Constructing Antidictionaries of Long Texts in Output-Sensitive Space

A word x that is absent from a word y is called minimal if all its proper factors occur in y . Given a collection of k words y 1 , … , y k over an alphabet Σ , we are asked to compute the set M { y 1 , … , y k } ℓ of minimal absent words of length at most ℓ of the collection { y 1 , … , y k }. The s...

Full description

Saved in:
Bibliographic Details
Published in:Theory of computing systems Vol. 65; no. 5; pp. 777 - 797
Main Authors: Ayad, Lorraine A.K., Badkobeh, Golnaz, Fici, Gabriele, Héliou, Alice, Pissis, Solon P.
Format: Journal Article
Language:English
Published: New York Springer US 01.07.2021
Springer Nature B.V
Subjects:
ISSN:1432-4350, 1433-0490
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A word x that is absent from a word y is called minimal if all its proper factors occur in y . Given a collection of k words y 1 , … , y k over an alphabet Σ , we are asked to compute the set M { y 1 , … , y k } ℓ of minimal absent words of length at most ℓ of the collection { y 1 , … , y k }. The set M { y 1 , … , y k } ℓ contains all the words x such that x is absent from all the words of the collection while there exist i , j , such that the maximal proper suffix of x is a factor of y i and the maximal proper prefix of x is a factor of y j . In data compression, this corresponds to computing the antidictionary of k documents. In bioinformatics, it corresponds to computing words that are absent from a genome of k chromosomes. Indeed, the set M y ℓ of minimal absent words of a word y is equal to M { y 1 , … , y k } ℓ for any decomposition of y into a collection of words y 1 , … , y k such that there is an overlap of length at least ℓ − 1 between any two consecutive words in the collection. This computation generally requires Ω ( n ) space for n = | y | using any of the plenty available O ( n ) -time algorithms. This is because an Ω ( n )-sized text index is constructed over y which can be impractical for large n . We do the identical computation incrementally using output-sensitive space. This goal is reasonable when ∥ M { y 1 , … , y N } ℓ ∥ = o ( n ) , for all N ∈ [1, k ], where ∥ S ∥ denotes the sum of the lengths of words in set S . For instance, in the human genome, n ≈ 3 × 10 9 but ∥ M { y 1 , … , y k } 12 ∥ ≈ 1 0 6 . We consider a constant-sized alphabet for stating our results. We show that all M y 1 ℓ , … , M { y 1 , … , y k } ℓ can be computed in O ( k n + ∑ N = 1 k ∥ M { y 1 , … , y N } ℓ ∥ ) total time using O ( MaxIn + MaxOut ) space, where MaxIn is the length of the longest word in { y 1 , … , y k } and MaxOut = max { ∥ M { y 1 , … , y N } ℓ ∥ : N ∈ [ 1 , k ] } . Proof-of-concept experimental results are also provided confirming our theoretical findings and justifying our contribution.
AbstractList A word x that is absent from a word y is called minimal if all its proper factors occur in y. Given a collection of k words y1, … , yk over an alphabet Σ, we are asked to compute the set M{y1,…,yk}ℓ of minimal absent words of length at most ℓ of the collection {y1, … , yk}. The set M{y1,…,yk}ℓ contains all the words x such that x is absent from all the words of the collection while there exist i,j, such that the maximal proper suffix of x is a factor of yi and the maximal proper prefix of x is a factor of yj. In data compression, this corresponds to computing the antidictionary of k documents. In bioinformatics, it corresponds to computing words that are absent from a genome of k chromosomes. Indeed, the set Myℓ of minimal absent words of a word y is equal to M{y1,…,yk}ℓ for any decomposition of y into a collection of words y1, … , yk such that there is an overlap of length at least ℓ − 1 between any two consecutive words in the collection. This computation generally requires Ω(n) space for n = |y| using any of the plenty available O(n)-time algorithms. This is because an Ω(n)-sized text index is constructed over y which can be impractical for large n. We do the identical computation incrementally using output-sensitive space. This goal is reasonable when ∥M{y1,…,yN}ℓ∥=o(n), for all N ∈ [1,k], where ∥S∥ denotes the sum of the lengths of words in set S. For instance, in the human genome, n ≈ 3 × 109 but ∥M{y1,…,yk}12∥≈106. We consider a constant-sized alphabet for stating our results. We show that allMy1ℓ,…,M{y1,…,yk}ℓ can be computed in O(kn+∑N=1k∥M{y1,…,yN}ℓ∥) total time using O(MaxIn+MaxOut) space, where MaxIn is the length of the longest word in {y1, … , yk} and MaxOut=max{∥M{y1,…,yN}ℓ∥:N∈[1,k]}. Proof-of-concept experimental results are also provided confirming our theoretical findings and justifying our contribution.
A word x that is absent from a word y is called minimal if all its proper factors occur in y . Given a collection of k words y 1 , … , y k over an alphabet Σ , we are asked to compute the set M { y 1 , … , y k } ℓ of minimal absent words of length at most ℓ of the collection { y 1 , … , y k }. The set M { y 1 , … , y k } ℓ contains all the words x such that x is absent from all the words of the collection while there exist i , j , such that the maximal proper suffix of x is a factor of y i and the maximal proper prefix of x is a factor of y j . In data compression, this corresponds to computing the antidictionary of k documents. In bioinformatics, it corresponds to computing words that are absent from a genome of k chromosomes. Indeed, the set M y ℓ of minimal absent words of a word y is equal to M { y 1 , … , y k } ℓ for any decomposition of y into a collection of words y 1 , … , y k such that there is an overlap of length at least ℓ − 1 between any two consecutive words in the collection. This computation generally requires Ω ( n ) space for n = | y | using any of the plenty available O ( n ) -time algorithms. This is because an Ω ( n )-sized text index is constructed over y which can be impractical for large n . We do the identical computation incrementally using output-sensitive space. This goal is reasonable when ∥ M { y 1 , … , y N } ℓ ∥ = o ( n ) , for all N ∈ [1, k ], where ∥ S ∥ denotes the sum of the lengths of words in set S . For instance, in the human genome, n ≈ 3 × 10 9 but ∥ M { y 1 , … , y k } 12 ∥ ≈ 1 0 6 . We consider a constant-sized alphabet for stating our results. We show that all M y 1 ℓ , … , M { y 1 , … , y k } ℓ can be computed in O ( k n + ∑ N = 1 k ∥ M { y 1 , … , y N } ℓ ∥ ) total time using O ( MaxIn + MaxOut ) space, where MaxIn is the length of the longest word in { y 1 , … , y k } and MaxOut = max { ∥ M { y 1 , … , y N } ℓ ∥ : N ∈ [ 1 , k ] } . Proof-of-concept experimental results are also provided confirming our theoretical findings and justifying our contribution.
A word x that is absent from a word y is called minimal if all its proper factors occur in y . Given a collection of k words y 1 , … , y k over an alphabet Σ , we are asked to compute the set $\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$ M { y 1 , … , y k } ℓ of minimal absent words of length at most ℓ of the collection { y 1 , … , y k }. The set $\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$ M { y 1 , … , y k } ℓ contains all the words x such that x is absent from all the words of the collection while there exist i , j , such that the maximal proper suffix of x is a factor of y i and the maximal proper prefix of x is a factor of y j . In data compression, this corresponds to computing the antidictionary of k documents. In bioinformatics, it corresponds to computing words that are absent from a genome of k chromosomes. Indeed, the set $\mathrm {M}^{\ell }_{y}$ M y ℓ of minimal absent words of a word y is equal to $\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$ M { y 1 , … , y k } ℓ for any decomposition of y into a collection of words y 1 , … , y k such that there is an overlap of length at least ℓ − 1 between any two consecutive words in the collection. This computation generally requires Ω ( n ) space for n = | y | using any of the plenty available $\mathcal {O}(n)$ O ( n ) -time algorithms. This is because an Ω ( n )-sized text index is constructed over y which can be impractical for large n . We do the identical computation incrementally using output-sensitive space. This goal is reasonable when $\| \mathrm {M}^{\ell }_{\{y_1,\ldots ,y_N\}}\| =o(n)$ ∥ M { y 1 , … , y N } ℓ ∥ = o ( n ) , for all N ∈ [1, k ], where ∥ S ∥ denotes the sum of the lengths of words in set S . For instance, in the human genome, n ≈ 3 × 10 9 but $\| \mathrm {M}^{12}_{\{y_1,\ldots ,y_k\}}\| \approx 10^{6}$ ∥ M { y 1 , … , y k } 12 ∥ ≈ 1 0 6 . We consider a constant-sized alphabet for stating our results. We show that all $\mathrm {M}^{\ell }_{y_{1}},\ldots ,\mathrm {M}^{\ell }_{\{y_1,\ldots ,y_k\}}$ M y 1 ℓ , … , M { y 1 , … , y k } ℓ can be computed in $\mathcal {O}(kn+{\sum }^{k}_{N=1}\| \mathrm {M}^{\ell }_{\{y_1,\ldots ,y_N\}}\| )$ O ( k n + ∑ N = 1 k ∥ M { y 1 , … , y N } ℓ ∥ ) total time using $\mathcal {O}(\textsc {MaxIn}+\textsc {MaxOut})$ O ( MaxIn + MaxOut ) space, where MaxIn is the length of the longest word in { y 1 , … , y k } and $\textsc {MaxOut}=\max \limits \{\| \mathrm {M}^{\ell }_{\{y_1,\ldots ,y_N\}}\| :N\in [1,k]\}$ MaxOut = max { ∥ M { y 1 , … , y N } ℓ ∥ : N ∈ [ 1 , k ] } . Proof-of-concept experimental results are also provided confirming our theoretical findings and justifying our contribution.
Author Pissis, Solon P.
Badkobeh, Golnaz
Héliou, Alice
Fici, Gabriele
Ayad, Lorraine A.K.
Author_xml – sequence: 1
  givenname: Lorraine A.K.
  surname: Ayad
  fullname: Ayad, Lorraine A.K.
  organization: Department of Informatics, King’s College London
– sequence: 2
  givenname: Golnaz
  surname: Badkobeh
  fullname: Badkobeh, Golnaz
  organization: Department of Computing, Goldsmiths University of London
– sequence: 3
  givenname: Gabriele
  orcidid: 0000-0002-3536-327X
  surname: Fici
  fullname: Fici, Gabriele
  email: gabriele.fici@unipa.it
  organization: Dipartimento di Matematica e Informatica, Università di Palermo
– sequence: 4
  givenname: Alice
  surname: Héliou
  fullname: Héliou, Alice
  organization: Laboratoire d’Informatique de l’École Polytechique, École Polytechnique
– sequence: 5
  givenname: Solon P.
  surname: Pissis
  fullname: Pissis, Solon P.
  organization: CWI, Vrije Universiteit
BookMark eNp9kE1LAzEQhoMo2Fb_gKcFz9HJ13b3WEr9gEIPreeQTbMlpSZrkhX992ZbQfDQ08ww7zMf7xhdOu8MQncEHgjA9DECUMoxUMC5JhUWF2hEOGMYeA2Xx5xizgRco3GMewBgFcAILebexRR6nazbFTOX7Nbm3DsVrImFb4ulz42N-UqxsK5Y9anrE14bF22yn6ZYd0qbG3TVqkM0t79xgt6eFpv5C16unl_nsyXWnNYJU0KHExptpkY0rC5zBMoEbQTVJaNEcEMY07xkbaO2qlY1YW1LtqxuQYmSTdD9aW4X_EdvYpJ73weXV0oquOCsmhKRVdVJpYOPMZhWapvU8FQKyh4kATmYJk-myWyaPJomB5T-Q7tg31X4Pg-xExSz2O1M-LvqDPUDe95_2A
CitedBy_id crossref_primary_10_1016_j_tcs_2022_04_029
Cites_doi 10.1101/gr.229102
10.1109/DCC.2008.95
10.1007/978-3-030-00479-8_12
10.1093/bioinformatics/btx209
10.1017/CBO9780511574931
10.1109/5.892711
10.1007/978-3-319-32152-3_23
10.1007/978-3-030-00479-8_11
10.1007/978-3-030-00479-8
10.1145/3386369
10.1109/ISITA.2010.5649621
10.1016/j.ic.2018.06.002
10.1007/3-540-61258-0_11
10.1017/CBO9780511546853
10.1093/bioinformatics/btv189
10.1007/978-3-642-40450-4_12
10.1186/s13015-017-0094-z
10.1007/s00453-017-0286-4
10.1007/978-3-662-55751-8_14
10.1186/s12859-014-0388-9
10.1109/DCC.2019.00062
10.1007/978-3-319-19929-0_28
10.1016/S0020-0190(98)00104-5
10.1109/ISIT.2012.6283021
10.1007/978-3-030-32686-9_11
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
DOI 10.1007/s00224-020-10018-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1433-0490
EndPage 797
ExternalDocumentID 10_1007_s00224_020_10018_5
GrantInformation_xml – fundername: Ministero dell’Istruzione, dell’Università e della Ricerca
  grantid: 2017K7XPAN
  funderid: https://doi.org/10.13039/501100003407
GroupedDBID --Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ3
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
MK~
ML~
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF-
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XOL
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c429t-2124350bce7e5b396e7e02352b52c632154e133c463fbada9a913ff1d39f0a563
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598710200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-4350
IngestDate Wed Nov 05 00:57:33 EST 2025
Tue Nov 18 22:42:59 EST 2025
Sat Nov 29 03:28:55 EST 2025
Fri Feb 21 02:47:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords String algorithm
Output sensitive algorithm
Absent word
Antidictionary
Data compression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-2124350bce7e5b396e7e02352b52c632154e133c463fbada9a913ff1d39f0a563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3536-327X
OpenAccessLink https://link.springer.com/10.1007/s00224-020-10018-5
PQID 2545438715
PQPubID 48907
PageCount 21
ParticipantIDs proquest_journals_2545438715
crossref_citationtrail_10_1007_s00224_020_10018_5
crossref_primary_10_1007_s00224_020_10018_5
springer_journals_10_1007_s00224_020_10018_5
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Theory of computing systems
PublicationTitleAbbrev Theory Comput Syst
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Farach, M: Optimal suffix tree construction with large alphabets. In: 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, pp. 137–143. IEEE Computer Society, Miami Beach (1997)
Belazzougui, D, Cunial, F, Kärkkäinen, J., Mäkinen, V.: Versatile succinct representations of the bidirectional Burrows-Wheeler transform. In: Bodlaender, H.L., Italiano, G.F. (eds.) Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia Antipolis. Proceedings, Lecture Notes in Computer Science, vol. 8125, pp 133–144. Springer (2013)
Fukae, H, Ota, T, Morita, H: On fast and memory-efficient construction of an antidictionary array. In: Proceedings of the 2012 IEEE International Symposium on Information Theory, pp. 1092–1096, IEEE (2012)
Gusfield, D: Algorithms on strings, trees, and sequences: Computer science and computational biology. Cambridge University Press, New York (1997)
Ayad, L A K, Badkobeh, G, Fici, G, Héliou, A., Pissis, S P: Constructing antidictionaries in output-sensitive space. In: Bilgin, A., Marcellin, M.W., Serra-Sagristà, J., Storer, J.A. (eds.) Data Compression Conference, DCC 2019, pp 538–547. IEEE, Snowbird (2019)
Crochemore, M, Héliou, A., Kucherov, G, Mouchard, L, Pissis, SP, Ramusat, Y: Minimal absent words in a sliding window and applications to on-line pattern matching. In: Klasing, R, Zeitoun, M (eds.) Fundamentals of Computation Theory - 21st International Symposium, FCT 2017, Bordeaux, Proceedings, Lecture Notes in Computer Science, vol. 10472, pp 164–176. Springer (2017)
Crochemore, M, Hancart, C, Lecroq, T: Algorithms on strings. Cambridge University Press (2007)
Fiala, M, Holub, J: DCA using suffix arrays. In: 2008 data compression conference (DCC 2008), pp. 516. IEEE Computer Society, Snowbird (2008)
Fujishige, Y, Takagi, T, Hendrian, D: Truncated DAWGs and their application to minimal absent word problem. In: Gagie, T., Moffat, A., Navarro, G., Cuadros-Vargas, E. (eds.) String Processing and Information Retrieval - 25th International Symposium, SPIRE 2018, Lima, Proceedings, Lecture Notes in Computer Science, vol. 11147, pp 139–152. Springer (2018)
CrochemoreMMignosiFRestivoASalemiSData compression using antidictionariesProc. IEEE200088111756176810.1109/5.892711
Ota, T, Morita, H: On the adaptive antidictionary code using minimal forbidden words with constant lengths. In: Proceedings of the International Symposium on Information Theory and its Applications, ISITA 2010, pp. 72–77. IEEE, Taichung (2010)
HéliouAPissisSPPuglisiSJemMAW: computing minimal absent words in external memoryBioinformatics201733172746274910.1093/bioinformatics/btx209
SilvaRMPratasDCastroLPinhoAJFerreiraPJSGThree minimal sequences found in Ebola virus genomes and absent from human DNABioinformatics201531152421242510.1093/bioinformatics/btv189
Farach, M, Muthukrishnan, S: Perfect hashing for strings: Formalization and algorithms. In: Hirschberg, D.S., Myers, E.W. (eds.) Combinatorial Pattern Matching, 7th Annual Symposium, CPM 96, Laguna Beach, Proceedings, Lecture Notes in Computer Science, vol. 1075, pp 130–140. Springer (1996)
KociumakaTKubicaMRadoszewskiJRytterWWalenTA linear-time algorithm for seeds computationACM Trans. Algorithm.202016227:127:23408776910.1145/3386369
CharalampopoulosPCrochemoreMFiciGMercasRPissisSPAlignment-free sequence comparison using absent wordsInf. Comput.201826215768385783710.1016/j.ic.2018.06.002
Barton, C, Héliou, A., Mouchard, L, Pissis, SP: Parallelising the computation of minimal absent words. In: Wyrzykowski, R., Deelman, E., Dongarra, J.J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) Parallel processing and applied mathematics - 11th international conference, PPAM 2015, Krakow. revised selected papers, part II, Lecture Notes in Computer Science, vol. 9574 , pp 243–253. Springer (2015)
Gagie, T, Moffat, A, Navarro, G, Cuadros-Vargas, E. (eds.): String processing and information retrieval - 25th international symposium, SPIRE 2018, Lima, proceedings, Lecture Notes in Computer Science, vol. 11147 Springer (2018)
BartonCHéliouAMouchardLPissisSPLinear-time computation of minimal absent words using suffix arrayBMC Bioinform.20141538810.1186/s12859-014-0388-9
AlmirantisYCharalampopoulosPGaoJIliopoulosCSMohamedMPissisSPPolychronopoulosDOn avoided words, absent words, and their application to biological sequence analysisAlgorithm. Mol. Biol.20171215:15:1210.1186/s13015-017-0094-z
BelazzouguiDCunialFA framework for space-efficient string kernelsAlgorithmica2017793857883369610010.1007/s00453-017-0286-4
CrochemoreMMignosiFRestivoAAutomata and forbidden wordsInf. Process. Lett.1998673111117163817810.1016/S0020-0190(98)00104-5
Crochemore, M, Navarro, G: Improved antidictionary based compression. In: 22nd International Conference of the Chilean Computer Science Society (SCCC 2002), pp. 7–13, Copiapo (2002)
Kärkkäinen, J., Kempa, D, Puglisi, SJ: Parallel external memory suffix sorting. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) Combinatorial Pattern Matching - 26th Annual Symposium, CPM 2015, Ischia Island, Proceedings, Lecture Notes in Computer Science, vol. 9133, pp 329–342. Springer (2015). https://doi.org/10.1007/978-3-319-19929-0_28
Fujishige, Y, Tsujimaru, Y, Inenaga, S, Bannai, H, Takeda, M: Computing DAWGs and minimal absent words in linear time for integer alphabets. In: Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, LIPIcs, vol. 58, pp 38:1–38:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Kraków (2016)
Fici, G, Gawrychowski, P: Minimal absent words in rooted and unrooted trees. In: String Processing and Information Retrieval - 26th International Symposium, SPIRE 2019. Proceedings, Segovia (2019)
Charalampopoulos, P, Crochemore, M, Pissis, S P: On extended special factors of a word. In: Gagie, T., Moffat, A., Navarro, G., Cuadros-Vargas, E. (eds.) String Processing and Information Retrieval - 25th International Symposium, SPIRE 2018, Lima, Proceedings, Lecture Notes in Computer Science, vol. 11147, pp 131–138. Springer (2018)
KentWJSugnetCWFureyTSRoskinKMPringleTHZahlerAMHausslerDThe human genome browser at UCSCGenome Res.2002126996100610.1101/gr.229102
10018_CR10
10018_CR19
T Kociumaka (10018_CR25) 2020; 16
10018_CR16
10018_CR15
10018_CR14
10018_CR13
P Charalampopoulos (10018_CR3) 2018; 262
WJ Kent (10018_CR26) 2002; 12
Y Almirantis (10018_CR4) 2017; 12
10018_CR9
D Belazzougui (10018_CR11) 2017; 79
10018_CR8
M Crochemore (10018_CR2) 1998; 67
10018_CR6
10018_CR1
10018_CR23
10018_CR22
10018_CR21
M Crochemore (10018_CR12) 2000; 88
10018_CR20
10018_CR5
10018_CR28
10018_CR27
10018_CR24
C Barton (10018_CR7) 2014; 15
A Héliou (10018_CR18) 2017; 33
RM Silva (10018_CR17) 2015; 31
References_xml – reference: Fujishige, Y, Tsujimaru, Y, Inenaga, S, Bannai, H, Takeda, M: Computing DAWGs and minimal absent words in linear time for integer alphabets. In: Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) 41st International Symposium on Mathematical Foundations of Computer Science, MFCS 2016, LIPIcs, vol. 58, pp 38:1–38:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Kraków (2016)
– reference: Fici, G, Gawrychowski, P: Minimal absent words in rooted and unrooted trees. In: String Processing and Information Retrieval - 26th International Symposium, SPIRE 2019. Proceedings, Segovia (2019)
– reference: Fujishige, Y, Takagi, T, Hendrian, D: Truncated DAWGs and their application to minimal absent word problem. In: Gagie, T., Moffat, A., Navarro, G., Cuadros-Vargas, E. (eds.) String Processing and Information Retrieval - 25th International Symposium, SPIRE 2018, Lima, Proceedings, Lecture Notes in Computer Science, vol. 11147, pp 139–152. Springer (2018)
– reference: Fukae, H, Ota, T, Morita, H: On fast and memory-efficient construction of an antidictionary array. In: Proceedings of the 2012 IEEE International Symposium on Information Theory, pp. 1092–1096, IEEE (2012)
– reference: Gagie, T, Moffat, A, Navarro, G, Cuadros-Vargas, E. (eds.): String processing and information retrieval - 25th international symposium, SPIRE 2018, Lima, proceedings, Lecture Notes in Computer Science, vol. 11147 Springer (2018)
– reference: Barton, C, Héliou, A., Mouchard, L, Pissis, SP: Parallelising the computation of minimal absent words. In: Wyrzykowski, R., Deelman, E., Dongarra, J.J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) Parallel processing and applied mathematics - 11th international conference, PPAM 2015, Krakow. revised selected papers, part II, Lecture Notes in Computer Science, vol. 9574 , pp 243–253. Springer (2015)
– reference: Farach, M: Optimal suffix tree construction with large alphabets. In: 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, pp. 137–143. IEEE Computer Society, Miami Beach (1997)
– reference: BelazzouguiDCunialFA framework for space-efficient string kernelsAlgorithmica2017793857883369610010.1007/s00453-017-0286-4
– reference: CharalampopoulosPCrochemoreMFiciGMercasRPissisSPAlignment-free sequence comparison using absent wordsInf. Comput.201826215768385783710.1016/j.ic.2018.06.002
– reference: KentWJSugnetCWFureyTSRoskinKMPringleTHZahlerAMHausslerDThe human genome browser at UCSCGenome Res.2002126996100610.1101/gr.229102
– reference: AlmirantisYCharalampopoulosPGaoJIliopoulosCSMohamedMPissisSPPolychronopoulosDOn avoided words, absent words, and their application to biological sequence analysisAlgorithm. Mol. Biol.20171215:15:1210.1186/s13015-017-0094-z
– reference: Crochemore, M, Hancart, C, Lecroq, T: Algorithms on strings. Cambridge University Press (2007)
– reference: Ayad, L A K, Badkobeh, G, Fici, G, Héliou, A., Pissis, S P: Constructing antidictionaries in output-sensitive space. In: Bilgin, A., Marcellin, M.W., Serra-Sagristà, J., Storer, J.A. (eds.) Data Compression Conference, DCC 2019, pp 538–547. IEEE, Snowbird (2019)
– reference: CrochemoreMMignosiFRestivoAAutomata and forbidden wordsInf. Process. Lett.1998673111117163817810.1016/S0020-0190(98)00104-5
– reference: Charalampopoulos, P, Crochemore, M, Pissis, S P: On extended special factors of a word. In: Gagie, T., Moffat, A., Navarro, G., Cuadros-Vargas, E. (eds.) String Processing and Information Retrieval - 25th International Symposium, SPIRE 2018, Lima, Proceedings, Lecture Notes in Computer Science, vol. 11147, pp 131–138. Springer (2018)
– reference: Crochemore, M, Héliou, A., Kucherov, G, Mouchard, L, Pissis, SP, Ramusat, Y: Minimal absent words in a sliding window and applications to on-line pattern matching. In: Klasing, R, Zeitoun, M (eds.) Fundamentals of Computation Theory - 21st International Symposium, FCT 2017, Bordeaux, Proceedings, Lecture Notes in Computer Science, vol. 10472, pp 164–176. Springer (2017)
– reference: Ota, T, Morita, H: On the adaptive antidictionary code using minimal forbidden words with constant lengths. In: Proceedings of the International Symposium on Information Theory and its Applications, ISITA 2010, pp. 72–77. IEEE, Taichung (2010)
– reference: KociumakaTKubicaMRadoszewskiJRytterWWalenTA linear-time algorithm for seeds computationACM Trans. Algorithm.202016227:127:23408776910.1145/3386369
– reference: Kärkkäinen, J., Kempa, D, Puglisi, SJ: Parallel external memory suffix sorting. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.) Combinatorial Pattern Matching - 26th Annual Symposium, CPM 2015, Ischia Island, Proceedings, Lecture Notes in Computer Science, vol. 9133, pp 329–342. Springer (2015). https://doi.org/10.1007/978-3-319-19929-0_28
– reference: Farach, M, Muthukrishnan, S: Perfect hashing for strings: Formalization and algorithms. In: Hirschberg, D.S., Myers, E.W. (eds.) Combinatorial Pattern Matching, 7th Annual Symposium, CPM 96, Laguna Beach, Proceedings, Lecture Notes in Computer Science, vol. 1075, pp 130–140. Springer (1996)
– reference: Belazzougui, D, Cunial, F, Kärkkäinen, J., Mäkinen, V.: Versatile succinct representations of the bidirectional Burrows-Wheeler transform. In: Bodlaender, H.L., Italiano, G.F. (eds.) Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia Antipolis. Proceedings, Lecture Notes in Computer Science, vol. 8125, pp 133–144. Springer (2013)
– reference: Fiala, M, Holub, J: DCA using suffix arrays. In: 2008 data compression conference (DCC 2008), pp. 516. IEEE Computer Society, Snowbird (2008)
– reference: HéliouAPissisSPPuglisiSJemMAW: computing minimal absent words in external memoryBioinformatics201733172746274910.1093/bioinformatics/btx209
– reference: CrochemoreMMignosiFRestivoASalemiSData compression using antidictionariesProc. IEEE200088111756176810.1109/5.892711
– reference: Crochemore, M, Navarro, G: Improved antidictionary based compression. In: 22nd International Conference of the Chilean Computer Science Society (SCCC 2002), pp. 7–13, Copiapo (2002)
– reference: Gusfield, D: Algorithms on strings, trees, and sequences: Computer science and computational biology. Cambridge University Press, New York (1997)
– reference: SilvaRMPratasDCastroLPinhoAJFerreiraPJSGThree minimal sequences found in Ebola virus genomes and absent from human DNABioinformatics201531152421242510.1093/bioinformatics/btv189
– reference: BartonCHéliouAMouchardLPissisSPLinear-time computation of minimal absent words using suffix arrayBMC Bioinform.20141538810.1186/s12859-014-0388-9
– volume: 12
  start-page: 996
  issue: 6
  year: 2002
  ident: 10018_CR26
  publication-title: Genome Res.
  doi: 10.1101/gr.229102
– ident: 10018_CR14
  doi: 10.1109/DCC.2008.95
– ident: 10018_CR20
  doi: 10.1007/978-3-030-00479-8_12
– volume: 33
  start-page: 2746
  issue: 17
  year: 2017
  ident: 10018_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx209
– ident: 10018_CR23
  doi: 10.1017/CBO9780511574931
– volume: 88
  start-page: 1756
  issue: 11
  year: 2000
  ident: 10018_CR12
  publication-title: Proc. IEEE
  doi: 10.1109/5.892711
– ident: 10018_CR22
– ident: 10018_CR27
  doi: 10.1007/978-3-319-32152-3_23
– ident: 10018_CR9
  doi: 10.1007/978-3-030-00479-8_11
– ident: 10018_CR28
  doi: 10.1007/978-3-030-00479-8
– volume: 16
  start-page: 27:1
  issue: 2
  year: 2020
  ident: 10018_CR25
  publication-title: ACM Trans. Algorithm.
  doi: 10.1145/3386369
– ident: 10018_CR15
  doi: 10.1109/ISITA.2010.5649621
– volume: 262
  start-page: 57
  issue: 1
  year: 2018
  ident: 10018_CR3
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2018.06.002
– ident: 10018_CR8
– ident: 10018_CR24
  doi: 10.1007/3-540-61258-0_11
– ident: 10018_CR21
  doi: 10.1017/CBO9780511546853
– volume: 31
  start-page: 2421
  issue: 15
  year: 2015
  ident: 10018_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv189
– ident: 10018_CR10
  doi: 10.1007/978-3-642-40450-4_12
– ident: 10018_CR13
– volume: 12
  start-page: 5:1
  issue: 1
  year: 2017
  ident: 10018_CR4
  publication-title: Algorithm. Mol. Biol.
  doi: 10.1186/s13015-017-0094-z
– volume: 79
  start-page: 857
  issue: 3
  year: 2017
  ident: 10018_CR11
  publication-title: Algorithmica
  doi: 10.1007/s00453-017-0286-4
– ident: 10018_CR16
  doi: 10.1007/978-3-662-55751-8_14
– volume: 15
  start-page: 388
  year: 2014
  ident: 10018_CR7
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-014-0388-9
– ident: 10018_CR1
  doi: 10.1109/DCC.2019.00062
– ident: 10018_CR19
  doi: 10.1007/978-3-319-19929-0_28
– volume: 67
  start-page: 111
  issue: 3
  year: 1998
  ident: 10018_CR2
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(98)00104-5
– ident: 10018_CR6
  doi: 10.1109/ISIT.2012.6283021
– ident: 10018_CR5
  doi: 10.1007/978-3-030-32686-9_11
SSID ssj0003800
Score 2.276619
Snippet A word x that is absent from a word y is called minimal if all its proper factors occur in y . Given a collection of k words y 1 , … , y k over an alphabet Σ ,...
A word x that is absent from a word y is called minimal if all its proper factors occur in y. Given a collection of k words y1, … , yk over an alphabet Σ, we...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 777
SubjectTerms Algorithms
Alphabets
Bioinformatics
Computation
Computer Science
Data compression
Genomes
Theory of Computation
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o9KAHp1NxOiUHbxpcm6YfJxkyEdQpbMJupU0TKUg7bfXv9yVLNxTcxVMPaUPJ7-V9JO_9HsA57ydccQxTXYwVqKeYoglHRy70ozQUUqmAp6bZRDAahdNp9GwP3CqbVtnoRKOos1LoM_IrDGS4x9C959ezd6q7RunbVdtCYx02HNd1tJzfB3ShiVloSlDQJdCVQbxvi2ZM6ZwxXlQHT5qFKKT8p2Faepu_LkiN3blt__ePd2HHepxkMBeRPViTRQfaTTcHYjd3B7YfFwyu1T4MdSfPObds8UoGRZ1nuSmBMLE1KRV5KHFggrq9InlBnj5rnI-OdT681qBkjMG4PICX2-Hk5o7algtUoGGqKRoyvVCpkIHkKYt8fGpGHDflrvAZ-geexKhWeD5TaZIlURI5TCknY5FC1H12CK2iLOQREI9HQkk_9INMeammgZeJFGnCM_TAlON3wWnWOxaWj1y3xXiLF0zKBqMYMYoNRjHvwsXim9mcjWPl270GmNjuzCpeotKFywba5fDfsx2vnu0Etlyd7mIyeXvQQoTkKWyKrzqvPs6MXH4DwGDl4Q
  priority: 102
  providerName: ProQuest
Title Constructing Antidictionaries of Long Texts in Output-Sensitive Space
URI https://link.springer.com/article/10.1007/s00224-020-10018-5
https://www.proquest.com/docview/2545438715
Volume 65
WOSCitedRecordID wos000598710200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-0490
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003800
  issn: 1432-4350
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9080EfnE7F6Rx58E0DW9P043GODUE3xzZ1-lLaNJGBdGKnf7-XrO1QVNCXKyVpKHfJfZC73wGc8mbIFccw1cJYgdqKKRpydOQ8x488IZVyeWSaTbiDgTed-sOsKCzNs93zK0mjqYtiN2NuqA53NG6QR_k6lNHcefo4jsZ3hf5lnik8QUdA1wPxZlYq8_0an83Rysf8ci1qrE2v8r__3IHtzLsk7eV22IU1mVShknduINlBrsJWv0BrTfegq7t2LnFkkyfSThazeGbKHUwcTeaKXM9xYIJ6PCWzhNy8LXA9Ota571pbkjEG3nIfbnvdSeeSZu0VqEAjtKBotDR7IiFdySPmO_jU6DdWxC3hMPQFbIkRrLAdpqIwDv3QbzGlWjHzFUrYYQdQSuaJPARic18o6XiOGys70pDvMpQiCnmM3pZqOTVo5VwORIY9rltgPAcFarLhWoBcCwzXAl6Ds-KblyXyxq-z67nwguwUpgEGv9xmGBLi8HkurNXwz6sd_W36MWxaOtXFZPHWoYQSkyewId4Xs_S1Aevu_UMDyhfdwXCEb1cuRdpvdjS1hpq6Y6RD_tgwO_kDd1vjJQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NS8MwFH_MKagHp1NxfuagJw12TdO1BxGZyoZzCpvgrbZpIgPppp2K_5R_oy9Zu6Hgbh489ZD2QZpf3kfy3u8B7HMr5IpjmGpjrEAdxRQNOTpynutHnpBK1Xhkmk3U2m3v_t6_LcBnXguj0ypznWgUddwX-oz8GAMZ7jB07_np4JnqrlH6djVvoTGCxZX8eMeQLT1pnuP6Htj25UW33qBZVwEqUPcOKepqdBGsSMia5BHzXXxq0hc74rZwGZpAR2LgJhyXqSiMQz_0q0ypasx8hRNzGcqdgVnHwe2gUwWt-ljzM8-UvKALoiuRuJUV6ZhSPWMsqQ7WNOuRR_l3Qzjxbn9cyBo7d1n6b39oGZYyj5qcjbbAChRkUoZS3q2CZMqrDIvXY4badBUudKfSEXdu8kjOkmEv7pkSD3N2QPqKtPo40EXblZJeQm5ehyiPdnS-v7YQpDMIhVyDuz-Z2joUk34iN4A43BdKup5bi5UTaZp7GUoRhTxGD1NV3QpU8_UNRMa3rtt-PAVjpmiDiQAxERhMBLwCh-NvBiO2kalvb-dACDLNkwYTFFTgKIfSZPh3aZvTpe3BfKN73QpazfbVFizYOrXHZC1vQxFXS-7AnHgb9tKXXbMnCDz8NcS-AC_UQVI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NS8MwFH_MKaIHP6bidGoOetKwrWn6cRAZzqFsTkGF3WqbJjKQbtqp-K_51_mStRsKevPgqYe0D9L88j6S934PYJ_XQq44hqkWxgrUVkzRkKMj5zl-5AmplMsj02zC7Xa9Xs-_LsBHXguj0ypznWgUdTwQ-oy8ioEMtxm697yqsrSI62brZPhEdQcpfdOat9MYQ6Qt398wfEuPL5q41geW1Tq7PT2nWYcBKlAPjyjqbXQXapGQruQR8x18agIYK-KWcBiaQ1tiECdsh6kojEM_9OtMqXrMfIWTdBjKnYFZtMJc77G2SydWgHmm_AXdEV2VxGtZwY4p2zOGk-rATTMgeZR_NYpTT_fb5ayxea3l__y3VmAp87RJY7w1VqEgkxIs510sSKbUSrB4OWGuTdfgTHcwHXPqJg-kkYz6cd-UfpgzBTJQpDPAgVucakr6Cbl6GaE8eqPrALTlIDfDUMh1uPuTqW1AMRkkchOIzX2hpOM5bqzsSNPfy1CKKOQxep6q7pShnq91IDIedt0O5DGYMEgbfASIj8DgI-BlOJx8MxyzkPz6diUHRZBppDSYIqIMRzmspsM_S9v6XdoezCOygs5Ft70NC5bO-DHJzBUo4mLJHZgTr6N--rxrtgeB-79G2Cfwnkn4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Antidictionaries+of+Long+Texts+in+Output-Sensitive+Space&rft.jtitle=Theory+of+computing+systems&rft.au=Ayad%2C+Lorraine+A.K.&rft.au=Badkobeh%2C+Golnaz&rft.au=Fici%2C+Gabriele&rft.au=H%C3%A9liou%2C+Alice&rft.date=2021-07-01&rft.pub=Springer+US&rft.issn=1432-4350&rft.eissn=1433-0490&rft.volume=65&rft.issue=5&rft.spage=777&rft.epage=797&rft_id=info:doi/10.1007%2Fs00224-020-10018-5&rft.externalDocID=10_1007_s00224_020_10018_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-4350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-4350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-4350&client=summon