0
– volume: 118
  start-page: 505
  year: 2019
  ident: 579_CR58
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2019.05.046
– volume: 32
  start-page: 15965
  year: 2019
  ident: 579_CR3
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04650-7
– volume: 59
  start-page: 556
  year: 2019
  ident: 579_CR34
  publication-title: Soils Found
  doi: 10.1016/j.sandf.2018.10.008
– volume: 20
  start-page: 1
  year: 2019
  ident: 579_CR46
  publication-title: BMC Med Res Methodol
  doi: 10.1186/s12874-019-0863-0
– volume: 14
  start-page: 220
  year: 2021
  ident: 579_CR40
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-021-06616-3
– volume: 156
  start-page: 498
  year: 2018
  ident: 579_CR29
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.11.053
– volume: 16
  start-page: 895
  year: 2018
  ident: 579_CR57
  publication-title: Anal Appl
  doi: 10.1142/s0219530518500124
– volume: 42
  start-page: 1823
  year: 2018
  ident: 579_CR33
  publication-title: Int J Numer Anal Meth Geomech
  doi: 10.1002/nag.2834
– volume: 9
  start-page: 4638
  year: 2019
  ident: 579_CR31
  publication-title: Appl Sci
  doi: 10.3390/app9214638
– volume: 17
  start-page: 2919
  year: 2020
  ident: 579_CR14
  publication-title: Landslides
  doi: 10.1007/s10346-020-01473-9
– volume: 2020
  start-page: 1
  year: 2020
  ident: 579_CR30
  publication-title: Adv Civil Eng
  doi: 10.1155/2020/8862243
– volume: 103
  start-page: 3523
  year: 2020
  ident: 579_CR35
  publication-title: Nat Hazards
  doi: 10.1007/s11069-020-04141-2
– volume: 9
  start-page: 12
  issue: 1
  year: 2022
  ident: 579_CR20
  publication-title: Int J Coal Sci Technol
  doi: 10.1007/s40789-022-00483-3
SSID ssj0001492414
Score 2.5572112
Snippet The numerical simulation and slope stability prediction are the focus of slope disaster research. Recently, machine learning models are commonly used in the...
Abstract The numerical simulation and slope stability prediction are the focus of slope disaster research. Recently, machine learning models are commonly used...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18
SubjectTerms Deep learning
Disaster studies
Energy
Fossil Fuels (incl. Carbon Capture)
Geo-Studio software
Geotechnical Engineering & Applied Earth Sciences
Landslides
Long short-term memory
Machine learning
Machine learning model
Mineral Resources
Neural networks
Slope stability
Slope stability prediction
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEF1ViEM5oEKpGgrVHLiVFf72LjdARJwQUlspt9V-GYoSx4oDEj-q_7Ezayc1lQoXbpa9ljee8b43mdk3jB3pNCFRI8MpZcYzJwwXLpdce59adCnkAC40myivr8VkIm8Grb6oJqyTB-5e3ElUaowKiDeTdJyotIgrI51A6C-kqBytvlEpB8HUfcf7EZoopZwgh-ACQa3fMRP2zVHySnKEKx42Y_LsGSoF8f5njPOfJGnAnvEHtt2TRjjrJrvD3vl6l20NpAQ_st_fp_PGA3K9UO36BM2CUjD02oGQygEeaJjO61to75Bzc1qTYUaFtk9Aqpb4gLqrCT8Fu-5O2AL9UwtUnN47aRg3HN4eQ_vQEI-Hx5ADgFmo0PQt6NoBgqGbzwDJMf5ICJ132j32c3z54-KK960YuEXAWvLES4wsjHMYb2mPFNDHhcalUfrYO10l1pg8t6QdlvjCFEVpEmFlpoXOfZ67LP3ENup57T8zwJASzRaZTFuXuVgaZESRMFFWmsraMhuxeGUKZXudcmqXMVVrheVgPoXmU8F8Cu_5tr6n6VQ6Xhx9ThZejySF7XAC_U71fqde87sRO1j5h-o_-1ZR1jYNmncjdrzymb-X_z-l_beY0hf2PiGfDsU2B2xjuXjwh2zTPi5_tYuv4QP5A1NWEvc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QAH3oilBc2BG7XYZJ3E5lJR1IrTquIh9Wb5lYK0m4T1tlJ_FP-RGa93t0WiF25RYuehmcx84xl_w9hbMymJ1MhySplx4aXl0leKmxAmDlUKMYBPzSaa6VSenanTvOAWc1nl2iYmQ-17R2vk7ykhNkl0YofDL05doyi7mlto3GW7xFSGer57dDw9_bJdZcEJIhF8l4gluETnlnfOpP1zlMRSHN0WT5syubjhnRKJ_w3k-VeyNPmgk0f_-_aP2cOMPuHjSl2esDuhe8oeXOMkfMZ-f531QwAEjals9gqGBeVySH5ALs8DHhiY9d05xB8I3jkZd5hTxe4VED0mPqBbFZd_ALdpcxiBlnyBqtyztqdx14fHA4gXAwUEcJmSCTBPpZ4hguk8oFf1_RwQZeN3Q2rhE5-z7yfH3z595rmnA3fo-Za8DApDFOs9Bm4mIJYMRW3QxqpQBG_a0llbVY5IyMpQ27pubCmdEkaaKlSVF5MXbKfru_CSAcamsvVjK4zzwhfKIrQaSzsWjW2da8SIFWtZapcJz6nvxkxvqJqT_DXKXyf5a5zzbjNnWNF93Dr6iFRkM5KoutOJfnGu85-vx43BsJYCP-I-lK2RRWuVl4hda4UfMGL7a5XR2X5EvdWXETtYK9328r9f6dXtd9tj90tS91SPs892louL8Jrdc5fLn3HxJv89fwAAdSOz
  priority: 102
  providerName: ProQuest
Title Slope stability prediction based on a long short-term memory neural network: comparisons with convolutional neural networks, support vector machines and random forest models
URI https://link.springer.com/article/10.1007/s40789-023-00579-4
https://www.proquest.com/docview/2890354923
https://doaj.org/article/07a282174332408fa81fb9d8154698fd
Volume 10
WOSCitedRecordID wos000966734600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-7823
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001492414
  issn: 2095-8293
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2198-7823
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001492414
  issn: 2095-8293
  databaseCode: PCBAR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-7823
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001492414
  issn: 2095-8293
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-7823
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001492414
  issn: 2095-8293
  databaseCode: PIMPY
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 2198-7823
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001492414
  issn: 2095-8293
  databaseCode: C24
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BywEOvBGBEs2BG10pdvzY5UarVnAginhI5bTal1tQYkfZtFJ_FP-Rmc3atAiQ4BY542TtGe9845n5hrGXepoTqZHhlDLjhROGC1dKrr2fWjQpxAAuDpuoZzNxciLnqSks9NXufUoy7tRDsxtlnCRHH8NjByUvbrLdMhOSCvkOU4_Dty3mR7dE6eQc8QMX6NBSt8zvf-aaR4rE_dfQ5i8J0uh3ju_934rvs7sJZ8KbrWE8YDd8-5DducI--Ih9_7joVh4QHsYC2UtYrSlrQ5oCcm4O8IOGRdeeQjhDmM5pG4cl1eZeAhFh4h-02zLy12CHgYYB6OUuUD17susod1U87EM4XxH0h4uYNoBlLOr0AXTrAP2n65aAeBrvDcRhPeEx-3x89OnwLU_TG7hFH7fhuZcYjBjnMETTHlGjzyqNu6n0mXe6ya0xZWmJbiz3lamq2uTCykILXfqydMX0Cdtpu9Y_ZYBRqGjcxBTausJl0iCImggzKWrTWFsXI5b1GlQ2UZvThI2FGkiZoyoUqkJFVSg859VwzmpL7PFX6QMyjEGSSLnjgW59qtIzria1xgCWQjxiORSNFlljpBOIUiuJFzBie71ZqbRTBEWJ3mmkyRux_d6Mfn795yU9-zfx5-x2TpYYK3H22M5mfe5fsFv2YvM1rMds9-BoNv8wjk_SOL6YwGPzd-_nX34A35IcIw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFAk48EYECswBTnRF7PixRkKIV9WobRSJIpXTdl9uKyW2idOi_Cj4jcxs7KRForceuEXJ2nE23-x8szP7DWMvVT8kUSPNKWXGIys0FzbOuHKubxBSyAGsbzaRDofi4CAbrbHf7VkYKqts10S_UNvS0B75G0qI9b2c2PvqB6euUZRdbVtoLGCx4-Y_MWSr3w0-4__7Kgy3vux_2uZNVwFucO2d8dBlSJK1tRg6KIdsxgWJQivPXOCsykOjdRwbksEKXaKTJNWhMFmkhIpdHNuoj_e9xtYjAnuHrY8Ge6Pvq10dfMDIC4qHyF24QGfanNTx5_UoaZZxdJPcHwLl0QVv6JsGXGC6fyVnvc_buvO_zdZddrth1_BhYQ732Jor7rNb5zQXH7BfX8dl5QBJsS8LnkM1pVwV4RPIpVvAFwrGZXEE9TEGJ5ycF0yoInkOJP-JX1Asiuffglm2cayBtrSBqvgba_bjzg-vN6E-rSjggTOfLIGJL2V1NajCArIGW04AowicZ_AtiuqH7NuVzNcj1inKwj1mgLG3yG1PR8rYyAaZRurYE7oXpTo3Jo26LGixI00j6E59RcZyKUXt8SYRb9LjTeI1r5fXVAs5k0tHfyRILkeSFLl_o5weyWZlk71UYdhOgS1pO4pciSDXmRXIzZMMf0CXbbQQlc36WMsVPrtsswX56uN_P9KTy-_2gt3Y3t_blbuD4c5TdjMkU_O1RxusM5ueumfsujmbndTT543lAju8avj_AcLNgwc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6VFiE4lPISoYXOgRtdNXb82O2tFKKiVlElQOpttS-3oMS24rRSfxT_kZm1Y1IESBU3yx4nm8x45xvPzDeMvdWjmEiNDKeUGU-cMFy4VHLt_ciiSSEGcGHYRD6ZiPNzebbSxR-q3ZcpybangViaysV-7Yr9vvGNsk-So7_hoZuSJ_fYBp0jGz_q-h2-t_gfXRSllmPEElygc-s6Z_78Mbe8UyDxv4U8f0uWBh80fvz_q99imx3-hMPWYJ6wNV8-ZY9WWAmfsR-fp1XtAWFjKJy9gXpO2RzSIJDTc4AHGqZVeQHNJcJ3Tts7zKhm9waIIBO_oGzLyw_A9oMOG6CXvkB17p29B7lV8WYPmquaQgK4DukEmIViT9-ALh2gX3XVDBBn4_8EYYhP85x9HX_8cnTMu6kO3KLvW_DYSwxSjHMYummPaNJHmcZdVvrIO13E1pg0tURDFvvMZFluYmFlooVOfZq6ZPSCrZdV6V8ywOhUFG5oEm1d4iJpEFwNhRkmuSmszZMBi5baVLajPKfJG1PVkzUHVShUhQqqUHjPu_6euiX8-Kf0ezKSXpLIusOJan6humdfDXONgS2FfsR-KAotosJIJxC9ZhJ_wIDtLE1MdTtIoygBPAr0eQO2tzSpX5f_vqRXdxPfZQ_OPozV6afJyTZ7GJNRhmKdHba-mF_51-y-vV58a-ZvwoP1E-vlI6s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slope+stability+prediction+based+on+a+long+short-term+memory+neural+network%3A+comparisons+with+convolutional+neural+networks%2C+support+vector+machines+and+random+forest+models&rft.jtitle=International+journal+of+coal+science+%26+technology&rft.au=Huang%2C+Faming&rft.au=Xiong%2C+Haowen&rft.au=Chen%2C+Shixuan&rft.au=Lv%2C+Zhitao&rft.date=2023-12-01&rft.issn=2095-8293&rft.eissn=2198-7823&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1007%2Fs40789-023-00579-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40789_023_00579_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-8293&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-8293&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-8293&client=summon