Spectrum sensing in cognitive radio networks: threshold optimization and analysis
Cognitive radio is a technology developed for the effective use of radio spectrum sources. The spectrum sensing function plays a key role in the performance of cognitive radio networks. In this study, a new threshold determination method based on online learning algorithm is proposed to increase the...
Gespeichert in:
| Veröffentlicht in: | EURASIP journal on wireless communications and networking Jg. 2020; H. 1; S. 1 - 19 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
12.12.2020
Springer Nature B.V SpringerOpen |
| Schlagworte: | |
| ISSN: | 1687-1499, 1687-1472, 1687-1499 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cognitive radio is a technology developed for the effective use of radio spectrum sources. The spectrum sensing function plays a key role in the performance of cognitive radio networks. In this study, a new threshold determination method based on online learning algorithm is proposed to increase the spectrum sensing performance of spectrum sensing methods and to minimize the total error probability. The online learning algorithm looks for the optimum decision threshold, which is the most important parameter to decide the presence or absence of the primary user, using historical detection data. Energy detection- and matched filter-based spectrum sensing methods are discussed in detail. The performance of the proposed algorithm was tested over non-fading and different fading channels for low signal-to-noise ratio regime with noise uncertainty. In the conclusion of the simulation studies, improvement in spectrum sensing performance according to optimal threshold selection was observed. |
|---|---|
| AbstractList | Cognitive radio is a technology developed for the effective use of radio spectrum sources. The spectrum sensing function plays a key role in the performance of cognitive radio networks. In this study, a new threshold determination method based on online learning algorithm is proposed to increase the spectrum sensing performance of spectrum sensing methods and to minimize the total error probability. The online learning algorithm looks for the optimum decision threshold, which is the most important parameter to decide the presence or absence of the primary user, using historical detection data. Energy detection- and matched filter-based spectrum sensing methods are discussed in detail. The performance of the proposed algorithm was tested over non-fading and different fading channels for low signal-to-noise ratio regime with noise uncertainty. In the conclusion of the simulation studies, improvement in spectrum sensing performance according to optimal threshold selection was observed. Abstract Cognitive radio is a technology developed for the effective use of radio spectrum sources. The spectrum sensing function plays a key role in the performance of cognitive radio networks. In this study, a new threshold determination method based on online learning algorithm is proposed to increase the spectrum sensing performance of spectrum sensing methods and to minimize the total error probability. The online learning algorithm looks for the optimum decision threshold, which is the most important parameter to decide the presence or absence of the primary user, using historical detection data. Energy detection- and matched filter-based spectrum sensing methods are discussed in detail. The performance of the proposed algorithm was tested over non-fading and different fading channels for low signal-to-noise ratio regime with noise uncertainty. In the conclusion of the simulation studies, improvement in spectrum sensing performance according to optimal threshold selection was observed. |
| ArticleNumber | 255 |
| Author | kockaya, Kenan Develi, Ibrahim |
| Author_xml | – sequence: 1 givenname: Kenan orcidid: 0000-0002-5253-1511 surname: kockaya fullname: kockaya, Kenan email: kkockaya@cumhuriyet.edu.tr organization: Department of Divriği Nuri Demirağ Vocational High School, Sivas Cumhuriyet University – sequence: 2 givenname: Ibrahim orcidid: 0000-0001-5878-677X surname: Develi fullname: Develi, Ibrahim organization: Department of Electrical and Electronics Engineering, Erciyes University |
| BookMark | eNp9kVtLHTEUhYNYqFr_QJ8GfJ4290vfRHoRhFLU57AnkxxznJOcJjkt-uudnila-uDDJpuwv7V2so7RYcrJI_Se4A-EaPmxEiaZ7jHFPSZa4V4doCMiteoJN-bwn_4tOq51jTFj3NAj9ON6610ru01XfaoxrbqYOpdXKbb4y3cFxpi75NvvXO7rp67dFV_v8jR2edviJj5Cizl1kMa5YHqosb5DbwJM1Z_-PU_Q7ZfPNxff-qvvXy8vzq96x6lpPRWDciMwwahgxFHFR0oGqc1A5GDUgKUAogjjMgSqgwIIA_eD4J55IUJgJ-hy0R0zrO22xA2UB5sh2v1FLisLpUU3eauMUUYIgzFozjQHNoAxGkZOgwOvZ62zRWtb8s-dr82u867MD6qWcsUYw0rKeYouU67kWosPz64E2z8x2CUGO8dg9zFYNUP6P8jFtv-1ViBOr6NsQevsk1a-vGz1CvUEun2eqw |
| CitedBy_id | crossref_primary_10_1007_s11277_023_10788_4 crossref_primary_10_1155_2022_7941978 crossref_primary_10_1155_2022_2656797 crossref_primary_10_1007_s11277_024_11608_z crossref_primary_10_3390_s22176692 crossref_primary_10_1007_s11042_025_20638_z crossref_primary_10_1109_ACCESS_2023_3279236 crossref_primary_10_1016_j_phycom_2024_102321 crossref_primary_10_1155_2023_7225260 crossref_primary_10_3390_electronics12010138 crossref_primary_10_1038_s41598_025_16414_6 crossref_primary_10_1080_03772063_2025_2547995 crossref_primary_10_3390_drones7010018 crossref_primary_10_3390_electronics12040954 crossref_primary_10_3390_s23187792 crossref_primary_10_3390_s23146480 crossref_primary_10_1186_s13638_024_02338_8 crossref_primary_10_12688_f1000research_144624_2 crossref_primary_10_12688_f1000research_144624_1 crossref_primary_10_1007_s11760_024_03555_w crossref_primary_10_1109_LWC_2021_3133883 crossref_primary_10_26552_com_C_2025_003 crossref_primary_10_1016_j_compeleceng_2024_109708 crossref_primary_10_3103_S0735272723050023 crossref_primary_10_1109_JSEN_2024_3512541 crossref_primary_10_1109_LSENS_2022_3180629 crossref_primary_10_1155_jece_9506922 crossref_primary_10_1080_00051144_2025_2460879 crossref_primary_10_1002_dac_70053 crossref_primary_10_1142_S0219649225500261 |
| Cites_doi | 10.1109/PIMRC.2004.1368338 10.1109/MILCOM.2012.6415704 10.1016/j.proeng.2012.06.111 10.25103/jestr.102.14 10.1109/ICCCE.2012.6271342 10.1049/iet-com.2011.0506 10.1109/JSAC.2013.131118 10.1109/GlobalSIP.2014.7032326 10.1049/iet-com.2011.0269 10.1109/ICC.2008.781 10.1109/WIRLES.2005.1549453 10.1109/TW.2013.060413.121814 10.1109/ICASET.2018.8376914 10.1109/TCOMM.2011.071111.090349 10.1155/2017/2895680 10.1109/ICASSP.2013.6638502 10.1109/CROWNCOM.2006.363459 10.1016/j.procs.2016.07.200 10.1109/TCOMM.2009.06.070402 10.1109/TWC.2011.012411.100611 10.1109/79.81007 10.1049/cp:20070306 10.1109/ISCC.2012.6249377 10.1109/ICASSP.2012.6288583 10.5120/ijca2017914503 10.1109/LCOMM.2009.090169 10.1016/j.aeue.2017.11.005 10.1109/TWC.2014.2372756 10.1109/PROC.1967.5573 10.1109/TCOMM.2006.887483 10.1109/ICCICCT.2015.7475239 10.1080/21681724.2013.773849 10.1109/SURV.2009.090109 10.1186/1687-1499-2012-28 10.1109/98.788210 10.1109/CCWC.2018.8301619 10.1109/AFRCON.2011.6072009 10.1109/VTCFall.2012.6399372 10.1109/ICTEL.2010.5478783 10.1109/JSAC.2013.131120 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
| DOI | 10.1186/s13638-020-01870-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1687-1499 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_7997955900a84384a3ba998ad42fcae8 10_1186_s13638_020_01870_7 |
| GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABFTD ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADDVE ADINQ ADMLS AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EAD EAP EAS EBLON EBS EDO EMK ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ I-F K6V K7- KQ8 M0N M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X RHU RNS RSV SEG SOJ TUS U2A XSB AASML AAYXX CITATION OVT 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c429t-25b7cda3532531c274d21b689b16b97b065a171346ff28f7aafb4eb54e3e55ff3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598073200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1687-1499 1687-1472 |
| IngestDate | Thu Oct 09 06:49:21 EDT 2025 Sat Oct 11 05:47:17 EDT 2025 Tue Nov 18 20:51:21 EST 2025 Sat Nov 29 01:43:54 EST 2025 Fri Feb 21 02:35:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Spectrum sensing Energy detection Machine learning algorithm Threshold Online learning algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-25b7cda3532531c274d21b689b16b97b065a171346ff28f7aafb4eb54e3e55ff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5878-677X 0000-0002-5253-1511 |
| OpenAccessLink | https://doaj.org/article/7997955900a84384a3ba998ad42fcae8 |
| PQID | 2473330766 |
| PQPubID | 237293 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7997955900a84384a3ba998ad42fcae8 proquest_journals_2473330766 crossref_primary_10_1186_s13638_020_01870_7 crossref_citationtrail_10_1186_s13638_020_01870_7 springer_journals_10_1186_s13638_020_01870_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-12 |
| PublicationDateYYYYMMDD | 2020-12-12 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: New York |
| PublicationTitle | EURASIP journal on wireless communications and networking |
| PublicationTitleAbbrev | J Wireless Com Network |
| PublicationYear | 2020 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | ZengYLiangY-CEigenvalue-based spectrum sensing algorithms for cognitive radioIEEE Trans. Commun.20095761784179310.1109/TCOMM.2009.06.070402 PappuKVSanjayKSPriyankaJPerformance evolution of ED-based spectrum sensing in CR over Nakagami-m/shadowed fading channel with MRC receptionInt. J. Electron. Commun. AUE20188351251810.1016/j.aeue.2017.11.005 TallatafRAdnanRAhmadNAReliability factors based fuzzy logic scheme for spectrum sensingWorld Acad. Sci. Eng. Technol. Int. J. Inf. Commun. Eng.2018122848910.1109/ICASET.2018.8376914 A.A. ElSaleh, M. Ismail, M. Akbari, M.M. Riahi, M.R. Manesh, S.A. Zavareh, Minimizing the detection error of cognitive radio networks using particle swarm optimization, in 2012 International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, 3–5 July 2012, pp. 877–881. https://doi.org/10.1109/ICCCE.2012.6271342 YucekTArslanHA survey of spectrum sensing algorithms for cognitive radio applicationsIEEE Commun. Surv. Tutor.200911111613010.1109/SURV.2009.090109 K. Koçkaya, I. Develi, Optimum threshold model based on online learning algorithm for spectrum detection in cognitive radio networks, in ISAS 2018, SETSCI Conference Indexing System, Antalya, 11 April 2018, pp. 434–439 (in Turkish) PankajVBrahmjitSThreshold optimization in energy detection scheme for maximizing the spectrum utilizationProcedia Comput. Sci.20169319119810.1016/j.procs.2016.07.200 FCC, Federal Communications Commission Spectrum Policy Task Force, Report of the Spectrum Efficiency Working Group. Technical report. USA (2002) RaoSVRKSinghGWavelet-based spectrum sensing techniques in cognitive radioProcedia Eng.201210.1016/j.proeng.2012.06.111 MalikSAShahMADarAHHaqAKhanAUJavedTKhanSAComparative analysis of primary transmitter detection based spectrum sensing techniques in cognitive radio systemsAust. J. BasicAppl. Sci.20104945224531 A. Muralidharan, P. Venkateswaran, S.G.D. Ajay, A. Prakash, M. Arora, S. Kirthiga, An adaptive threshold method for energy based spectrum sensing in cognitive radio networks, in 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, 18–19 December 2015, pp. 8–11. https://doi.org/10.1109/ICCICCT.2015.7475239 Y. Zeng, C.L. Koh, Y.-C. Liang, Maximum eigenvalue detection: Theory and application, in 2008 IEEE International Conference on Communications (ICC '08), 19–23 May 2008, pp. 4160–4164. https://doi.org/10.1109/TCOMM.2009.06.070402 BagwariATomarGSAdaptive double-threshold based energy detector for spectrum sensing in cognitive radio networksInt. J. Electron. Lett.20131243210.1080/21681724.2013.773849 LuLZhouXOnunkwoULiGTen years of research in spectrum sensing and sharing in cognitive radioEURASIP J. Wirel. Commun. Netw.20121–162810.1186/1687-1499-2012-28 T. Zhi, G. Giannakis, A wavelet approach to wideband spectrum sensing for cognitive radios, in 2006 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 8–10 June 2006, pp. 1–5. https://doi.org/10.1109/CROWNCOM.2006.363459 YongweiZPinWShunchaoZYonghuaWA spectrum sensing method based on signal feature and clustering algorithm in cognitive wireless multimedia sensor networksAdv. Multimedia201710.1155/2017/2895680 J. Mitola, Cognitive Radio: An integrated agent architecture for software-defined radio. Ph.D. dissertation, KTH Royal Institute of Technology, (Swedan, 2000) SadeghiHAzmiPArezumandHCyclostationarity-based soft cooperative spectrum sensing for cognitive radio networksIET Commun.2012612938293431810.1049/iet-com.2011.02691347.94013 T.E. Bogale, L. Vandendorpe, Multi-cycle cyclostationary based spectrum sensing algorithm for OFDM signals with noise uncertainty in cognitive radio networks, in 2012 IEEE Military Communications Conference (MILCOM 2012), Orlando, FL, USA, 29 October–01 November 2012, pp. 1–6. https://doi.org/10.1109/MILCOM.2012.6415704 X. Zhang, R. Chai, F. Gao, Matched filter based spectrum sensing and power level detection for cognitive radio network, in IEEE Global Conference on Signal and Information Processing (Global SIP), Atlanta, 3–5 December 2014, pp. 1267–1270. https://doi.org/10.1109/GlobalSIP.2014.7032326 TsinosCGBerberidisKDecentralized adaptive eigenvalue-based spectrum sensing for multiantenna cognitive radio systemsIEEE Trans. Wirel. Commun.20151431703171510.1109/TWC.2014.2372756 LeeYHOhDCEnergy detection based spectrum sensing for sensing error minimization in cognitive radio networksInt. J. Commun. Netw. Inf. Secur. IJCNIS20091115 J. Popoola, R. van Olst, Application of neural network for sensing primary radio signals in a cognitive radio environment, in IEEE Africon '11, Livingstone, 13–15 September 2011. https://doi.org/10.1109/AFRCON.2011.6072009 AjadiWOSaniSMTekanyiAMSEstimation of an improved spectrum sensing threshold for cognitive radio using smoothed pseudo Wigner-Ville distributionInt. J. Comput. Appl.201716812303310.5120/ijca2017914503 Y. Arjoune, E.Z. Mrabet, E.H. Ghazi, A. Tamtaoui, Spectrum sensing: Enhanced energy detection technique based on noise measurement, in 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas 8–10 January 2018, pp. 828–834. https://doi.org/10.1109/CCWC.2018.8301619 UrrizaPRebeizECabricDMultiple antenna cyclostationary spectrum sensing based on the cyclic correlation significance testIEEE J. Sel. Areas Commun.201331112185219510.1109/JSAC.2013.1311181393.94069 GardnerWAExploitation of spectral redundancy in cyclostationary signalsIEEE Signal Process. Mag.199182143610.1109/79.81007 M. Öner, F. Jondral, Air interface recognition for a software radio system exploiting cyclostationarity, in 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No. 04TH8754), 5–8 September 2004, pp. 1947–1951. https://doi.org/10.1109/PIMRC.2004.1368338 H. Urkowitz, Energy detection of unknown deterministic signals, in Proceedings of the IEEE, pp. 523–531 (1967). https://doi.org/10.1109/PROC.1967.5573 RanjeetMNallagondaSAnuradhaSOptimization analysis of improved energy detection based cooperative spectrum sensing network in Nakagami-m and Weibull fading channelsJ. Eng. Sci. Technol. Rev.201710211411710.25103/jestr.102.14 M. Iqbal, A. Ghafoor, Analysis of multiband joint detection framework for waveform-based sensing in cognitive radios, in 2012 IEEE Vehicular Technology Conference (VTC Fall) (3–6 September 2012), pp. 1–5. https://doi.org/10.1109/VTCFall.2012.6399372 ProakisJSalehiMDigital Communications20075BostonMcGraw-Hill Y. Zeng, C. Koh, Y.-C. Liang, Maximum eigenvalue detection: theory and application, in IEEE International Conference on Communications, ICC ’08 (19–23 May 2008), pp. 4160–4164. https://doi.org/10.1109/ICC.2008.781 ThilinaKMChoiKWSaquibNHossainEMachine learning techniques for cooperative spectrum sensing in cognitive radio networksIEEE J. Sel. Areas Commun.201331112209222110.1109/JSAC.2013.131120 LiYJayaweeraSDynamic spectrum tracking using energy and cyclostationarity-based multi-variate non-parametric quickest detection for cognitive radiosIEEE Trans. Wirel. Commun.20131273522353210.1109/TW.2013.060413.121814 A.S.B. Kozal, M. Merabti, F. Bouhafs, An improved energy detection scheme for cognitive radio networks in low SNR region, in 2012 IEEE Symposium on Computers and Communications (ISCC), Cappadocia, 1–4 July 2012, pp. 684–689. https://doi.org/10.1109/ISCC.2012.6249377 C.G. Tsinos, K. Berberidis, Adaptive eigenvalue-based spectrum sensing for multi-antenna cognitive radio systems, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-2013), 26–31 May 2013, pp. 4454–4458. https://doi.org/10.1109/ICASSP.2013.6638502 R. Tandra, A. Sahai, Fundamental limits on detection in low SNR under noise uncertainty, in 2005 International Conference on Wireless Networks, Communications and Mobile Computing (13–16 June 2005), pp. 464–469. https://doi.org/10.1109/WIRLES.2005.1549453 Z. Xuping, P. Jianguo, Energy detection based spectrum sensing for cognitive radio, in IET Conference on Wireless, Mobile and Sensor Networks, Shanghai, 12–14 December 2007, pp. 944–977. https://doi.org/10.1049/cp:20070306 MitolaJMaguireGACognitive radio: making software radios more personalIEEE Pers. Commun. Mag.199964131810.1109/98.788210 AtapattuSEnergy Detection based cooperative spectrum sensing in cognitive radio networksIEEE Trans. Wirel. Commun.20111041232124110.1109/TWC.2011.012411.100611 A. Gorcin, K.A. Qaraqe, H. Celebi, H. Arslan, An adaptive threshold method for spectrum sensing in multi-channel cognitive radio networks, in 17th International Conference on Telecommunications (ICT’10), Doha, 4–7 April 2010, pp. 425–429. https://doi.org/10.1109/ICTEL.2010.5478783 L. Ma, Y. Li, A. Demir, Matched filtering assisted energy detection for sensing weak primary user signals, in IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP), 25–30 March 2012, pp. 3149–3152. https://doi.org/10.1109/ICASSP.2012.6288583 DighamFFAlouiniMSSimonMKOn the energy detection of unknown signals over fading channelsIEEE Trans. Commun.2007551212410.1109/TCOMM.2006.887483 HerathSRajathevaNTellamburaCEnergy detection of unknown signals in fading and diversity receptionIEEE Trans. Commun.20115992443245310.1109/TCOMM.2011.071111.090349 D. Raman, N.P. Singh, Improved threshold scheme for energy detection in cognitive radio under low SNR, in Association of Computer Electronics and Electrical Engineers, pp. 251–256 (2013) PillayNXuHBlind eigenvalue-based spectrum sensing for cognitive radio networksIET Commun.201261113881396301349710.1049/iet-com.2011.05061273.94159 RuttikKKoufosKJanttiRDetection of unknown signals in a fading environmentIEEE Commun. Lett.200913749850010.1109/LCOMM.2009.0901691273.94178 S Atapattu (1870_CR27) 2011; 10 1870_CR29 YH Lee (1870_CR46) 2009; 1 1870_CR1 SVRK Rao (1870_CR10) 2012 1870_CR3 1870_CR25 1870_CR47 1870_CR5 1870_CR26 A Bagwari (1870_CR32) 2013; 1 1870_CR48 P Urriza (1870_CR6) 2013; 31 Y Zeng (1870_CR24) 2009; 57 1870_CR9 WA Gardner (1870_CR18) 1991; 8 Y Li (1870_CR8) 2013; 12 T Yucek (1870_CR21) 2009; 11 J Mitola (1870_CR2) 1999; 6 N Pillay (1870_CR12) 2012; 6 CG Tsinos (1870_CR23) 2015; 14 J Proakis (1870_CR4) 2007 1870_CR20 Z Yongwei (1870_CR39) 2017 1870_CR22 1870_CR44 1870_CR45 WO Ajadi (1870_CR30) 2017; 168 1870_CR40 1870_CR41 1870_CR17 FF Digham (1870_CR28) 2007; 55 1870_CR19 M Ranjeet (1870_CR36) 2017; 10 SA Malik (1870_CR43) 2010; 4 1870_CR37 1870_CR16 V Pankaj (1870_CR42) 2016; 93 KV Pappu (1870_CR31) 2018; 83 H Sadeghi (1870_CR7) 2012; 6 L Lu (1870_CR15) 2012; 1–16 R Tallataf (1870_CR35) 2018; 12 KM Thilina (1870_CR38) 2013; 31 1870_CR11 1870_CR33 1870_CR34 S Herath (1870_CR14) 2011; 59 K Ruttik (1870_CR13) 2009; 13 |
| References_xml | – reference: LiYJayaweeraSDynamic spectrum tracking using energy and cyclostationarity-based multi-variate non-parametric quickest detection for cognitive radiosIEEE Trans. Wirel. Commun.20131273522353210.1109/TW.2013.060413.121814 – reference: AtapattuSEnergy Detection based cooperative spectrum sensing in cognitive radio networksIEEE Trans. Wirel. Commun.20111041232124110.1109/TWC.2011.012411.100611 – reference: PappuKVSanjayKSPriyankaJPerformance evolution of ED-based spectrum sensing in CR over Nakagami-m/shadowed fading channel with MRC receptionInt. J. Electron. Commun. AUE20188351251810.1016/j.aeue.2017.11.005 – reference: C.G. Tsinos, K. Berberidis, Adaptive eigenvalue-based spectrum sensing for multi-antenna cognitive radio systems, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-2013), 26–31 May 2013, pp. 4454–4458. https://doi.org/10.1109/ICASSP.2013.6638502 – reference: LeeYHOhDCEnergy detection based spectrum sensing for sensing error minimization in cognitive radio networksInt. J. Commun. Netw. Inf. Secur. IJCNIS20091115 – reference: RuttikKKoufosKJanttiRDetection of unknown signals in a fading environmentIEEE Commun. Lett.200913749850010.1109/LCOMM.2009.0901691273.94178 – reference: A.A. ElSaleh, M. Ismail, M. Akbari, M.M. Riahi, M.R. Manesh, S.A. Zavareh, Minimizing the detection error of cognitive radio networks using particle swarm optimization, in 2012 International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, 3–5 July 2012, pp. 877–881. https://doi.org/10.1109/ICCCE.2012.6271342 – reference: HerathSRajathevaNTellamburaCEnergy detection of unknown signals in fading and diversity receptionIEEE Trans. Commun.20115992443245310.1109/TCOMM.2011.071111.090349 – reference: A. Gorcin, K.A. Qaraqe, H. Celebi, H. Arslan, An adaptive threshold method for spectrum sensing in multi-channel cognitive radio networks, in 17th International Conference on Telecommunications (ICT’10), Doha, 4–7 April 2010, pp. 425–429. https://doi.org/10.1109/ICTEL.2010.5478783 – reference: Y. Arjoune, E.Z. Mrabet, E.H. Ghazi, A. Tamtaoui, Spectrum sensing: Enhanced energy detection technique based on noise measurement, in 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas 8–10 January 2018, pp. 828–834. https://doi.org/10.1109/CCWC.2018.8301619 – reference: PankajVBrahmjitSThreshold optimization in energy detection scheme for maximizing the spectrum utilizationProcedia Comput. Sci.20169319119810.1016/j.procs.2016.07.200 – reference: ProakisJSalehiMDigital Communications20075BostonMcGraw-Hill – reference: AjadiWOSaniSMTekanyiAMSEstimation of an improved spectrum sensing threshold for cognitive radio using smoothed pseudo Wigner-Ville distributionInt. J. Comput. Appl.201716812303310.5120/ijca2017914503 – reference: GardnerWAExploitation of spectral redundancy in cyclostationary signalsIEEE Signal Process. Mag.199182143610.1109/79.81007 – reference: FCC, Federal Communications Commission Spectrum Policy Task Force, Report of the Spectrum Efficiency Working Group. Technical report. USA (2002) – reference: R. Tandra, A. Sahai, Fundamental limits on detection in low SNR under noise uncertainty, in 2005 International Conference on Wireless Networks, Communications and Mobile Computing (13–16 June 2005), pp. 464–469. https://doi.org/10.1109/WIRLES.2005.1549453 – reference: RaoSVRKSinghGWavelet-based spectrum sensing techniques in cognitive radioProcedia Eng.201210.1016/j.proeng.2012.06.111 – reference: ThilinaKMChoiKWSaquibNHossainEMachine learning techniques for cooperative spectrum sensing in cognitive radio networksIEEE J. Sel. Areas Commun.201331112209222110.1109/JSAC.2013.131120 – reference: MitolaJMaguireGACognitive radio: making software radios more personalIEEE Pers. Commun. Mag.199964131810.1109/98.788210 – reference: L. Ma, Y. Li, A. Demir, Matched filtering assisted energy detection for sensing weak primary user signals, in IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP), 25–30 March 2012, pp. 3149–3152. https://doi.org/10.1109/ICASSP.2012.6288583 – reference: M. Iqbal, A. Ghafoor, Analysis of multiband joint detection framework for waveform-based sensing in cognitive radios, in 2012 IEEE Vehicular Technology Conference (VTC Fall) (3–6 September 2012), pp. 1–5. https://doi.org/10.1109/VTCFall.2012.6399372 – reference: Z. Xuping, P. Jianguo, Energy detection based spectrum sensing for cognitive radio, in IET Conference on Wireless, Mobile and Sensor Networks, Shanghai, 12–14 December 2007, pp. 944–977. https://doi.org/10.1049/cp:20070306 – reference: M. Öner, F. Jondral, Air interface recognition for a software radio system exploiting cyclostationarity, in 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No. 04TH8754), 5–8 September 2004, pp. 1947–1951. https://doi.org/10.1109/PIMRC.2004.1368338 – reference: K. Koçkaya, I. Develi, Optimum threshold model based on online learning algorithm for spectrum detection in cognitive radio networks, in ISAS 2018, SETSCI Conference Indexing System, Antalya, 11 April 2018, pp. 434–439 (in Turkish) – reference: X. Zhang, R. Chai, F. Gao, Matched filter based spectrum sensing and power level detection for cognitive radio network, in IEEE Global Conference on Signal and Information Processing (Global SIP), Atlanta, 3–5 December 2014, pp. 1267–1270. https://doi.org/10.1109/GlobalSIP.2014.7032326 – reference: Y. Zeng, C.L. Koh, Y.-C. Liang, Maximum eigenvalue detection: Theory and application, in 2008 IEEE International Conference on Communications (ICC '08), 19–23 May 2008, pp. 4160–4164. https://doi.org/10.1109/TCOMM.2009.06.070402 – reference: A. Muralidharan, P. Venkateswaran, S.G.D. Ajay, A. Prakash, M. Arora, S. Kirthiga, An adaptive threshold method for energy based spectrum sensing in cognitive radio networks, in 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), Kumaracoil, 18–19 December 2015, pp. 8–11. https://doi.org/10.1109/ICCICCT.2015.7475239 – reference: H. Urkowitz, Energy detection of unknown deterministic signals, in Proceedings of the IEEE, pp. 523–531 (1967). https://doi.org/10.1109/PROC.1967.5573 – reference: SadeghiHAzmiPArezumandHCyclostationarity-based soft cooperative spectrum sensing for cognitive radio networksIET Commun.2012612938293431810.1049/iet-com.2011.02691347.94013 – reference: Y. Zeng, C. Koh, Y.-C. Liang, Maximum eigenvalue detection: theory and application, in IEEE International Conference on Communications, ICC ’08 (19–23 May 2008), pp. 4160–4164. https://doi.org/10.1109/ICC.2008.781 – reference: DighamFFAlouiniMSSimonMKOn the energy detection of unknown signals over fading channelsIEEE Trans. Commun.2007551212410.1109/TCOMM.2006.887483 – reference: J. Mitola, Cognitive Radio: An integrated agent architecture for software-defined radio. Ph.D. dissertation, KTH Royal Institute of Technology, (Swedan, 2000) – reference: YucekTArslanHA survey of spectrum sensing algorithms for cognitive radio applicationsIEEE Commun. Surv. Tutor.200911111613010.1109/SURV.2009.090109 – reference: MalikSAShahMADarAHHaqAKhanAUJavedTKhanSAComparative analysis of primary transmitter detection based spectrum sensing techniques in cognitive radio systemsAust. J. BasicAppl. Sci.20104945224531 – reference: UrrizaPRebeizECabricDMultiple antenna cyclostationary spectrum sensing based on the cyclic correlation significance testIEEE J. Sel. Areas Commun.201331112185219510.1109/JSAC.2013.1311181393.94069 – reference: T. Zhi, G. Giannakis, A wavelet approach to wideband spectrum sensing for cognitive radios, in 2006 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 8–10 June 2006, pp. 1–5. https://doi.org/10.1109/CROWNCOM.2006.363459 – reference: TsinosCGBerberidisKDecentralized adaptive eigenvalue-based spectrum sensing for multiantenna cognitive radio systemsIEEE Trans. Wirel. Commun.20151431703171510.1109/TWC.2014.2372756 – reference: BagwariATomarGSAdaptive double-threshold based energy detector for spectrum sensing in cognitive radio networksInt. J. Electron. Lett.20131243210.1080/21681724.2013.773849 – reference: TallatafRAdnanRAhmadNAReliability factors based fuzzy logic scheme for spectrum sensingWorld Acad. Sci. Eng. Technol. Int. J. Inf. Commun. Eng.2018122848910.1109/ICASET.2018.8376914 – reference: RanjeetMNallagondaSAnuradhaSOptimization analysis of improved energy detection based cooperative spectrum sensing network in Nakagami-m and Weibull fading channelsJ. Eng. Sci. Technol. Rev.201710211411710.25103/jestr.102.14 – reference: PillayNXuHBlind eigenvalue-based spectrum sensing for cognitive radio networksIET Commun.201261113881396301349710.1049/iet-com.2011.05061273.94159 – reference: A.S.B. Kozal, M. Merabti, F. Bouhafs, An improved energy detection scheme for cognitive radio networks in low SNR region, in 2012 IEEE Symposium on Computers and Communications (ISCC), Cappadocia, 1–4 July 2012, pp. 684–689. https://doi.org/10.1109/ISCC.2012.6249377 – reference: LuLZhouXOnunkwoULiGTen years of research in spectrum sensing and sharing in cognitive radioEURASIP J. Wirel. Commun. Netw.20121–162810.1186/1687-1499-2012-28 – reference: T.E. Bogale, L. Vandendorpe, Multi-cycle cyclostationary based spectrum sensing algorithm for OFDM signals with noise uncertainty in cognitive radio networks, in 2012 IEEE Military Communications Conference (MILCOM 2012), Orlando, FL, USA, 29 October–01 November 2012, pp. 1–6. https://doi.org/10.1109/MILCOM.2012.6415704 – reference: YongweiZPinWShunchaoZYonghuaWA spectrum sensing method based on signal feature and clustering algorithm in cognitive wireless multimedia sensor networksAdv. Multimedia201710.1155/2017/2895680 – reference: D. Raman, N.P. Singh, Improved threshold scheme for energy detection in cognitive radio under low SNR, in Association of Computer Electronics and Electrical Engineers, pp. 251–256 (2013) – reference: J. Popoola, R. van Olst, Application of neural network for sensing primary radio signals in a cognitive radio environment, in IEEE Africon '11, Livingstone, 13–15 September 2011. https://doi.org/10.1109/AFRCON.2011.6072009 – reference: ZengYLiangY-CEigenvalue-based spectrum sensing algorithms for cognitive radioIEEE Trans. Commun.20095761784179310.1109/TCOMM.2009.06.070402 – ident: 1870_CR19 doi: 10.1109/PIMRC.2004.1368338 – ident: 1870_CR20 doi: 10.1109/MILCOM.2012.6415704 – year: 2012 ident: 1870_CR10 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.06.111 – volume: 10 start-page: 114 issue: 2 year: 2017 ident: 1870_CR36 publication-title: J. Eng. Sci. Technol. Rev. doi: 10.25103/jestr.102.14 – ident: 1870_CR3 – ident: 1870_CR1 – ident: 1870_CR44 doi: 10.1109/ICCCE.2012.6271342 – volume: 6 start-page: 1388 issue: 11 year: 2012 ident: 1870_CR12 publication-title: IET Commun. doi: 10.1049/iet-com.2011.0506 – volume: 31 start-page: 2185 issue: 11 year: 2013 ident: 1870_CR6 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2013.131118 – ident: 1870_CR17 doi: 10.1109/GlobalSIP.2014.7032326 – volume: 6 start-page: 29 issue: 1 year: 2012 ident: 1870_CR7 publication-title: IET Commun. doi: 10.1049/iet-com.2011.0269 – ident: 1870_CR11 doi: 10.1109/ICC.2008.781 – ident: 1870_CR5 doi: 10.1109/WIRLES.2005.1549453 – volume: 12 start-page: 3522 issue: 7 year: 2013 ident: 1870_CR8 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TW.2013.060413.121814 – volume: 12 start-page: 84 issue: 2 year: 2018 ident: 1870_CR35 publication-title: World Acad. Sci. Eng. Technol. Int. J. Inf. Commun. Eng. doi: 10.1109/ICASET.2018.8376914 – volume: 59 start-page: 2443 issue: 9 year: 2011 ident: 1870_CR14 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2011.071111.090349 – year: 2017 ident: 1870_CR39 publication-title: Adv. Multimedia doi: 10.1155/2017/2895680 – volume: 1 start-page: 1 issue: 1 year: 2009 ident: 1870_CR46 publication-title: Int. J. Commun. Netw. Inf. Secur. IJCNIS – ident: 1870_CR25 doi: 10.1109/ICASSP.2013.6638502 – ident: 1870_CR22 doi: 10.1109/CROWNCOM.2006.363459 – volume: 93 start-page: 191 year: 2016 ident: 1870_CR42 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.07.200 – volume: 57 start-page: 1784 issue: 6 year: 2009 ident: 1870_CR24 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2009.06.070402 – volume: 10 start-page: 1232 issue: 4 year: 2011 ident: 1870_CR27 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2011.012411.100611 – volume: 8 start-page: 14 issue: 2 year: 1991 ident: 1870_CR18 publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.81007 – ident: 1870_CR26 doi: 10.1109/TCOMM.2009.06.070402 – ident: 1870_CR45 doi: 10.1049/cp:20070306 – ident: 1870_CR47 doi: 10.1109/ISCC.2012.6249377 – ident: 1870_CR16 doi: 10.1109/ICASSP.2012.6288583 – volume: 168 start-page: 30 issue: 12 year: 2017 ident: 1870_CR30 publication-title: Int. J. Comput. Appl. doi: 10.5120/ijca2017914503 – volume: 13 start-page: 498 issue: 7 year: 2009 ident: 1870_CR13 publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2009.090169 – volume: 83 start-page: 512 year: 2018 ident: 1870_CR31 publication-title: Int. J. Electron. Commun. AUE doi: 10.1016/j.aeue.2017.11.005 – volume: 14 start-page: 1703 issue: 3 year: 2015 ident: 1870_CR23 publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2014.2372756 – ident: 1870_CR41 doi: 10.1109/PROC.1967.5573 – volume: 55 start-page: 21 issue: 1 year: 2007 ident: 1870_CR28 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2006.887483 – ident: 1870_CR33 doi: 10.1109/ICCICCT.2015.7475239 – volume: 1 start-page: 24 year: 2013 ident: 1870_CR32 publication-title: Int. J. Electron. Lett. doi: 10.1080/21681724.2013.773849 – volume: 4 start-page: 4522 issue: 9 year: 2010 ident: 1870_CR43 publication-title: Aust. J. BasicAppl. Sci. – volume: 11 start-page: 116 issue: 1 year: 2009 ident: 1870_CR21 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2009.090109 – ident: 1870_CR40 – volume: 1–16 start-page: 28 year: 2012 ident: 1870_CR15 publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/1687-1499-2012-28 – volume: 6 start-page: 13 issue: 4 year: 1999 ident: 1870_CR2 publication-title: IEEE Pers. Commun. Mag. doi: 10.1109/98.788210 – ident: 1870_CR34 doi: 10.1109/CCWC.2018.8301619 – ident: 1870_CR37 doi: 10.1109/AFRCON.2011.6072009 – ident: 1870_CR9 doi: 10.1109/VTCFall.2012.6399372 – ident: 1870_CR48 – volume-title: Digital Communications year: 2007 ident: 1870_CR4 – ident: 1870_CR29 doi: 10.1109/ICTEL.2010.5478783 – volume: 31 start-page: 2209 issue: 11 year: 2013 ident: 1870_CR38 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2013.131120 |
| SSID | ssj0033492 |
| Score | 2.5391355 |
| Snippet | Cognitive radio is a technology developed for the effective use of radio spectrum sources. The spectrum sensing function plays a key role in the performance of... Abstract Cognitive radio is a technology developed for the effective use of radio spectrum sources. The spectrum sensing function plays a key role in the... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Cognitive radio Communications Engineering Distance learning Energy detection Engineering Fading Information Systems Applications (incl.Internet) Machine learning Machine learning algorithm Matched filters Networks Online learning algorithm Optimization Radio networks Radio spectra Signal to noise ratio Signal,Image and Speech Processing Spectrum allocation Spectrum sensing Threshold |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcIBDy1MsFOQDN7C6fo7TC6KICgmpAgmk3izbsauV2qRsFn4_nsTZUiR64ZBL4kRWvpnxjB_fR8hrAJ5KmItMt6llKovEGlRzL9mvBw1lALVhFJuAkxN7etp8qRNuQ91WOcfEMVC3fcQ58gOhQJbaG4x5d_mDoWoUrq5WCY3b5A4XgqOdfwY2R2KJzHtYcJniSFyBmA_NWHMwcFksj2HxhLJ0SwbXBqaRv_9a0vnXOuk4_Bzv_W_HH5DdmnjS95OlPCS3UveI3P-DjvAx-Ypi9Jv1zws64Lb27oyuOrrdX0TXvl31tJv2jQ-HdFPMYMDVK9qXuHNRD3RS37XlmqhOnpDvxx-_ffjEquQCiwWxDRM6QGy91FIU54ylZG0FD8Y2gZvQQCgJi-d4_NTkLGwG73NQKWiVZNI6Z_mU7HR9l54RqkUUVnsToGmV0eBRzLwkmynHwGPWC8Ln_-1i5SNHWYxzN9Yl1rgJI1cwciNGDhbkzfady4mN48bWRwjjtiUyaY83-vWZq47poGkAWfiWS2-VtMrL4EsJ6lslcvTJLsj-DKur7j24K0wX5O1sGFeP_92l5zd_7QW5J9AkOQrO7JOdAnl6Se7GX5vVsH41Gvdv9839NQ priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4V2gM98EZdSpEP3CDq2o4f6a1FoJ5QK4HEzbIdG60EWbRZ-P14nGR5qEWCQy6JLUXz8ow8830AB0rRkMKcL0Qd6qKMLBQVsrmn7NcqodIBql0mm1BnZ_rysvrTD4W1Q7f7cCWZI3V2ay2_t5QnWymw3EEiuXGhluCjoLpCuz7GGYcu_nLE2xvGY_6579kRlJH6n6WXL25E80Fzuva-X1yH1T6xJD87S9iAD6HZhM9P4Aa34C-Szc9ndzekxbb15opMGrLoHyIzW0-mpOn6wtsfZJ7U3OLtFJmmuHLTD2wS29Tp6aBMtuHi9OT8-HfRUyoUPmlkXjDhlK8tF5wl5_OpJK0ZdVJXjkpXKZcSEktxvFTGyHRU1kZXBifKwIMQMfIdWG6mTfgCRDDPtLDSqaoupVAWycpTMhmid9RHMQI6SNn4Hm8caS-uTa47tDSduEwSl8niMmoEh4s9tx3axqurf6HyFisRKTu_mM6uTO94RlWVQpS98djqkuvScmdTiWnrkkVvgx7B3qB607tva1ipOE_RT8oRHA2qfvz8_1_afdvyr7DC0FooEszswXIygfANPvn7-aSd7WezfgAVbPEg priority: 102 providerName: Springer Nature |
| Title | Spectrum sensing in cognitive radio networks: threshold optimization and analysis |
| URI | https://link.springer.com/article/10.1186/s13638-020-01870-7 https://www.proquest.com/docview/2473330766 https://doaj.org/article/7997955900a84384a3ba998ad42fcae8 |
| Volume | 2020 |
| WOSCitedRecordID | wos000598073200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: C24 dateStart: 20041201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VlgMcEC0gtpSVD72B1Y3f4UarVqCqq1CBVLhYtmOjlWgWbZb-fsZ5LC0ScOGQHGJHsmbG4xl55vsADrUuIrq5QGUdayoSi7TMbO4Y_TotNR6gxndkE3o-N1dXZXWL6ivXhPXwwL3gjnRZ6oySNps5I7gRjnuHKYKrBUvBxa7NF6OeMZnqfTDPmHtji4xRR23B0c5oTpUyCd2M6jvHUIfWfyfE_O1WtDtszh7DoyFKJG_71e3CVmz24OEt7MAn8CEzx69XP65Jm2vQm69k0ZBNMRBZuXqxJE1f5N2-IWvUWZuvmsgSncT10H1JXFPj0-OSPIVPZ6cfT97RgR-BBhTvmjLpdagdl5zhTgqYX9as8MqUvlC-1B6jC1fkXlGVEjNJO5e8iF6KyKOUKfFnsN0sm_gciGSBGemU12UtlNQuM49jZBhT8EVIcgLFKC4bBvDwzGHxzXZJhFG2F7FFEdtOxFZP4NXmn-89dMZfZx9nLWxmZtjr7gMagx2Mwf7LGCZwMOrQDnuxtUxoztGVKTWB16Nefw3_eUn7_2NJL-ABy3ZXZA6ZA9hGw4gv4X64WS_a1RR2jk_n1eUU7p0wMe1sGN_nmuK7kl9wvHp_UX3-Cccl8vw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCMWCvgAJ4i6cfwKEkK8qlYtqyKKVHExtmNXK9Fs2Swg_hS_kZk8thSJ3nrgkEviWEn8zSuemQ_gkdZ5RDUXMlnFKhOJx6wkNnf0fp2WGg2o8S3ZhJ5MzP5-ubsCv4ZaGEqrHHRiq6irWaB_5Otc6AJjb63Ui6OvGbFG0e7qQKHRwWI7_vyBIVvzfOsNru9jzjfe7r3ezHpWgSzgQy0yLr0OlStkwRF_AaOyiudemdLnypfao012OVVYqpS4Sdq55EX0UsQiSplSgfOeg_NCYLCE8rMrPw2av6BOfxTgKRTcXGg-FOkYtd7kBSI9o2CNaPDGmT5hCFu-gBNO7l_7sq2527j6v32oa3Cld6zZy04SrsNKrG_A5T_aLd6E9x-orHT-7ZA1lLZfH7BpzZb5U2zuqumM1V1efPOMLRDmDe3OsRnq1cO-YJW5usKja-VyCz6eyTvdhtV6Vsc7wCQP3EinvC4roaR2RNaOznRMwechyRHkw_ra0PdbJ9qPL7aNu4yyHSYsYsK2mLB6BE-W9xx13UZOHf2KYLMcSZ3C2xOz-YHtFY_VZampy-B47IwojHCFdxhiu0rwFFw0I1gbYGR79dXYYwyN4OkAxOPL_36ku6fP9hAubu6927E7W5Pte3CJkzjkRK6zBqu4_PE-XAjfF9Nm_qAVLAafzxqgvwGlOFo8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceCMWCvgAJ4h248SPICEElBVV0WoRIFVcXNuxq5VoUjYLiL_Gr2Mmjy1ForceOOSSOFYSf57xF8_MB_BIqTSgmfOJKEOZ5JGHpCA1d1z9WiUUOlDtWrEJNZvpvb1ivgG_hlwYCqscbGJrqMva0z_yMc9VhtxbSTmOfVjEfHv64uhrQgpStNM6yGl0ENkNP38gfWue72zjWD_mfPrm4-u3Sa8wkHh8wFXChVO-tJnIOGLRI0MreeqkLlwqXaEc-mebUraljJHrqKyNLg9O5CELQsSYYb_n4LxCjknEby4-D14go6p_RPYkTuI0V3xI2NFy3KQZoj4h4kaSeJNEnXCKrXbAiQXvX3u0reubXv2fP9o1uNIvuNnLboZch41Q3YDLf5RhvAnvP1C66fLbIWsonL86YIuKreOq2NKWi5pVXbx884ytEP4N7dqxGu3tYZ_IymxV4tGVeLkFn87knW7DZlVX4Q4wwT3XwkqnijKXQlkSccdFdojepT6KEaTDWBvf12EnOZAvpuVjWpoOHwbxYVp8GDWCJ-t7jroqJKe2fkUQWrekCuLtiXp5YHqDZFRRKKo-OJlYnWc6t5mzSL1tmfPobdAj2BogZXqz1phjPI3g6QDK48v_fqS7p_f2EC4iLs27ndnuPbjEaWakpLmzBZs4-uE-XPDfV4tm-aCdYwz2zxqfvwEppWMQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectrum+sensing+in+cognitive+radio+networks%3A+threshold+optimization+and+analysis&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=kockaya%2C+Kenan&rft.au=Develi%2C+Ibrahim&rft.date=2020-12-12&rft.issn=1687-1499&rft.eissn=1687-1499&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-020-01870-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13638_020_01870_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon |