Modeling photomolecular effect using generalized boundary conditions for Maxwell equations

We recently demonstrated via experiments in hydrogels and at a single air-water interface the photomolecular effect: photons directly cleaving off water molecular clusters in the visible spectrum where bulk water has negligible absorption. To model single interface experiments, here we re-derive gen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications physics Ročník 7; číslo 1; s. 330 - 10
Hlavní autor: Chen, Gang
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 10.10.2024
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2399-3650, 2399-3650
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We recently demonstrated via experiments in hydrogels and at a single air-water interface the photomolecular effect: photons directly cleaving off water molecular clusters in the visible spectrum where bulk water has negligible absorption. To model single interface experiments, here we re-derive generalized boundary conditions for Maxwell equations by assuming a transition region of the electromagnetic fields across the interface, leading naturally to the Feibelman parameters used before to describe surface photoelectric and surface plasmon effects on metals. This generalization leads to modifications of the Fresnel coefficients and an expression for the surface absorptance that can reasonably explain trends in our single-interface experimental data on the angle and polarization dependence of the beam deflection. Our work provides further support for the existence of the photomolecular effect, suggests that surface absorption should exist in many materials, and lays a foundation for assessing the impacts of such surface absorption based on the Maxwell equations. The newly discovered photomolecular effect reveals that photons can evaporate water clusters in the visible spectrum where bulk water absorbs little. This work generalizes boundary conditions for Maxwell’s equations with Feibelman parameters and presents modified Fresnel coefficients and interfacial absorptance predicting trends consistent with experiments.
AbstractList Abstract We recently demonstrated via experiments in hydrogels and at a single air-water interface the photomolecular effect: photons directly cleaving off water molecular clusters in the visible spectrum where bulk water has negligible absorption. To model single interface experiments, here we re-derive generalized boundary conditions for Maxwell equations by assuming a transition region of the electromagnetic fields across the interface, leading naturally to the Feibelman parameters used before to describe surface photoelectric and surface plasmon effects on metals. This generalization leads to modifications of the Fresnel coefficients and an expression for the surface absorptance that can reasonably explain trends in our single-interface experimental data on the angle and polarization dependence of the beam deflection. Our work provides further support for the existence of the photomolecular effect, suggests that surface absorption should exist in many materials, and lays a foundation for assessing the impacts of such surface absorption based on the Maxwell equations.
We recently demonstrated via experiments in hydrogels and at a single air-water interface the photomolecular effect: photons directly cleaving off water molecular clusters in the visible spectrum where bulk water has negligible absorption. To model single interface experiments, here we re-derive generalized boundary conditions for Maxwell equations by assuming a transition region of the electromagnetic fields across the interface, leading naturally to the Feibelman parameters used before to describe surface photoelectric and surface plasmon effects on metals. This generalization leads to modifications of the Fresnel coefficients and an expression for the surface absorptance that can reasonably explain trends in our single-interface experimental data on the angle and polarization dependence of the beam deflection. Our work provides further support for the existence of the photomolecular effect, suggests that surface absorption should exist in many materials, and lays a foundation for assessing the impacts of such surface absorption based on the Maxwell equations.The newly discovered photomolecular effect reveals that photons can evaporate water clusters in the visible spectrum where bulk water absorbs little. This work generalizes boundary conditions for Maxwell’s equations with Feibelman parameters and presents modified Fresnel coefficients and interfacial absorptance predicting trends consistent with experiments.
We recently demonstrated via experiments in hydrogels and at a single air-water interface the photomolecular effect: photons directly cleaving off water molecular clusters in the visible spectrum where bulk water has negligible absorption. To model single interface experiments, here we re-derive generalized boundary conditions for Maxwell equations by assuming a transition region of the electromagnetic fields across the interface, leading naturally to the Feibelman parameters used before to describe surface photoelectric and surface plasmon effects on metals. This generalization leads to modifications of the Fresnel coefficients and an expression for the surface absorptance that can reasonably explain trends in our single-interface experimental data on the angle and polarization dependence of the beam deflection. Our work provides further support for the existence of the photomolecular effect, suggests that surface absorption should exist in many materials, and lays a foundation for assessing the impacts of such surface absorption based on the Maxwell equations. The newly discovered photomolecular effect reveals that photons can evaporate water clusters in the visible spectrum where bulk water absorbs little. This work generalizes boundary conditions for Maxwell’s equations with Feibelman parameters and presents modified Fresnel coefficients and interfacial absorptance predicting trends consistent with experiments.
ArticleNumber 330
Author Chen, Gang
Author_xml – sequence: 1
  givenname: Gang
  orcidid: 0000-0002-3968-8530
  surname: Chen
  fullname: Chen, Gang
  email: gchen2@mit.edu
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology
BookMark eNp9kc1O3DAUhS0EUinwAl1F6jrl-idxvKwQLUggNu2mG8tOrgePjD3YiaDz9M1MEEUsWNm69nfO0T2fyWFMEQn5QuEbBd6dF8EAmhqYqIF2rK23B-SYcaVq3jZw-Ob-iZyVsgYARgVI3h6TP7dpwODjqtrcpzE9pID9FEyu0Dnsx2oqu7cVRswm-C0OlU1THEz-W_UpDn70KZbKpVzdmucnDKHCx8nsp6fkyJlQ8OzlPCG_f1z-uriqb-5-Xl98v6l7wdRYM8mBuUEyNBaoawxwq2TLe-FsZ1thGXMN5QOVjXIdSoPYogOQVriWG8pPyPWiOySz1pvsH-Z0Ohmv94OUV9rk0fcBNVWoDKOdYxaE49Ywy-blNUoAGOm6WevrorXJ6XHCMup1mnKc42tOacO4VN3OkS2_-pxKyeheXSnoXSV6qUTPleh9JXo7Q907qPfjflNjNj58jPIFLbNPXGH-n-oD6h_IMqO4
CitedBy_id crossref_primary_10_1039_D5EE01104C
crossref_primary_10_1364_OME_559374
crossref_primary_10_1115_1_4066899
crossref_primary_10_1073_pnas_2501121122
crossref_primary_10_1039_D4EE05591H
crossref_primary_10_1039_D5MH00353A
crossref_primary_10_1115_1_4067820
crossref_primary_10_1016_j_mtphys_2025_101861
Cites_doi 10.1103/PhysRevB.7.3464
10.2307/3578211
10.1103/PhysRevB.34.547
10.1103/PhysRevLett.115.193901
10.1038/s41467-023-38420-w
10.1016/0079-6816(82)90001-6
10.1073/pnas.2312751120
10.7498/aps.70.20211025
10.1143/JJAP.28.L1880
10.1103/PhysRevLett.54.1956
10.1038/s41467-019-13820-z
10.1116/1.580455
10.1038/s41565-018-0097-z
10.1039/C8EE00567B
10.1073/pnas.2320844121
10.1038/s41560-018-0260-7
10.1103/PhysRevB.14.762
10.1016/0039-6028(71)90272-X
10.1038/ncomms5449
10.1002/smll.201401071
10.1016/0039-6028(80)90599-3
10.1002/1521-3773(20010518)40:10<1808::AID-ANIE1808>3.0.CO;2-1
10.1103/PhysRevLett.34.1092
10.1038/s41586-019-1803-1
10.1103/PhysRevB.37.6711
10.1063/1.469505
10.1021/cr040377d
10.1080/00018737800101424
10.1063/1.473820
10.1103/PhysRevB.39.10714
10.1063/1.4945760
10.1007/978-1-4757-5107-9
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M2P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1038/s42005-024-01826-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2399-3650
EndPage 10
ExternalDocumentID oai_doaj_org_article_19e9a218f2b04f3ba2b242059400a7f8
10_1038_s42005_024_01826_z
GroupedDBID 0R~
88I
AAFWJ
AAJSJ
ABDBF
ABJCF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADMLS
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BCNDV
BENPR
BGLVJ
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
M2P
M7S
M~E
NAO
O9-
OK1
PIMPY
PTHSS
RNT
SNYQT
AASML
AAYXX
AFPKN
CITATION
3V.
7XB
8FE
8FG
8FK
AARCD
L6V
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c429t-27302fd72eab01f5a03b9763c4fb8b64b22f513d1759f8e7aee6ef007b4f63a13
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001329894200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2399-3650
IngestDate Tue Oct 14 19:02:48 EDT 2025
Wed Aug 13 06:57:37 EDT 2025
Sat Nov 29 06:39:14 EST 2025
Tue Nov 18 22:42:30 EST 2025
Fri Feb 21 02:37:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-27302fd72eab01f5a03b9763c4fb8b64b22f513d1759f8e7aee6ef007b4f63a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3968-8530
OpenAccessLink https://doaj.org/article/19e9a218f2b04f3ba2b242059400a7f8
PQID 3115237981
PQPubID 4669724
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_19e9a218f2b04f3ba2b242059400a7f8
proquest_journals_3115237981
crossref_primary_10_1038_s42005_024_01826_z
crossref_citationtrail_10_1038_s42005_024_01826_z
springer_journals_10_1038_s42005_024_01826_z
PublicationCentury 2000
PublicationDate 2024-10-10
PublicationDateYYYYMMDD 2024-10-10
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Communications physics
PublicationTitleAbbrev Commun Phys
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Tu (CR1) 2023; 120
Yang (CR32) 2019; 576
Shi, Agnihotri, Chen, Black, Singer (CR35) 2016; 144
Eryiğit, Marschel, Herman (CR22) 1997; 15
Jin (CR30) 2015; 115
Feibelman (CR26) 1976; 14
Kempa, Schaich (CR28) 1986; 34
CR15
Stillinger (CR16) 1980; 209
Alejandre, Tildesley, Chapela (CR10) 1995; 102
Aspnes, Studna (CR20) 1985; 54
CR36
Shen, Ostroverkhov (CR13) 2006; 106
Zhou, Zhao, Guo, Zhang, Yu (CR4) 2018; 11
Gonçalves (CR34) 2020; 11
Tao (CR7) 2018; 3
Endriz (CR24) 1973; 7
Wang (CR6) 2014; 10
Kempa, Schaich (CR27) 1988; 37
Ludwig (CR12) 2001; 40
Schaich, Chen (CR31) 1989; 39
Mcintyre, Aspnes (CR19) 1971; 24
Kobayashi, Horikoshi (CR21) 1989; 28
Zhao (CR3) 2018; 13
Lai, Chen, Mou, Wang (CR33) 2021; 70
Ghasemi (CR5) 2014; 5
Lv, Tu, Zhang, Chen (CR2) 2024; 121
CR8
CR9
Gerischer, Kolb, Sass (CR23) 1978; 27
Kliewer (CR29) 1980; 101
Feibelman (CR14) 1982; 12
Laverne, Mozumder (CR17) 1993; 133
Feibelman (CR25) 1975; 34
Reshetnyak, Lorin, Pasquarello (CR18) 2023; 14
Dang, Chang (CR11) 1997; 106
KL Kliewer (1826_CR29) 1980; 101
P Tao (1826_CR7) 2018; 3
B Shi (1826_CR35) 2016; 144
G Lv (1826_CR2) 2024; 121
I Reshetnyak (1826_CR18) 2023; 14
PJ Feibelman (1826_CR25) 1975; 34
R Ludwig (1826_CR12) 2001; 40
K Kempa (1826_CR28) 1986; 34
H Gerischer (1826_CR23) 1978; 27
K Kempa (1826_CR27) 1988; 37
PAD Gonçalves (1826_CR34) 2020; 11
D Jin (1826_CR30) 2015; 115
R Eryiğit (1826_CR22) 1997; 15
JG Endriz (1826_CR24) 1973; 7
H Ghasemi (1826_CR5) 2014; 5
J Alejandre (1826_CR10) 1995; 102
YC Lai (1826_CR33) 2021; 70
Z Wang (1826_CR6) 2014; 10
WL Schaich (1826_CR31) 1989; 39
Y Yang (1826_CR32) 2019; 576
DE Aspnes (1826_CR20) 1985; 54
PJ Feibelman (1826_CR26) 1976; 14
N Kobayashi (1826_CR21) 1989; 28
JDE Mcintyre (1826_CR19) 1971; 24
Y Tu (1826_CR1) 2023; 120
X Zhou (1826_CR4) 2018; 11
LX Dang (1826_CR11) 1997; 106
1826_CR36
1826_CR15
PJ Feibelman (1826_CR14) 1982; 12
1826_CR9
JA Laverne (1826_CR17) 1993; 133
1826_CR8
YR Shen (1826_CR13) 2006; 106
FH Stillinger (1826_CR16) 1980; 209
F Zhao (1826_CR3) 2018; 13
References_xml – volume: 7
  start-page: 15
  year: 1973
  ident: CR24
  article-title: Calculation of the surface photoelectric effect
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.7.3464
– volume: 133
  start-page: 282
  year: 1993
  end-page: 288
  ident: CR17
  publication-title: Radiat. Res.
  doi: 10.2307/3578211
– volume: 34
  start-page: 547
  year: 1986
  end-page: 557
  ident: CR28
  article-title: Calculation of corrections to Fresnel optics from density response
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.34.547
– volume: 115
  start-page: 193901
  year: 2015
  ident: CR30
  article-title: Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.193901
– volume: 14
  year: 2023
  ident: CR18
  article-title: Many-body screening effects in liquid water
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38420-w
– volume: 12
  start-page: 287
  year: 1982
  end-page: 408
  ident: CR14
  publication-title: Progr. Surf. Sci.
  doi: 10.1016/0079-6816(82)90001-6
– volume: 120
  year: 2023
  ident: CR1
  article-title: Plausible photomolecular effect leading to water evaporation exceeding the thermal limit
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2312751120
– volume: 70
  start-page: 230301
  year: 2021
  ident: CR33
  article-title: Nanoscale electromagnetic boundary conditions based on Maxwell’s equations
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.70.20211025
– volume: 28
  start-page: 1880
  year: 1989
  ident: CR21
  article-title: Optical investigation on growth process of GaAs during migration-enhanced epitaxy
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.28.L1880
– volume: 54
  start-page: 1956
  year: 1985
  end-page: 1959
  ident: CR20
  article-title: Anisotropies in the above-band-gap optical spectra of cubic semiconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.54.1956
– volume: 11
  year: 2020
  ident: CR34
  article-title: Plasmon–emitter interactions at the nanoscale
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13820-z
– volume: 15
  start-page: 138
  year: 1997
  end-page: 144
  ident: CR22
  article-title: Use of surface photoabsorption to analyze the optical response of GaAs(001) surfaces
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.580455
– volume: 13
  start-page: 489
  year: 2018
  end-page: 495
  ident: CR3
  article-title: Highly efficient solar vapour generation via hierarchically nanostructured gels
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0097-z
– ident: CR8
– volume: 11
  start-page: 1985
  year: 2018
  end-page: 1992
  ident: CR4
  article-title: A hydrogel-based antifouling solar evaporator for highly efficient water desalination
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00567B
– volume: 121
  year: 2024
  ident: CR2
  article-title: Photomolecular effect: visible light interaction with air-water interface
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2320844121
– volume: 3
  start-page: 1031
  year: 2018
  end-page: 1041
  ident: CR7
  article-title: Solar-driven interfacial evaporation
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0260-7
– volume: 209
  start-page: 451
  year: 1980
  end-page: 457
  ident: CR16
  article-title: Water revisited
  publication-title: Science (1979)
– ident: CR15
– volume: 14
  start-page: 762
  year: 1976
  end-page: 771
  ident: CR26
  article-title: Exact microscopic theory of surface contributions to the reflectivity of a jellium solid
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.14.762
– volume: 24
  start-page: 417
  year: 1971
  end-page: 434
  ident: CR19
  article-title: Differential reflectance spectroscopy of very thin surface films
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(71)90272-X
– volume: 5
  start-page: 1
  year: 2014
  end-page: 7
  ident: CR5
  article-title: Solar steam generation by heat localization
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5449
– volume: 10
  start-page: 3234
  year: 2014
  end-page: 3239
  ident: CR6
  article-title: Bio-inspired evaporation through plasmonic film of nanoparticles at the air–water interface
  publication-title: Small
  doi: 10.1002/smll.201401071
– volume: 101
  start-page: 57
  year: 1980
  end-page: 83
  ident: CR29
  article-title: Electromagnetic effects at metal surfaces; a nonlocal view
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(80)90599-3
– ident: CR9
– volume: 40
  start-page: 1808
  year: 2001
  end-page: 1827
  ident: CR12
  article-title: Water: from clusters to the bulk
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20010518)40:10<1808::AID-ANIE1808>3.0.CO;2-1
– ident: CR36
– volume: 34
  start-page: 1092
  year: 1975
  end-page: 1095
  ident: CR25
  article-title: Self-consistent calculation of the surface photoelectric effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.34.1092
– volume: 576
  start-page: 248
  year: 2019
  end-page: 252
  ident: CR32
  article-title: A general theoretical and experimental framework for nanoscale electromagnetism
  publication-title: Nature
  doi: 10.1038/s41586-019-1803-1
– volume: 37
  start-page: 6711
  year: 1988
  end-page: 6716
  ident: CR27
  article-title: Nonlocal corrections to Fresnel optics: Model calculations from first principles for flat jellium
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.6711
– volume: 102
  start-page: 4574
  year: 1995
  end-page: 4583
  ident: CR10
  article-title: Molecular dynamics simulation of the orthobaric densities and surface tension of water
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469505
– volume: 106
  start-page: 1140
  year: 2006
  end-page: 1154
  ident: CR13
  article-title: Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces
  publication-title: Chem. Rev.
  doi: 10.1021/cr040377d
– volume: 27
  start-page: 437
  year: 1978
  end-page: 498
  ident: CR23
  article-title: The study of solid surfaces by electrochemical methods
  publication-title: Adv. Phys.
  doi: 10.1080/00018737800101424
– volume: 106
  start-page: 8149
  year: 1997
  end-page: 8159
  ident: CR11
  article-title: Molecular dynamics study of water clusters, liquid, and liquid-vapor interface of water with many-body potentials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473820
– volume: 39
  start-page: 10714
  year: 1989
  end-page: 10724
  ident: CR31
  article-title: Nonlocal corrections to Fresnel optics: how to extend d-parameter theory beyond jellium models
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.10714
– volume: 144
  start-page: 164702
  year: 2016
  ident: CR35
  article-title: Polarization charge: Theory and applications to aqueous interfaces
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4945760
– volume: 115
  start-page: 193901
  year: 2015
  ident: 1826_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.193901
– volume: 39
  start-page: 10714
  year: 1989
  ident: 1826_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.10714
– volume: 27
  start-page: 437
  year: 1978
  ident: 1826_CR23
  publication-title: Adv. Phys.
  doi: 10.1080/00018737800101424
– volume: 101
  start-page: 57
  year: 1980
  ident: 1826_CR29
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(80)90599-3
– volume: 102
  start-page: 4574
  year: 1995
  ident: 1826_CR10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469505
– volume: 14
  start-page: 762
  year: 1976
  ident: 1826_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.14.762
– volume: 106
  start-page: 8149
  year: 1997
  ident: 1826_CR11
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473820
– volume: 11
  year: 2020
  ident: 1826_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13820-z
– ident: 1826_CR8
– volume: 144
  start-page: 164702
  year: 2016
  ident: 1826_CR35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4945760
– volume: 209
  start-page: 451
  year: 1980
  ident: 1826_CR16
  publication-title: Science (1979)
– volume: 28
  start-page: 1880
  year: 1989
  ident: 1826_CR21
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.28.L1880
– volume: 34
  start-page: 1092
  year: 1975
  ident: 1826_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.34.1092
– volume: 5
  start-page: 1
  year: 2014
  ident: 1826_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5449
– ident: 1826_CR15
  doi: 10.1007/978-1-4757-5107-9
– volume: 10
  start-page: 3234
  year: 2014
  ident: 1826_CR6
  publication-title: Small
  doi: 10.1002/smll.201401071
– volume: 133
  start-page: 282
  year: 1993
  ident: 1826_CR17
  publication-title: Radiat. Res.
  doi: 10.2307/3578211
– volume: 34
  start-page: 547
  year: 1986
  ident: 1826_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.34.547
– volume: 54
  start-page: 1956
  year: 1985
  ident: 1826_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.54.1956
– volume: 7
  start-page: 15
  year: 1973
  ident: 1826_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.7.3464
– volume: 24
  start-page: 417
  year: 1971
  ident: 1826_CR19
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(71)90272-X
– volume: 576
  start-page: 248
  year: 2019
  ident: 1826_CR32
  publication-title: Nature
  doi: 10.1038/s41586-019-1803-1
– volume: 106
  start-page: 1140
  year: 2006
  ident: 1826_CR13
  publication-title: Chem. Rev.
  doi: 10.1021/cr040377d
– volume: 3
  start-page: 1031
  year: 2018
  ident: 1826_CR7
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0260-7
– volume: 15
  start-page: 138
  year: 1997
  ident: 1826_CR22
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.580455
– volume: 14
  year: 2023
  ident: 1826_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38420-w
– volume: 121
  year: 2024
  ident: 1826_CR2
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2320844121
– volume: 70
  start-page: 230301
  year: 2021
  ident: 1826_CR33
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.70.20211025
– ident: 1826_CR36
– ident: 1826_CR9
– volume: 12
  start-page: 287
  year: 1982
  ident: 1826_CR14
  publication-title: Progr. Surf. Sci.
  doi: 10.1016/0079-6816(82)90001-6
– volume: 11
  start-page: 1985
  year: 2018
  ident: 1826_CR4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00567B
– volume: 40
  start-page: 1808
  year: 2001
  ident: 1826_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20010518)40:10<1808::AID-ANIE1808>3.0.CO;2-1
– volume: 37
  start-page: 6711
  year: 1988
  ident: 1826_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.6711
– volume: 120
  year: 2023
  ident: 1826_CR1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2312751120
– volume: 13
  start-page: 489
  year: 2018
  ident: 1826_CR3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0097-z
SSID ssj0002140736
Score 2.3224509
Snippet We recently demonstrated via experiments in hydrogels and at a single air-water interface the photomolecular effect: photons directly cleaving off water...
Abstract We recently demonstrated via experiments in hydrogels and at a single air-water interface the photomolecular effect: photons directly cleaving off...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 330
SubjectTerms 639/624/400/1100
639/766/400/1100
Absorptance
Absorption
Absorptivity
Boundary conditions
Electromagnetic fields
Maxwell's equations
Molecular clusters
Parameter modification
Photoelectricity
Photons
Physics
Physics and Astronomy
Trends
Visible spectrum
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BlgMXHgLEloJ84AZRY8ebOCdEUSsurCoEUsXF8nOpBJvtZkHt_npmHGerItEL17xkZcaez56Z7wN4jashN21Nbb98VkgpfGEb5YtQR-VkTZJwNolNNPO5OjtrT_OBW5_LKsc1MS3UvnN0Rn5IrDCialrF360uClKNouxqltC4C3vEVCYnsHd0PD_9vDtlEbh_aCg_uT_0l6vDXibyTQxNuItGbF1sb0SkRNx_A23-lSBNcefk4f-O-BE8yIiTvR9c5DHcCcsn8I000KgTna2-d5vu5yiSy4b6Dkbl8Au2GDipz7fBM5v0l9ZXDDfQfqjzYgh42SdzSed_LFwMpOH9U_h6cvzlw8ciyywUDoPRhppzShF9I4KxJY8zU1YWQUrlZLTK1tIKEWe88gg02qhCY0KoQ0RsYWWsK8OrZzBZdsvwHJiKyiMANG2sEQlKZ13dxsjb4HjjnZpNgY-_WrvMQU5SGD90yoVXSg_m0Wgencyjt1N4s3tnNTBw3Pr0EVlw9ySxZ6cL3Xqh82TUOKDWILaJwpYyVtYIi0iFmGvK0jRRTeFgtKjOU7rX1-acwtvRJ65v_3tI-7d_7QXcF-SNVCVTHsBks_4VXsI993tz3q9fZYf-A-Em_ao
  priority: 102
  providerName: ProQuest
Title Modeling photomolecular effect using generalized boundary conditions for Maxwell equations
URI https://link.springer.com/article/10.1038/s42005-024-01826-z
https://www.proquest.com/docview/3115237981
https://doaj.org/article/19e9a218f2b04f3ba2b242059400a7f8
Volume 7
WOSCitedRecordID wos001329894200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2399-3650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140736
  issn: 2399-3650
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ5cAFgQpi-ZIPvZWI2PHGzrGgReWwq6hQiXKxbMcGpLILu9uq7IHfzoyd5aMS7YWLD7EjWeOJ5zmeeY-QT7AbMlOVWPbLupkQvMmsVE3my6CcKFESzkaxCTkYqPPzqn4h9YU5YYkeOBnugFW-MhCHAre5CIU13EJUQZaRPDcyxDJfQD0vDlO4B3M4N0i8l9xKdeXqYCIi6SaEJDg9A6bOZq8iUSTsf4Uy_7oYjfHmeJWstECRfkkTXCMLfviRXKB0GRaQ09ur0XR0M9e2pSktg2IW-yW9TFTS1zPfUBtlk8b3FM69TUrPooBTad_8wd921N8lru_JOvl-3Ds7-pq16giZgxgyxZqanIdGcm9szkLX5IUFbFE4EayypbCchy4rGsAHVVBeGu9LHwASWBHKwrBigywOR0O_SagKqgHcZqpQAoATzrqyCgEs75hsnOp2CJtbSruWOhwVLH7qeIVdKJ2sq8G6OlpXzzrk89M7t4k445-jD3EBnkYi6XV8AK6gW1fQ_3OFDtmZL59uv8SJRjYhXshKsQ7Zny_pc_fbU9p6jyltk2WOLocpMPkOWZyOf_ldsuR-T68n4z3y4bA3qL_tRd-Fts9rbOUptg896K9P-vWPR1v28-U
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VFAkuPASoKQV8gBOsuva-vAdUUaBq1CbKoUiFi7G9dqgE2TQboM2P4jd2Zh-pikRvPXDd9Vr2-vPM2PP4AF6iNOQ6TyntlydBHIsiMJksApd6aeOUKOFMTTaRjUby-Dgfr8GfLheGwio7mVgL6qK0dEe-TVVhRJTlku_MTgNijSLvakeh0cDiwJ3_xiNb9XbwAdf3lRB7H4_e7wctq0BgUfYuKBclFL7IhNMm5D7RYWRQJ0c29kaaNDZC-IRHBerV3EuXaedS51GVmtinkeYR9nsL1nFaiezB-ngwHH9e3eoIPK9k5A_dbPLZ5XYV18U-URXiqR1t-WB5RQPWRAFXrNu_HLK1ntu7_7_9oQdwr7Wo2btmCzyENTd9BF-I440y7dnsW7kof3QkwKyJX2EU7j9hk6bm9snSFczU_FLzc2ZL8uLTbmRo0LOhPqP7TeZOm6Lo1WP4dCPTeQK9aTl1G8CklwUauDr3KVq6sTU2zb3nubM8K6xM-sC7pVW2rbFOVB_fVe3rj6Rq4KAQDqqGg1r24fXqm1lTYeTa1ruEmFVLqg5ePyjnE9UKG4UDyjXabl6YMPaR0cKgJUaVecJQZ172YatDkGpFVqUu4dOHNx0GL1__e0ib1_f2Au7sHw0P1eFgdPAU7graCRQRFG5BbzH_6Z7BbftrcVLNn7ebicHXm0bnBbUOWwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+photomolecular+effect+using+generalized+boundary+conditions+for+Maxwell+equations&rft.jtitle=Communications+physics&rft.au=Gang+Chen&rft.date=2024-10-10&rft.pub=Nature+Portfolio&rft.eissn=2399-3650&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs42005-024-01826-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_19e9a218f2b04f3ba2b242059400a7f8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3650&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3650&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3650&client=summon