An inertially constructed forward–backward splitting algorithm in Hilbert spaces
In this paper, we develop an iterative algorithm whose architecture comprises a modified version of the forward–backward splitting algorithm and the hybrid shrinking projection algorithm. We provide theoretical results concerning weak and strong convergence of the proposed algorithm towards a common...
Uloženo v:
| Vydáno v: | Advances in difference equations Ročník 2021; číslo 1; s. 1 - 23 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
24.02.2021
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1687-1847, 1687-1839, 1687-1847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we develop an iterative algorithm whose architecture comprises a modified version of the forward–backward splitting algorithm and the hybrid shrinking projection algorithm. We provide theoretical results concerning weak and strong convergence of the proposed algorithm towards a common solution of the fixed point problem associated to a finite family of demicontractive operators, the split equilibrium problem and the monotone inclusion problem in Hilbert spaces. Moreover, we compute a numerical experiment to show the efficiency of the proposed algorithm. As a consequence, our results improve various existing results in the current literature. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-1847 1687-1839 1687-1847 |
| DOI: | 10.1186/s13662-021-03277-0 |