Optimization of Buffer Networks via DC Programming

This brief is concerned with the <inline-formula> <tex-math notation="LaTeX">H^{2} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">H^{\infty } </tex-math></inline-formula> norm-constrained optimization p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Transactions on Circuits and Systems II: Express Briefs Ročník 70; číslo 2; s. 606 - 610
Hlavní autoři: Zhao, Chengyan, Sakurama, Kazunori, Ogura, Masaki
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.02.2023
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1549-7747, 1558-3791
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This brief is concerned with the <inline-formula> <tex-math notation="LaTeX">H^{2} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">H^{\infty } </tex-math></inline-formula> norm-constrained optimization problems of dynamic buffer networks. The extended network model is introduced first, wherein the weights of all edges can be tuned independently. Because of the emerging nonconvexity of the extended model, previous results of positive linear systems failed to address this situation. By resorting to the log-log convexity of a class of nonlinear functions called posynomials, the optimization problems can be reduced to differential convex programming problems. The proposed framework is illustrated for large-scale networks.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2022.3212693