The power of microscopic nonclassical states to amplify the precision of macroscopic optical metrology
It is well-known that the precision of a phase measurement with a Mach-Zehnder interferometer employing strong classic light can be greatly enhanced with the addition of weak nonclassical light. In the context of quantifying nonclassicality, the amount by which a nonclassical state can enhance preci...
Saved in:
| Published in: | npj quantum information Vol. 9; no. 1; pp. 5 - 9 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
11.01.2023
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2056-6387, 2056-6387 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | It is well-known that the precision of a phase measurement with a Mach-Zehnder interferometer employing strong classic light can be greatly enhanced with the addition of weak nonclassical light. In the context of quantifying nonclassicality, the amount by which a nonclassical state can enhance precision in this way has been termed its ’metrological power’. To-date, the enhancement provided by weak nonclassical states has been calculated only for specific measurement configurations. Here we are able to optimize over all measurement configurations to obtain the maximum enhancement that can be achieved by any single or multi-mode nonclassical state together with strong classical states, for local and distributed quantum metrology employing any linear or nonlinear single-mode unitary transformation. Our analysis reveals that the quantum Fisher information for quadrature-displacement sensing is the sole property that determines the maximum achievable enhancement in all of these different scenarios, providing a unified quantification of the metrological power. |
|---|---|
| AbstractList | Abstract It is well-known that the precision of a phase measurement with a Mach-Zehnder interferometer employing strong classic light can be greatly enhanced with the addition of weak nonclassical light. In the context of quantifying nonclassicality, the amount by which a nonclassical state can enhance precision in this way has been termed its ’metrological power’. To-date, the enhancement provided by weak nonclassical states has been calculated only for specific measurement configurations. Here we are able to optimize over all measurement configurations to obtain the maximum enhancement that can be achieved by any single or multi-mode nonclassical state together with strong classical states, for local and distributed quantum metrology employing any linear or nonlinear single-mode unitary transformation. Our analysis reveals that the quantum Fisher information for quadrature-displacement sensing is the sole property that determines the maximum achievable enhancement in all of these different scenarios, providing a unified quantification of the metrological power. It is well-known that the precision of a phase measurement with a Mach-Zehnder interferometer employing strong classic light can be greatly enhanced with the addition of weak nonclassical light. In the context of quantifying nonclassicality, the amount by which a nonclassical state can enhance precision in this way has been termed its ’metrological power’. To-date, the enhancement provided by weak nonclassical states has been calculated only for specific measurement configurations. Here we are able to optimize over all measurement configurations to obtain the maximum enhancement that can be achieved by any single or multi-mode nonclassical state together with strong classical states, for local and distributed quantum metrology employing any linear or nonlinear single-mode unitary transformation. Our analysis reveals that the quantum Fisher information for quadrature-displacement sensing is the sole property that determines the maximum achievable enhancement in all of these different scenarios, providing a unified quantification of the metrological power. |
| ArticleNumber | 5 |
| Author | Jacobs, Kurt Ge, Wenchao Zubairy, M. Suhail |
| Author_xml | – sequence: 1 givenname: Wenchao orcidid: 0000-0003-1936-7710 surname: Ge fullname: Ge, Wenchao email: wenchaoge.tamu@gmail.com organization: Department of Physics, University of Rhode Island, Department of Physics, Southern Illinois University, Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy, Texas A&M University – sequence: 2 givenname: Kurt surname: Jacobs fullname: Jacobs, Kurt email: dr.kurt.jacobs@gmail.com organization: United States Army Research Laboratory, Department of Physics, University of Massachusetts at Boston – sequence: 3 givenname: M. Suhail surname: Zubairy fullname: Zubairy, M. Suhail organization: Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy, Texas A&M University |
| BookMark | eNp9kUtLJDEUhYMojKP-gVkVzLpm8qo8liLjAwQ3ug6382jTVFfKJDL0v590l-jgwkVIuNzvnJt7vqPjKU0eoR8E_yKYqd-Fk4HxHlPaYywk7vUROqV4EL1gSh7_9_6GLkrZYIyJpopycorC47Pv5vTX5y6FbhttTsWmOdqumdgRSokWxq5UqL50NXWwnccYdl3dc9nbWGKaDix8sGmuB2zra05jWu_O0UmAsfiLt_sMPV3_eby67e8fbu6uLu97y6muPQlMerWSkq6op4pw6UARx2CwmoeV4IEzAkI5GgbmmMZCcO3BcuzwymLBztDdousSbMyc4xbyziSI5lBIeW0gt9lGbzxRVA5ay9BEsBMAkjpB2hGUgndN6-eiNef08upLNZv0mqc2vqGyIUwziVsXXbr2vy_Zh3dXgs0-HrPEY1o85hCP0Q1SnyAb24bbJmuGOH6NsgUtzWda-_wx1RfUPz1eppg |
| CitedBy_id | crossref_primary_10_1103_jkjj_3gvb |
| Cites_doi | 10.1103/PhysRevLett.121.043604 10.1103/PhysRevA.100.042304 10.1103/PhysRevLett.121.130503 10.1016/0370-1573(86)90179-1 10.1103/PhysRevD.23.1693 10.1103/PhysRevLett.72.3439 10.1103/PhysRevResearch.2.023030 10.1117/12.7973302 10.1103/PhysRevLett.122.040503 10.1038/srep28881 10.1103/PhysRevLett.100.073601 10.1088/1751-8121/ab5d4d 10.1103/PhysRevLett.119.190405 10.1038/nature01773 10.1103/PhysRevLett.59.2153 10.1126/science.aaw2884 10.1103/PhysRevResearch.2.023400 10.1103/PhysRevLett.123.250503 10.1364/OL.38.001413 10.1038/s41567-019-0743-x 10.1103/PhysRevLett.111.070403 10.1103/PhysRevLett.124.171101 10.1103/PhysRevA.94.042342 10.1088/1367-2630/ab0604 10.1038/nphoton.2013.177 10.1103/PhysRevLett.82.5225 10.1103/PhysRevLett.120.080501 10.1007/BF01007479 10.1016/j.physleta.2020.126311 10.1103/PhysRevLett.105.010403 10.1103/PhysRevA.87.032324 10.1103/PhysRevA.60.538 10.1103/PhysRevA.97.032329 10.1103/PhysRevResearch.1.032024 10.1103/PhysRevLett.124.150502 10.1103/PhysRevLett.123.231107 10.1103/PhysRevA.98.012114 10.1103/PhysRevLett.111.130503 10.1103/PhysRevA.97.042337 10.1103/PhysRevA.88.042316 10.1103/PhysRevApplied.13.024037 10.1103/PhysRevA.63.023812 10.1016/j.physrep.2015.12.002 10.1088/1751-8113/47/42/424006 10.1103/PhysRevLett.96.010401 10.1103/PhysRevLett.111.173601 10.1103/PhysRevLett.71.1355 10.1126/science.aac5138 10.1103/PhysRevLett.124.171102 10.1038/s41586-020-2420-8 10.1088/1367-2630/ab7a32 10.1017/CBO9781139179027 10.48550/arXiv.1302.5311 10.1017/CBO9780511813993 10.1016/bs.po.2015.02.003 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1038/s41534-022-00670-9 |
| DatabaseName | Springer Nature Link CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics Computer Science |
| EISSN | 2056-6387 |
| EndPage | 9 |
| ExternalDocumentID | oai_doaj_org_article_e18275997f6640d6aa72d612d6622aed 10_1038_s41534_022_00670_9 |
| GrantInformation_xml | – fundername: Qatar National Research Fund (QNRF) grantid: NPRP 13S-0205-200258 funderid: https://doi.org/10.13039/100008982 – fundername: National Science Foundation (NSF) grantid: 2243591 funderid: https://doi.org/10.13039/100000001 |
| GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK KQ8 LK8 M7P M~E NAO NO~ OK1 PIMPY PQQKQ PROAC RNT SNYQT UKHRP AAFWJ AASML AAYXX CITATION 7XB 8FK AZQEC DWQXO GNUQQ K9. PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS |
| ID | FETCH-LOGICAL-c429t-1f37e8b772b2e28147da81d3a5c94fb64f431a68d2f53d3906649eac40d0bc063 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912374300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2056-6387 |
| IngestDate | Tue Oct 14 19:01:31 EDT 2025 Tue Oct 07 06:48:19 EDT 2025 Sat Nov 29 02:51:41 EST 2025 Tue Nov 18 22:19:42 EST 2025 Fri Feb 21 02:39:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c429t-1f37e8b772b2e28147da81d3a5c94fb64f431a68d2f53d3906649eac40d0bc063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1936-7710 |
| OpenAccessLink | https://doaj.org/article/e18275997f6640d6aa72d612d6622aed |
| PQID | 2764039370 |
| PQPubID | 2041919 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e18275997f6640d6aa72d612d6622aed proquest_journals_2764039370 crossref_primary_10_1038_s41534_022_00670_9 crossref_citationtrail_10_1038_s41534_022_00670_9 springer_journals_10_1038_s41534_022_00670_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-11 |
| PublicationDateYYYYMMDD | 2023-01-11 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | npj quantum information |
| PublicationTitleAbbrev | npj Quantum Inf |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Liu, Jing, Wang (CR5) 2013; 88 Yu (CR10) 2020; 13 Knobel, Cleland (CR46) 2003; 424 Tan, Volkoff, Kwon, Jeong (CR19) 2017; 119 Giovannetti, Vitali (CR41) 2001; 63 Grangier, Slusher, Yurke, LaPorta (CR17) 1987; 59 Szczykulska, Baumgratz, Datta (CR48) 2016; 1 Tóth, Petz (CR35) 2013; 87 CR34 CR32 Pezzé, Smerzi (CR4) 2008; 100 Tóth, Apellaniz (CR33) 2014; 47 Spagnolo (CR57) 2013; 111 Caves (CR2) 1981; 23 Rivas, Luis (CR31) 2010; 105 Yu (CR37) 2020; 583 Gessner, Pezzè, Smerzi (CR52) 2018; 121 Wollman (CR7) 2015; 349 Schumaker (CR39) 1986; 135 Humphreys, Barbieri, Datta, Walmsley (CR45) 2013; 111 Nichols, Liuzzo-Scorpo, Knott, Adesso (CR51) 2018; 98 Wang (CR58) 2019; 123 Helstrom (CR43) 1969; 1 Huang (CR14) 1984; 23 Ge, Jacobs, Asiri, Foss-Feig, Zubairy (CR16) 2020; 2 Aasi (CR6) 2013; 7 CR42 Taylor, Bowen (CR9) 2016; 615 Li, Guzun, Xiao (CR18) 1999; 82 Hoff (CR47) 2013; 38 Giovannetti, Lloyd, Maccone (CR1) 2006; 96 Eldredge, Foss-Feig, Gross, Rolston, Gorshkov (CR22) 2018; 97 Matsubara, Facchi, Giovannetti, Yuasa (CR53) 2019; 21 Tse (CR38) 2019; 123 Liu, Yuan, Lu, Wang (CR54) 2019; 53 Guo (CR28) 2020; 16 Burd (CR8) 2019; 364 CR15 Ciampini (CR50) 2016; 6 CR55 McCuller (CR11) 2020; 124 Xia (CR30) 2020; 124 Gagatsos, Branford, Datta (CR49) 2016; 94 Zhuang, Zhang, Shapiro (CR25) 2018; 97 Kwon, Tan, Volkoff, Jeong (CR21) 2019; 122 Braunstein, Caves (CR36) 1994; 72 Albarelli, Barbieri, Genoni, Gianani (CR56) 2020; 384 Ge, Jacobs, Eldredge, Gorshkov, Foss-Feig (CR24) 2018; 121 Gatto, Facchi, Narducci, Tamma (CR26) 2019; 1 Jacobs, Tittonen, Wiseman, Schiller (CR40) 1999; 60 Holland, Burnett (CR3) 1993; 71 Lang, Caves (CR13) 2013; 111 Yadin (CR20) 2018; 8 Zhao (CR12) 2020; 124 Oh, Lee, Lie, Jeong (CR27) 2020; 2 Qian (CR44) 2019; 100 Proctor, Knott, Dunningham (CR23) 2018; 120 Zhao (CR29) 2021; 11 L McCuller (670_CR11) 2020; 124 V Giovannetti (670_CR1) 2006; 96 A Rivas (670_CR31) 2010; 105 H Yu (670_CR37) 2020; 583 670_CR32 N Spagnolo (670_CR57) 2013; 111 Y Xia (670_CR30) 2020; 124 Q Zhuang (670_CR25) 2018; 97 Z Eldredge (670_CR22) 2018; 97 L Pezzé (670_CR4) 2008; 100 W Ge (670_CR16) 2020; 2 T Matsubara (670_CR53) 2019; 21 G Tóth (670_CR33) 2014; 47 MA Taylor (670_CR9) 2016; 615 B Yadin (670_CR20) 2018; 8 M Tse (670_CR38) 2019; 123 CN Gagatsos (670_CR49) 2016; 94 M Gessner (670_CR52) 2018; 121 Y Zhao (670_CR12) 2020; 124 X Guo (670_CR28) 2020; 16 H Kwon (670_CR21) 2019; 122 H Wang (670_CR58) 2019; 123 670_CR15 W Ge (670_CR24) 2018; 121 F Albarelli (670_CR56) 2020; 384 MA Ciampini (670_CR50) 2016; 6 C-C Huang (670_CR14) 1984; 23 D Gatto (670_CR26) 2019; 1 J Liu (670_CR5) 2013; 88 KC Tan (670_CR19) 2017; 119 PC Humphreys (670_CR45) 2013; 111 670_CR55 SC Burd (670_CR8) 2019; 364 M Szczykulska (670_CR48) 2016; 1 J Yu (670_CR10) 2020; 13 MD Lang (670_CR13) 2013; 111 S-R Zhao (670_CR29) 2021; 11 J Liu (670_CR54) 2019; 53 J Aasi (670_CR6) 2013; 7 G Tóth (670_CR35) 2013; 87 BL Schumaker (670_CR39) 1986; 135 K Jacobs (670_CR40) 1999; 60 MJ Holland (670_CR3) 1993; 71 TJ Proctor (670_CR23) 2018; 120 CW Helstrom (670_CR43) 1969; 1 UB Hoff (670_CR47) 2013; 38 670_CR42 CM Caves (670_CR2) 1981; 23 C Oh (670_CR27) 2020; 2 P Grangier (670_CR17) 1987; 59 R Nichols (670_CR51) 2018; 98 SL Braunstein (670_CR36) 1994; 72 Y-q Li (670_CR18) 1999; 82 V Giovannetti (670_CR41) 2001; 63 RG Knobel (670_CR46) 2003; 424 K Qian (670_CR44) 2019; 100 670_CR34 EE Wollman (670_CR7) 2015; 349 |
| References_xml | – volume: 121 start-page: 043604 year: 2018 ident: CR24 article-title: Distributed quantum metrology with linear networks and separable inputs publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.043604 – volume: 100 start-page: 042304 year: 2019 ident: CR44 article-title: Heisenberg-scaling measurement protocol for analytic functions with quantum sensor networks publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.042304 – volume: 121 start-page: 130503 year: 2018 ident: CR52 article-title: Sensitivity bounds for multiparameter quantum metrology publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.130503 – volume: 135 start-page: 317 year: 1986 end-page: 408 ident: CR39 article-title: Quantum mechanical pure states with gaussian wave functions publication-title: Phys. Rep. doi: 10.1016/0370-1573(86)90179-1 – volume: 23 start-page: 1693 year: 1981 end-page: 1708 ident: CR2 article-title: Quantum-mechanical noise in an interferometer publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.23.1693 – volume: 72 start-page: 3439 year: 1994 ident: CR36 article-title: Statistical distance and the geometry of quantum states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.3439 – volume: 2 start-page: 023030 year: 2020 ident: CR27 article-title: Optimal distributed quantum sensing using gaussian states publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.023030 – volume: 23 start-page: 365 year: 1984 ident: CR14 article-title: Optical heterodyne profilometer publication-title: Opt. Eng. doi: 10.1117/12.7973302 – volume: 122 start-page: 040503 year: 2019 ident: CR21 article-title: Nonclassicality as a quantifiable resource for quantum metrology publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.040503 – ident: CR42 – volume: 6 year: 2016 ident: CR50 article-title: Quantum-enhanced multiparameter estimation in multiarm interferometers publication-title: Sci. Rep. doi: 10.1038/srep28881 – volume: 100 start-page: 073601 year: 2008 ident: CR4 article-title: Mach-zehnder interferometry at the heisenberg limit with coherent and squeezed-vacuum light publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.073601 – volume: 53 start-page: 023001 year: 2019 ident: CR54 article-title: Quantum fisher information matrix and multiparameter estimation publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8121/ab5d4d – volume: 119 start-page: 190405 year: 2017 ident: CR19 article-title: Quantifying the coherence between coherent states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.190405 – volume: 424 start-page: 291 year: 2003 end-page: 293 ident: CR46 article-title: Nanometre-scale displacement sensing using a single electron transistor publication-title: Nature doi: 10.1038/nature01773 – ident: CR15 – volume: 59 start-page: 2153 year: 1987 end-page: 2156 ident: CR17 article-title: Squeezed-light–enhanced polarization interferometer publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.2153 – volume: 364 start-page: 1163 year: 2019 end-page: 1165 ident: CR8 article-title: Quantum amplification of mechanical oscillator motion publication-title: Science doi: 10.1126/science.aaw2884 – volume: 2 start-page: 023400 year: 2020 ident: CR16 article-title: Operational resource theory of nonclassicality via quantum metrology publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.023400 – volume: 123 start-page: 250503 year: 2019 ident: CR58 article-title: Boson sampling with 20 input photons and a 60-mode interferometer in a 10 -dimensional hilbert space publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.250503 – volume: 38 start-page: 1413 year: 2013 end-page: 1415 ident: CR47 article-title: Quantum-enhanced micromechanical displacement sensitivity publication-title: Opt. Lett. doi: 10.1364/OL.38.001413 – volume: 16 start-page: 281 year: 2020 end-page: 284 ident: CR28 article-title: Distributed quantum sensing in a continuous-variable entangled network publication-title: Nat. Phys. doi: 10.1038/s41567-019-0743-x – volume: 111 start-page: 070403 year: 2013 ident: CR45 article-title: Quantum enhanced multiple phase estimation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.070403 – volume: 124 start-page: 171101 year: 2020 ident: CR12 article-title: Frequency-dependent squeezed vacuum source for broadband quantum noise reduction in advanced gravitational-wave detectors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.171101 – ident: CR32 – volume: 94 start-page: 042342 year: 2016 ident: CR49 article-title: Gaussian systems for quantum-enhanced multiple phase estimation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.94.042342 – volume: 21 start-page: 033014 year: 2019 ident: CR53 article-title: Optimal gaussian metrology for generic multimode interferometric circuit publication-title: New J. Phys. doi: 10.1088/1367-2630/ab0604 – volume: 7 start-page: 613 EP – year: 2013 ident: CR6 article-title: Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.177 – volume: 82 start-page: 5225 year: 1999 end-page: 5228 ident: CR18 article-title: Sub-shot-noise-limited optical heterodyne detection using an amplitude-squeezed local oscillator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.5225 – volume: 120 start-page: 080501 year: 2018 ident: CR23 article-title: Multiparameter estimation in networked quantum sensors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.080501 – volume: 1 start-page: 231 year: 1969 end-page: 252 ident: CR43 article-title: Quantum detection and estimation theory publication-title: J. Stat. Phys. doi: 10.1007/BF01007479 – volume: 384 start-page: 126311 year: 2020 ident: CR56 article-title: A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging publication-title: Physics Letters A doi: 10.1016/j.physleta.2020.126311 – volume: 105 start-page: 010403 year: 2010 ident: CR31 article-title: Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.010403 – volume: 87 start-page: 032324 year: 2013 ident: CR35 article-title: Extremal properties of the variance and the quantum fisher information publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.032324 – volume: 1 start-page: 621 year: 2016 end-page: 639 ident: CR48 article-title: Multi-parameter quantum metrology publication-title: Adv. Phys. X – volume: 60 start-page: 538 year: 1999 end-page: 548 ident: CR40 article-title: Quantum noise in the position measurement of a cavity mirror undergoing brownian motion publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.60.538 – volume: 97 start-page: 032329 year: 2018 ident: CR25 article-title: Distributed quantum sensing using continuous-variable multipartite entanglement publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.032329 – volume: 1 start-page: 032024 year: 2019 ident: CR26 article-title: Distributed quantum metrology with a single squeezed-vacuum source publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.1.032024 – volume: 124 start-page: 150502 year: 2020 ident: CR30 article-title: Demonstration of a reconfigurable entangled radio-frequency photonic sensor network publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.150502 – volume: 123 start-page: 231107 year: 2019 ident: CR38 article-title: Quantum-enhanced advanced ligo detectors in the era of gravitational-wave astronomy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.231107 – volume: 11 start-page: 031009 year: 2021 ident: CR29 article-title: Field demonstration of distributed quantum sensing without post-selection publication-title: Phys. Rev. X – volume: 98 start-page: 012114 year: 2018 ident: CR51 article-title: Multiparameter gaussian quantum metrology publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.012114 – volume: 111 start-page: 130503 year: 2013 ident: CR57 article-title: General rules for bosonic bunching in multimode interferometers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.130503 – volume: 97 start-page: 042337 year: 2018 ident: CR22 article-title: Optimal and secure measurement protocols for quantum sensor networks publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.042337 – volume: 88 start-page: 042316– year: 2013 ident: CR5 article-title: Phase-matching condition for enhancement of phase sensitivity in quantum metrology publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.042316 – volume: 13 start-page: 024037 year: 2020 ident: CR10 article-title: Quantum enhanced optical phase estimation with a squeezed thermal state publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.024037 – volume: 63 start-page: 023812 year: 2001 ident: CR41 article-title: Phase-noise measurement in a cavity with a movable mirror undergoing quantum brownian motion publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.63.023812 – volume: 615 start-page: 1 year: 2016 end-page: 59 ident: CR9 article-title: Quantum metrology and its application in biology publication-title: Phys. Rep. doi: 10.1016/j.physrep.2015.12.002 – volume: 47 start-page: 424006 year: 2014 ident: CR33 article-title: Quantum metrology from a quantum information science perspective publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/47/42/424006 – volume: 96 start-page: 010401 year: 2006 ident: CR1 article-title: Quantum metrology publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.010401 – ident: CR34 – volume: 111 start-page: 173601 year: 2013 ident: CR13 article-title: Optimal quantum-enhanced interferometry using a laser power source publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.173601 – ident: CR55 – volume: 71 start-page: 1355 year: 1993 end-page: 1358 ident: CR3 article-title: Interferometric detection of optical phase shifts at the heisenberg limit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.1355 – volume: 349 start-page: 952 year: 2015 end-page: 955 ident: CR7 article-title: Quantum squeezing of motion in a mechanical resonator publication-title: Science doi: 10.1126/science.aac5138 – volume: 124 start-page: 171102 year: 2020 ident: CR11 article-title: Frequency-dependent squeezing for advanced ligo publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.171102 – volume: 8 start-page: 041038 year: 2018 ident: CR20 article-title: Operational resource theory of continuous-variable nonclassicality publication-title: Phys. Rev. X – volume: 583 start-page: 43 year: 2020 end-page: 47 ident: CR37 article-title: Quantum correlations between light and the kilogram-mass mirrors of ligo publication-title: Nature doi: 10.1038/s41586-020-2420-8 – volume: 72 start-page: 3439 year: 1994 ident: 670_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.3439 – volume: 135 start-page: 317 year: 1986 ident: 670_CR39 publication-title: Phys. Rep. doi: 10.1016/0370-1573(86)90179-1 – volume: 6 year: 2016 ident: 670_CR50 publication-title: Sci. Rep. doi: 10.1038/srep28881 – volume: 123 start-page: 250503 year: 2019 ident: 670_CR58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.250503 – volume: 23 start-page: 1693 year: 1981 ident: 670_CR2 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.23.1693 – volume: 119 start-page: 190405 year: 2017 ident: 670_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.190405 – volume: 124 start-page: 150502 year: 2020 ident: 670_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.150502 – volume: 424 start-page: 291 year: 2003 ident: 670_CR46 publication-title: Nature doi: 10.1038/nature01773 – volume: 53 start-page: 023001 year: 2019 ident: 670_CR54 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8121/ab5d4d – ident: 670_CR55 doi: 10.1088/1367-2630/ab7a32 – volume: 364 start-page: 1163 year: 2019 ident: 670_CR8 publication-title: Science doi: 10.1126/science.aaw2884 – volume: 2 start-page: 023400 year: 2020 ident: 670_CR16 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.023400 – volume: 1 start-page: 032024 year: 2019 ident: 670_CR26 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.1.032024 – volume: 123 start-page: 231107 year: 2019 ident: 670_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.231107 – volume: 349 start-page: 952 year: 2015 ident: 670_CR7 publication-title: Science doi: 10.1126/science.aac5138 – volume: 63 start-page: 023812 year: 2001 ident: 670_CR41 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.63.023812 – volume: 100 start-page: 042304 year: 2019 ident: 670_CR44 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.100.042304 – volume: 121 start-page: 043604 year: 2018 ident: 670_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.043604 – volume: 1 start-page: 231 year: 1969 ident: 670_CR43 publication-title: J. Stat. Phys. doi: 10.1007/BF01007479 – volume: 16 start-page: 281 year: 2020 ident: 670_CR28 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0743-x – ident: 670_CR42 doi: 10.1017/CBO9781139179027 – volume: 124 start-page: 171101 year: 2020 ident: 670_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.171101 – volume: 8 start-page: 041038 year: 2018 ident: 670_CR20 publication-title: Phys. Rev. X – ident: 670_CR32 doi: 10.48550/arXiv.1302.5311 – volume: 47 start-page: 424006 year: 2014 ident: 670_CR33 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/47/42/424006 – volume: 82 start-page: 5225 year: 1999 ident: 670_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.5225 – volume: 105 start-page: 010403 year: 2010 ident: 670_CR31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.010403 – volume: 11 start-page: 031009 year: 2021 ident: 670_CR29 publication-title: Phys. Rev. X – volume: 13 start-page: 024037 year: 2020 ident: 670_CR10 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.024037 – volume: 59 start-page: 2153 year: 1987 ident: 670_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.2153 – volume: 94 start-page: 042342 year: 2016 ident: 670_CR49 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.94.042342 – volume: 1 start-page: 621 year: 2016 ident: 670_CR48 publication-title: Adv. Phys. X – ident: 670_CR34 doi: 10.1017/CBO9780511813993 – volume: 122 start-page: 040503 year: 2019 ident: 670_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.040503 – volume: 23 start-page: 365 year: 1984 ident: 670_CR14 publication-title: Opt. Eng. doi: 10.1117/12.7973302 – volume: 96 start-page: 010401 year: 2006 ident: 670_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.010401 – volume: 120 start-page: 080501 year: 2018 ident: 670_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.080501 – volume: 60 start-page: 538 year: 1999 ident: 670_CR40 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.60.538 – volume: 384 start-page: 126311 year: 2020 ident: 670_CR56 publication-title: Physics Letters A doi: 10.1016/j.physleta.2020.126311 – ident: 670_CR15 doi: 10.1016/bs.po.2015.02.003 – volume: 615 start-page: 1 year: 2016 ident: 670_CR9 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2015.12.002 – volume: 98 start-page: 012114 year: 2018 ident: 670_CR51 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.012114 – volume: 583 start-page: 43 year: 2020 ident: 670_CR37 publication-title: Nature doi: 10.1038/s41586-020-2420-8 – volume: 87 start-page: 032324 year: 2013 ident: 670_CR35 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.87.032324 – volume: 97 start-page: 042337 year: 2018 ident: 670_CR22 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.042337 – volume: 97 start-page: 032329 year: 2018 ident: 670_CR25 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.97.032329 – volume: 111 start-page: 130503 year: 2013 ident: 670_CR57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.130503 – volume: 38 start-page: 1413 year: 2013 ident: 670_CR47 publication-title: Opt. Lett. doi: 10.1364/OL.38.001413 – volume: 124 start-page: 171102 year: 2020 ident: 670_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.171102 – volume: 111 start-page: 173601 year: 2013 ident: 670_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.173601 – volume: 71 start-page: 1355 year: 1993 ident: 670_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.1355 – volume: 100 start-page: 073601 year: 2008 ident: 670_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.073601 – volume: 111 start-page: 070403 year: 2013 ident: 670_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.070403 – volume: 121 start-page: 130503 year: 2018 ident: 670_CR52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.130503 – volume: 88 start-page: 042316– year: 2013 ident: 670_CR5 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.042316 – volume: 21 start-page: 033014 year: 2019 ident: 670_CR53 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab0604 – volume: 2 start-page: 023030 year: 2020 ident: 670_CR27 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.023030 – volume: 7 start-page: 613 EP – year: 2013 ident: 670_CR6 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.177 |
| SSID | ssj0001928241 |
| Score | 2.234994 |
| Snippet | It is well-known that the precision of a phase measurement with a Mach-Zehnder interferometer employing strong classic light can be greatly enhanced with the... Abstract It is well-known that the precision of a phase measurement with a Mach-Zehnder interferometer employing strong classic light can be greatly enhanced... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5 |
| SubjectTerms | 639/766/400/482 639/766/483/1255 639/766/483/481 Classical and Quantum Gravitation Parameter estimation Physics Physics and Astronomy Power Quantum Computing Quantum Field Theories Quantum Information Technology Quantum Physics Relativity Theory Spintronics String Theory |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLhQJioSAfuIHVxHHs-IQAUXFAVQ-AerMcP6pKdLNs0kr998x4na6KRC9cE0_k6LM934znAfC290EkoyKPePZziSqSu2AM97pr0HZDFZez-H9-00dH3cmJOS4Ot7GEVc5nYj6ow-DJR34gtJKUR6qrD6vfnLpG0e1qaaFxF-5RlQSRQ_eOtz4WgwaFrEuuTNV0ByPqq0ZyCmHPGSrc3NBHuWz_Da751_Vo1jqHu_8738fwqPBN9nGzQJ7Anbjcg925lwMrW3sPHuRQUD8-hYQrh62oeRobEjungD1KXTnzbDksPZFtwpXlTKSRTQNzFJSerthEcuvSsyfLuq3ssMpOc3YeKTJ-OL16Bj8Ov3z__JWXbgzco86aeJ0aHbse2XgvouhqqYNDstu41huZeiUTchGnOsS-bUJjkMtIg8e6rELVe2RCz2EH5xlfAEs-aN32CW2zIFVsO9G3SXsZ0bqUSYUF1DMm1pdS5dQx45fNV-ZNZzc4WsTRZhytWcC7a5nVplDHraM_EdTXI6nIdn4wrE9t2bM2ou2lW2N0wl-pgnJOi4CMMCglhIs4zf0Zelt2_mi3uC_g_bx4tq__PaWXt3_tFTykTvfk_anrfdiZ1hfxNdz3l9PZuH6T1_0fUrUJNQ priority: 102 providerName: ProQuest |
| Title | The power of microscopic nonclassical states to amplify the precision of macroscopic optical metrology |
| URI | https://link.springer.com/article/10.1038/s41534-022-00670-9 https://www.proquest.com/docview/2764039370 https://doaj.org/article/e18275997f6640d6aa72d612d6622aed |
| Volume | 9 |
| WOSCitedRecordID | wos000912374300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2056-6387 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001928241 issn: 2056-6387 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2056-6387 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001928241 issn: 2056-6387 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07bxQxEB5BoKAhPMVBOLmgAyv78PpRkugikOC0QoCOyvL6gYIId7pbkNLkt2fGu5cHEtDQbLH2SNbM2PONPQ-AF50PVTIy8ohnPxdoIrkLxnCvdI2-G5q4nMX_-Z2az_ViYdorrb4oJmwoDzwwbj8iAFaNMSpJKYognVNVQLMcpKwqFwOdvoUyV5ypbwNu0WibxiyZotb7G7RUteAUvJ5zU7i5Zolywf5rKPO3h9Fsb47uwd0RKLLXwwLvw4344wHsbpswsHFPPoSEgmYr6nXGlomdUHwdZZoce4aOvSdsTGJgOXFow_olcxRDnk5ZT3TrscVOpnWXtMtVvuNmJ5EC2ZdfTx_Bp6PZx8M3fGyewD2amJ6XqVZRdwieuypWuhQqOMSmtWu8EamTIiF0cFKjqJo61AahhzB4CiOPi84jcHkMO7jO-ARY8kGppkvoSgUhY6OrrknKi4jOoEgyTKDcMtL6sbI4Nbj4bvMLd63twHyLzLeZ-dZM4OUFzWqoq_HX2Qckn4uZVBM7_0BNsaOm2H9pygT2ttK140bd2ErhXCoKWEzg1Vbil8N_XtLT_7GkZ3CH2tfTlU5Z7sFOv_4Zn8Nt_6s_3qyncFMt1BRuHczm7YdpVvApxaa29D2b4Uj79n375Rx9bv3f |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguFAqIhQI-wAmsJo4TxweEeFVddbvaQ0HlZBw_qkp0s2wCaP8Uv5GxN-mqSPTWA9fEY9nJ529m7BkPwPPKWOZl4ahD7qccVSTVVkpqRJmh74YqLmbxfx6LyaQ8PpbTDfjd58KEsMqeEyNR29qEPfJdJgoe8khF8mb-nYaqUeF0tS-hsYLFgVv-QpeteT36gP_3BWN7H4_e79OuqgA1yL0tTX0mXFmhVVkxx8qUC6vRaMt0biT3VcE96lRdlDiHPLOZRJ3MJdITT2xSGdTo2O812OQB7APYnI4Op1_WuzoSXRiedtk5SVbuNqghM05D0HzMiaHyggaMhQIuWLd_HchGPbe39b99oTtwu7OoydvVErgLG262DVt9tQrSkdc23IjBrqa5Bx7XBpmH8nCk9uQshCSG5JxTQ2b1zAR3IiCXxFyrhrQ10SHs3i9JG-QWXVWiKKvXsvU8HguQMxdi_-uT5X34dCXzfgADHKd7CMQbK0ReefQ-LS9cXrIq98Jwh_4z94UdQtpjQJnuMvZQE-SbikEBWalWuFGIGxVxo-QQXp7LzFdXkVza-l2A1nnLcI14fFAvTlTHSsqhdylyKYXHqSS20FowizavLQrGtMNh7vRQUx23NWqNsyG86sG6fv3vIT26vLdncHP_6HCsxqPJwWO4xdCaDHtdaboDg3bxwz2B6-Zne9osnnarjsDXq4bxH2jcZsM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHSAuDAaIwgAf4ARWE8eJ4wNCwKioNqoeAI2TSfwxTWJNaQKo_xp_Hc-us2pI7LYD18TPspOf34f9fn4AT2ttmJOFpRZ1P-VoImllpKRalBnGbmjiAov_86GYTsujIznbgt89F8anVfY6MShq02i_Rz5iouCeRyqSkYtpEbP98avFd-orSPmT1r6cxhoiB3b1C8O39uVkH__1M8bG7z6-fU9jhQGqUQ93NHWZsGWNHmbNLCtTLkyFDlxW5VpyVxfcoX2tihLnk2cmk2ifuURVxROT1BqtO_Z7BbbRJedsANuzyYfZl80Oj8RwhqeRqZNk5ahFa5lx6hPoAz-GynPWMBQNOOfp_nU4G2zeeOd__lq34Gb0tMnr9dK4DVt2vgs7fRULEpXaLlwLSbC6vQMO1wxZ-LJxpHHk1KcqetLOiSbzZq59mOERTQIHqyVdQyqfju9WpPNyy1itKMhWG9lmEY4LyKn1nIDmeHUXPl3KvO_BAMdp7wNx2giR1w6jUsMLm5eszp3Q3GJczV1hhpD2eFA6XtLua4V8UyFZICvVGkMKMaQChpQcwvMzmcX6ipILW7_xMDtr6a8XDw-a5bGK2kpZjDpFLqVwOJXEFFUlmEFf2BQFY5XFYe71sFNR57Vqg7khvOiBu3n97yE9uLi3J3AdsasOJ9ODh3CDoZPpt8DSdA8G3fKHfQRX9c_upF0-jguQwNfLRvEfzh1vgw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+power+of+microscopic+nonclassical+states+to+amplify+the+precision+of+macroscopic+optical+metrology&rft.jtitle=npj+quantum+information&rft.au=Wenchao+Ge&rft.au=Kurt+Jacobs&rft.au=M.+Suhail+Zubairy&rft.date=2023-01-11&rft.pub=Nature+Portfolio&rft.eissn=2056-6387&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41534-022-00670-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e18275997f6640d6aa72d612d6622aed |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-6387&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-6387&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-6387&client=summon |