Some fractional calculus findings associated with the incomplete I-functions
In this article, several interesting properties of the incomplete I -functions associated with the Marichev–Saigo–Maeda (MSM) fractional operators are studied and investigated. It is presented that the order of the incomplete I -functions increases about the utilization of the above-mentioned operat...
Uloženo v:
| Vydáno v: | Advances in difference equations Ročník 2020; číslo 1; s. 1 - 24 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
04.06.2020
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 1687-1847, 1687-1839, 1687-1847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this article, several interesting properties of the incomplete
I
-functions associated with the Marichev–Saigo–Maeda (MSM) fractional operators are studied and investigated. It is presented that the order of the incomplete
I
-functions increases about the utilization of the above-mentioned operators toward the power multiple of the incomplete
I
-functions. Further, the Caputo-type MSM fractional order differentiation for the incomplete
I
-functions is studied and investigated. Saigo, Riemann–Liouville, and Erdélyi–Kober fractional operators are also discussed as specific cases. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-1847 1687-1839 1687-1847 |
| DOI: | 10.1186/s13662-020-02725-7 |