Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series

In the present work, a numerical technique for solving a general form of nonlinear fractional order integro-differential equations (GNFIDEs) with linear functional arguments using Chebyshev series is presented. The recommended equation with its linear functional argument produces a general form of d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations Jg. 2020; H. 1; S. 1 - 23
Hauptverfasser: Ali, Khalid K., Abd El Salam, Mohamed A., Mohamed, Emad M. H., Samet, Bessem, Kumar, Sunil, Osman, M. S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 15.09.2020
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1687-1847, 1687-1839, 1687-1847
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the present work, a numerical technique for solving a general form of nonlinear fractional order integro-differential equations (GNFIDEs) with linear functional arguments using Chebyshev series is presented. The recommended equation with its linear functional argument produces a general form of delay, proportional delay, and advanced non-linear arbitrary order Fredholm–Volterra integro-differential equations. Spectral collocation method is extended to study this problem as a matrix discretization scheme, where the fractional derivatives are characterized in the Caputo sense. The collocation method transforms the given equation and conditions to an algebraic nonlinear system of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. The introduced operational matrix of derivatives includes arbitrary order derivatives and the operational matrix of ordinary derivative as a special case. To the best of authors’ knowledge, there is no other work discussing this point. Numerical test examples are given, and the achieved results show that the recommended method is very effective and convenient.
AbstractList In the present work, a numerical technique for solving a general form of nonlinear fractional order integro-differential equations (GNFIDEs) with linear functional arguments using Chebyshev series is presented. The recommended equation with its linear functional argument produces a general form of delay, proportional delay, and advanced non-linear arbitrary order Fredholm–Volterra integro-differential equations. Spectral collocation method is extended to study this problem as a matrix discretization scheme, where the fractional derivatives are characterized in the Caputo sense. The collocation method transforms the given equation and conditions to an algebraic nonlinear system of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. The introduced operational matrix of derivatives includes arbitrary order derivatives and the operational matrix of ordinary derivative as a special case. To the best of authors’ knowledge, there is no other work discussing this point. Numerical test examples are given, and the achieved results show that the recommended method is very effective and convenient.
Abstract In the present work, a numerical technique for solving a general form of nonlinear fractional order integro-differential equations (GNFIDEs) with linear functional arguments using Chebyshev series is presented. The recommended equation with its linear functional argument produces a general form of delay, proportional delay, and advanced non-linear arbitrary order Fredholm–Volterra integro-differential equations. Spectral collocation method is extended to study this problem as a matrix discretization scheme, where the fractional derivatives are characterized in the Caputo sense. The collocation method transforms the given equation and conditions to an algebraic nonlinear system of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. The introduced operational matrix of derivatives includes arbitrary order derivatives and the operational matrix of ordinary derivative as a special case. To the best of authors’ knowledge, there is no other work discussing this point. Numerical test examples are given, and the achieved results show that the recommended method is very effective and convenient.
ArticleNumber 494
Author Osman, M. S.
Ali, Khalid K.
Mohamed, Emad M. H.
Samet, Bessem
Abd El Salam, Mohamed A.
Kumar, Sunil
Author_xml – sequence: 1
  givenname: Khalid K.
  surname: Ali
  fullname: Ali, Khalid K.
  organization: Department of Mathematics, Faculty of Science, Al Azhar University
– sequence: 2
  givenname: Mohamed A.
  surname: Abd El Salam
  fullname: Abd El Salam, Mohamed A.
  organization: Department of Mathematics, Faculty of Science, Al Azhar University
– sequence: 3
  givenname: Emad M. H.
  surname: Mohamed
  fullname: Mohamed, Emad M. H.
  organization: Department of Mathematics, Faculty of Science, Al Azhar University
– sequence: 4
  givenname: Bessem
  surname: Samet
  fullname: Samet, Bessem
  organization: Department of Mathematics, College of Science, King Saud University
– sequence: 5
  givenname: Sunil
  orcidid: 0000-0001-5420-8147
  surname: Kumar
  fullname: Kumar, Sunil
  email: skumar.math@nitjsr.ac.in
  organization: Department of Mathematics, National Institute of Technology
– sequence: 6
  givenname: M. S.
  surname: Osman
  fullname: Osman, M. S.
  email: mofatzi@sci.cu.edu.eg
  organization: Department of Mathematics, Faculty of Science, Cairo University
BookMark eNp9kc1u3CAUha0qkZq_F8gKqWu3YGMMy2rUn0hRu2nX6BpfPIwcSAC3yjxEn7nMuKNWXWSBQJfznXvhXFZnPnisqltG3zImxbvEWiGamja0LNWxev-qumBC9jWTvD_75_y6ukxpR4uKS3lR_fqyPGB0BmaSwrxkFzyxIZIJPUaY3R5HUnrNziNEYiOYg6Sonc84xVCPzlqM6LMrRXxa4HCfyE-Xt-RELf5EQZxKP58TWZLzE9lscXhOW_xBUpkC03V1bmFOePNnv6q-f_zwbfO5vv_66W7z_r42vFG5ZmBBqK4zqjUKh7YZlBUMKJdCcGUoa1AKbhqLynbtYCkYBf1olO0l5Z1or6q71XcMsNOP0T1AfNYBnD4WQpw0xOzMjJpirwYKvehg5D2TMFJq5Ch5sevM2BWvN6vXYwxPC6asd2GJ5bVJN5w35eOFZEUlV5WJIaWIVhuXj5-VI7hZM6oPSeo1SV2S1Mck9b6gzX_oaeAXoXaFUhH7CePfqV6gfgMqZrhF
CitedBy_id crossref_primary_10_1016_j_cjph_2022_04_015
crossref_primary_10_1007_s11082_023_04909_3
crossref_primary_10_1016_j_heliyon_2023_e15662
crossref_primary_10_3390_fractalfract8050268
crossref_primary_10_1007_s11082_023_06086_9
crossref_primary_10_1155_2022_1490583
crossref_primary_10_1155_2022_4861588
crossref_primary_10_1155_2023_5520787
crossref_primary_10_1088_1572_9494_abcfb3
crossref_primary_10_1155_2022_6203440
crossref_primary_10_1007_s11082_024_06528_y
crossref_primary_10_1186_s13662_021_03537_z
crossref_primary_10_3390_sym14122482
crossref_primary_10_1007_s11082_023_05558_2
crossref_primary_10_1007_s40819_021_01080_9
crossref_primary_10_1155_2023_6283436
crossref_primary_10_1007_s40042_025_01355_0
crossref_primary_10_1186_s13662_021_03617_0
crossref_primary_10_1007_s12190_025_02523_y
crossref_primary_10_1007_s00033_025_02451_8
crossref_primary_10_1080_02286203_2023_2296807
crossref_primary_10_1007_s40819_024_01753_1
crossref_primary_10_1007_s11071_023_08435_5
crossref_primary_10_1155_2023_4132763
crossref_primary_10_1016_j_wavemoti_2023_103221
crossref_primary_10_1016_j_cam_2025_116816
crossref_primary_10_1016_j_cam_2022_114830
crossref_primary_10_1155_2023_6229486
crossref_primary_10_3390_jmse11030565
crossref_primary_10_1088_1402_4896_ac0bd0
crossref_primary_10_1088_1402_4896_ad1455
crossref_primary_10_1007_s40819_022_01430_1
crossref_primary_10_1155_2022_3767559
crossref_primary_10_1007_s40314_021_01610_7
crossref_primary_10_1063_5_0176042
crossref_primary_10_5269_bspm_75746
crossref_primary_10_1007_s11082_023_05903_5
crossref_primary_10_1155_2024_1988187
crossref_primary_10_1002_mma_7022
crossref_primary_10_1007_s40314_020_01409_y
crossref_primary_10_1140_epjp_s13360_023_04773_w
crossref_primary_10_1016_j_physleta_2025_130598
crossref_primary_10_1080_02286203_2024_2327659
crossref_primary_10_1515_phys_2022_0035
crossref_primary_10_3390_sym13040536
crossref_primary_10_3390_fractalfract8040210
crossref_primary_10_1155_2023_6647128
Cites_doi 10.1016/j.amc.2007.02.134
10.1080/25765299.2019.1629543
10.1016/j.cam.2011.01.043
10.1002/mma.5341
10.1140/epjp/i2019-12858-8
10.1016/j.mcm.2009.02.003
10.2298/TSCI180921260Y
10.1016/j.chaos.2018.07.022
10.3390/math8060923
10.1002/mma.5634
10.1002/mma.6297
10.1016/j.cam.2005.12.015
10.1201/9780429284083
10.1016/j.chaos.2019.109399
10.1080/00207160.2011.584973
10.1007/s00025-012-0268-4
10.1016/j.camwa.2008.05.017
10.1016/j.cam.2013.07.044
10.1177/1077546310395977
10.2298/TSCI16S3717Y
10.1016/j.amc.2015.12.025
10.1016/j.chaos.2007.07.028
10.1108/03684920610688694
10.1016/j.amc.2006.02.055
10.2478/amns.2020.1.00016
10.3390/math7100913
10.1016/j.amc.2015.03.024
10.1016/j.camwa.2010.02.018
10.1186/s42787-019-0039-4
10.1016/j.amc.2014.01.075
10.1515/ijnsns-2018-0362
10.2298/TSCI180320239Y
10.1002/mma.5904
10.1016/j.cam.2018.07.034
10.1016/j.amc.2017.08.048
10.1016/j.cam.2011.02.030
10.2478/AMNS.2019.2.00026
10.1016/j.cnsns.2007.02.006
10.1016/j.cnsns.2011.10.014
10.1016/j.amc.2010.03.054
10.1016/j.chaos.2020.109811
10.1007/s40314-019-0860-2
10.1002/mma.6347
10.3390/math8040558
10.1007/s12043-019-1785-4
10.1002/cnm.1166
10.1002/mma.1439
10.4134/JKMS.2014.51.1.203
10.1515/nleng-2018-0163
10.2298/TSCI151224222Y
10.2298/TSCI191028427Y
10.1155/2014/682398
10.1016/j.cnsns.2010.05.036
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1186/s13662-020-02951-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 23
ExternalDocumentID oai_doaj_org_article_0e79b0a765ad4718ad00c8d84dc95cd5
10_1186_s13662_020_02951_z
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
7SC
7TB
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c429t-1afa6955c93c9eb32b9f61a0486649c012e864c2fe9f53bf0ac9a7dc9f7804563
IEDL.DBID M7S
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000573073900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1847
1687-1839
IngestDate Tue Oct 14 19:04:49 EDT 2025
Tue Sep 30 13:11:03 EDT 2025
Sat Nov 29 01:43:47 EST 2025
Tue Nov 18 20:57:44 EST 2025
Fri Feb 21 02:36:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Functional argument
Nonlinear fractional integro-differential equations
Chebyshev collocation method
Caputo fractional derivatives
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-1afa6955c93c9eb32b9f61a0486649c012e864c2fe9f53bf0ac9a7dc9f7804563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5420-8147
OpenAccessLink https://www.proquest.com/docview/2442687681?pq-origsite=%requestingapplication%
PQID 2442687681
PQPubID 237355
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_0e79b0a765ad4718ad00c8d84dc95cd5
proquest_journals_2442687681
crossref_citationtrail_10_1186_s13662_020_02951_z
crossref_primary_10_1186_s13662_020_02951_z
springer_journals_10_1186_s13662_020_02951_z
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References KumarS.KumarR.AgarwalR.P.SametB.A study of fractional Lotka–Volterra population model using Haar wavelet and Adams–Bashforth–Moulton methodsMath. Methods Appl. Sci.202043855645578408895107236879
DehghanM.ShakourifarM.HamidiA.The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade techniqueChaos Solitons Fractals20093952509252125194151197.65223
JothimaniK.KalirajK.HammouchZ.RavichandranC.New results on controllability in the framework of fractional integrodifferential equations with nondense domainEur. Phys. J. Plus20191349
CaoY.MaW.G.MaL.C.Local fractional functional method for solving diffusion equations on Cantor setsAbstr. Appl. Anal.20142014324887607023104
YangX.J.GaoF.JuY.ZhouH.W.Fundamental solutions of the general fractional-order diffusion equationsMath. Methods Appl. Sci.201841189312932038977871406.35480
GaoW.BaskonusH.M.ShiL.New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV systemAdv. Differ. Equ.2020202014142226
KilbasA.A.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.45003
GaoW.VeereshaP.PrakashaD.G.NovelB.H.M.Dynamic structures of 2019-nCoV with nonlocal operator via powerful computational techniqueBiology202095
ValliammalN.RavichandranC.HammouchZ.BaskonusH.M.A new investigation on fractional-ordered neutral differential systems with state-dependent delayInt. J. Nonlinear Sci. Numer. Simul.2019207–8803809403167607168390
YangX.J.FengY.Y.CattaniC.IncM.Fundamental solutions of anomalous diffusion equations with the decay exponential kernelMath. Methods Appl. Sci.201942114054406039742251425.35228
HouJ.YangC.LvX.Jacobi collocation methods for solving the fractional Bagley–Torvik equationInt. J. Appl. Math.20205011141204111028
RaslanK.R.AliK.K.Abd El SalamM.A.MohamedE.M.H.Spectral Tau method for solving general fractional order differential equations with linear functional argumentJ. Egypt. Math. Soc.2019271409205807134433
SinghJ.KumarD.HammouchZ.AtanganaA.A fractional epidemiological model for computer viruses pertaining to a new fractional derivativeAppl. Math. Comput.201831650451537039841426.68015
LakestaniM.JokarM.DehghanM.Numerical solution of nth-order integro-differential equations using trigonometric waveletsMath. Methods Appl. Sci.201134111317132928393751226.65113
SaeediH.MoghadamM.M.MollahasaniN.ChuevG.N.A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional orderCommun. Nonlinear Sci. Numer. Simul.20111631154116327366231221.65354
OsmanM.S.RezazadehH.EslamiM.Traveling wave solutions for (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(3+ 1)$\end{document} dimensional conformable fractional Zakharov–Kuznetsov equation with power law nonlinearityNonlinear Eng.201981559567
OğuzC.SezerM.Chelyshkov collocation method for a class of mixed functional integro-differential equationsAppl. Math. Comput.2015259943954333842406881779
YüzbaşıŞ.Laguerre approach for solving pantograph-type Volterra integro-differential equationsAppl. Math. Comput.20142321183119931813481410.65510
EslahchiM.R.DehghanM.ParviziM.Application of the collocation method for solving nonlinear fractional integro-differential equationsJ. Comput. Appl. Math.201425710512831074101296.65106
Al-GhafriK.S.RezazadehH.Solitons and other solutions of (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(3+ 1)$\end{document}-dimensional space-time fractional modified KdV-Zakharov–Kuznetsov equationAppl. Math. Nonlinear Sci.2019422893043984997
LiuZ.SunJ.SzántóI.Monotone iterative technique for Riemann–Liouville fractional integro-differential equations with advanced argumentsResults Math.2013633–41277128730573691276.26017
KumarS.KumarR.CattaniC.SametB.Chaotic behaviour of fractional predator-prey dynamical systemChaos Solitons Fractals20201354093639
OsmanM.S.New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamicsPramana2019932
YangA.M.HanY.LiJ.LiuW.X.On steady heat flow problem involving Yang–Srivastava–Machado fractional derivative without singular kernelTherm. Sci.201620suppl. 3717721
PatrícioM.S.RamosH.PatrícioM.Solving initial and boundary value problems of fractional ordinary differential equations by using collocation and fractional powersJ. Comput. Appl. Math.201935434835939448981432.65112
SezerM.Akyüz-DaşcıogluA.A Taylor method for numerical solution of generalized pantograph equations with linear functional argumentJ. Comput. Appl. Math.2007200121722522768271112.34063
OdibatZ.KumarS.A robust computational algorithm of homotopy asymptotic method for solving systems of fractional differential equationsJ. Comput. Nonlinear Dyn.2019148
ErturkV.S.MomaniS.OdibatZ.Application of generalized differential transform method to multi-order fractional differential equationsCommun. Nonlinear Sci. Numer. Simul.20081381642165423986961221.34022
YangX.J.General Fractional Derivatives: Theory, Methods and Applications2019New YorkTaylor & Francis Group1417.26001
YangX.J.Abdel-AtyM.CattaniC.A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transferTherm. Sci.2019233 Part A16771681
AtanganaA.Fractional discretization: the African’s tortoise walkChaos Solitons Fractals20201304016971
AzinH.MohammadiF.MachadoJ.T.A piecewise spectral-collocation method for solving fractional Riccati differential equation in large domainsComput. Appl. Math.2019383394738907101733
KumarS.AhmadianA.KumarR.KumarD.SinghJ.BaleanuD.SalimiM.An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein waveletsMathematics202084
ZhuL.FanQ.Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev waveletCommun. Nonlinear Sci. Numer. Simul.20121762333234128776791335.45002
SaadatmandiA.DehghanM.A Legendre collocation method for fractional integro-differential equationsJ. Vib. Control201117132050205828958621271.65157
KürkçüÖ.AslanE.SezerM.A numerical approach with error estimation to solve general integro-differential-difference equations using Dickson polynomialsAppl. Math. Comput.201627632433934520201410.65240
RusI.A.Dârzu-IleaV.A.First order functional-differential equations with both advanced and retarded argumentsFixed Point Theory20045110311520737101062.34067
GürbüzB.SezerM.GülerC.Laguerre collocation method for solving Fredholm integro-differential equations with functional argumentsJ. Appl. Math.201420143226320
YangX.J.GaoF.JuY.General Fractional Derivatives with Applications in Viscoelasticity2020San DiegoAcademic Press07092994
MaleknejadK.MirzaeeF.Numerical solution of integro-differential equations by using rationalized Haar functions methodKybernetes200635101735174422985211160.45303
YangX.J.BaleanuD.SrivastavaH.M.Local Fractional Integral Transforms and Their Applications2015AmsterdamElsevier1336.44001
YangX.J.New general calculi with respect to another functions applied to describe the Newton-like dashpot models in anomalous viscoelasticityTherm. Sci.2019236B37513757
IlhanE.KiymazI.O.A generalization of truncated M-fractional derivative and applications to fractional differential equationsAppl. Math. Nonlinear Sci.2020511711884090772
RamadanM.A.DumitruB.HighlyN.M.A.Accurate numerical technique for population models via rational Chebyshev collocation methodMathematics2019710
OsmanM.S.RezazadehH.EslamiM.NeiramehA.MirzazadehM.Analytical study of solitons to Benjamin–Bona–Mahony–Peregrine equation with power law nonlinearity by using three methodsUPB Sci. Bull., Ser. A, Appl. Math. Phys.201880426727838873101438.35365
YangX.J.Local Fractional Functional Analysis & Its Applications2011Hong KongAsian Academic Publisher
ArqubO.A.OsmanM.S.Abdel-AtyA.H.MohamedA.B.A.MomaniS.A numerical algorithm for the solutions of ABC singular Lane–Emden type models arising in astrophysics using reproducing kernel discretization methodMathematics202086
GülsuM.ÖztürkY.SezerM.A new collocation method for solution of mixed linear integro-differential-difference equationsAppl. Math. Comput.201021672183219826470871192.65161
IakovlevaV.VanegasC.J.On the solution of differential equations with delayed and advanced argumentsElectron. J. Differ. Equ.20051323129061092.34549
JavidiM.Modified homotopy perturbation method for solving system of linear Fredholm integral equationsMath. Comput. Model.2009501–215916525425971185.65236
AtanganaA.Blind in a commutative world: simple illustrations with functions and chaotic attractorsChaos Solitons Fractals201811434736338566561415.34009
Fakhar-IzadiF.DehghanM.The spectral methods for parabolic Volterra integro-differential equationsJ. Comput. Appl. Math.2011235144032404628014261219.65161
ŞahinN.YüzbaşiŞ.SezerM.A Bessel polynomial approach for solving general linear Fredholm integro-differential-difference equationsInt. J. Comput. Math.201188143093311128350421242.65288
AliK.K.Abd El SalamM.A.MohamedE.M.H.Chebyshev operational matrix for solving fractional order delay-differential equations using spectral collocation methodArab J. Basic Appl. Sci.2019261342352
El-WakilS.A.ElhanbalyA.AbdouM.A.Adomian decomposition method for solving fractional nonlinear differential equationsAppl. Math. Comput.2006182131332422920421106.65115
KumarS.GhoshS.SametB.GoufoE.F.An analysis for heat equations arises in diffusion process using new Yang–Abdel–Aty–Cattani fractional operatorMath. Methods Appl. Sci.2020439606260804101637
JerriA.Introduction to Integral Equations with Applications19992New YorkWiley0938.45001
DehghanM.ShakeriF.Solution of parabolic integro-differential equations arising in
M.R. Eslahchi (2951_CR34) 2014; 257
E. Ilhan (2951_CR9) 2020; 5
K.K. Ali (2951_CR64) 2019; 26
A.A.A. Kilbas (2951_CR19) 2006
X.J. Yang (2951_CR70) 2011
A. Atangana (2951_CR21) 2020; 130
M. Sezer (2951_CR38) 2007; 200
A. Saadatmandi (2951_CR69) 2011; 17
M.S. Osman (2951_CR5) 2019; 93
N. Şahin (2951_CR62) 2011; 88
K.S. Al-Ghafri (2951_CR6) 2019; 4
W. Gao (2951_CR20) 2020; 9
W. Gao (2951_CR10) 2020; 2020
X.J. Yang (2951_CR45) 2018; 41
B. Gürbüz (2951_CR65) 2014; 2014
M. Dehghan (2951_CR8) 2010; 26
X.J. Yang (2951_CR1) 2020
S.A. El-Wakil (2951_CR66) 2006; 182
E. Yusufoğlu (2951_CR27) 2007; 192
Ş. Yüzbaşı (2951_CR52) 2014; 232
K. Jothimani (2951_CR7) 2019; 134
S. Kumar (2951_CR16) 2020; 43
M.A. Ramadan (2951_CR44) 2019; 7
M. Gülsu (2951_CR51) 2010; 216
X.J. Yang (2951_CR56) 2019; 23
C. Oğuz (2951_CR48) 2015; 259
X.J. Yang (2951_CR14) 2019; 42
Z. Odibat (2951_CR58) 2019; 14
X.J. Yang (2951_CR46) 2019; 42
N. Valliammal (2951_CR3) 2019; 20
M. Lakestani (2951_CR35) 2011; 235
Ö. Kürkçü (2951_CR50) 2016; 276
M.S. Osman (2951_CR53) 2018; 80
Z. Liu (2951_CR61) 2013; 63
X.J. Xiao-Jun (2951_CR12) 2016; 20
S. Kumar (2951_CR15) 2020; 43
A. Atangana (2951_CR24) 2018; 114
O.A. Arqub (2951_CR30) 2020; 8
S. Kumar (2951_CR57) 2020; 135
K.K. Ali (2951_CR29) 2020; 139
V.S. Erturk (2951_CR67) 2008; 13
S. Kumar (2951_CR17) 2020; 8
Y. Cao (2951_CR47) 2014; 2014
J. Singh (2951_CR25) 2018; 316
A. Jerri (2951_CR4) 1999
F. Fakhar-Izadi (2951_CR37) 2011; 235
R. Subashini (2951_CR2) 2020; 13
I. Podlubny (2951_CR18) 1998
E. Tohidi (2951_CR68) 2014
M.S. Osman (2951_CR54) 2019; 8
I.A. Rus (2951_CR60) 2004; 5
X.J. Yang (2951_CR11) 2019; 23
A. Arikoglu (2951_CR31) 2008; 56
X.J. Yang (2951_CR22) 2012
H. Azin (2951_CR41) 2019; 38
K. Maleknejad (2951_CR39) 2006; 35
M. Dehghan (2951_CR26) 2009; 39
M.S. Patrício (2951_CR42) 2019; 354
H. Saeedi (2951_CR32) 2011; 16
M. Javidi (2951_CR28) 2009; 50
K.R. Raslan (2951_CR63) 2019; 27
V. Iakovleva (2951_CR59) 2005; 13
X.J. Yang (2951_CR71) 2019
L. Zhu (2951_CR33) 2012; 17
M. Lakestani (2951_CR36) 2011; 34
Y. Yang (2951_CR40) 2014; 51
J. Hou (2951_CR43) 2020; 50
A.M. Yang (2951_CR13) 2016; 20
X.J. Yang (2951_CR23) 2015
A. Saadatmandi (2951_CR49) 2010; 59
X.J. Yang (2951_CR55) 2019; 23
References_xml – reference: IlhanE.KiymazI.O.A generalization of truncated M-fractional derivative and applications to fractional differential equationsAppl. Math. Nonlinear Sci.2020511711884090772
– reference: LiuZ.SunJ.SzántóI.Monotone iterative technique for Riemann–Liouville fractional integro-differential equations with advanced argumentsResults Math.2013633–41277128730573691276.26017
– reference: KilbasA.A.A.SrivastavaH.M.TrujilloJ.J.Theory and Applications of Fractional Differential Equations2006AmsterdamElsevier1092.45003
– reference: YangX.J.GaoF.JuY.General Fractional Derivatives with Applications in Viscoelasticity2020San DiegoAcademic Press07092994
– reference: SezerM.Akyüz-DaşcıogluA.A Taylor method for numerical solution of generalized pantograph equations with linear functional argumentJ. Comput. Appl. Math.2007200121722522768271112.34063
– reference: YangX.J.GaoF.JuY.ZhouH.W.Fundamental solutions of the general fractional-order diffusion equationsMath. Methods Appl. Sci.201841189312932038977871406.35480
– reference: YangX.J.Advanced Local Fractional Calculus & Its Applications2012New YorkWorld Science Publisher
– reference: YangX.J.New general calculi with respect to another functions applied to describe the Newton-like dashpot models in anomalous viscoelasticityTherm. Sci.2019236B37513757
– reference: YangX.J.FengY.Y.CattaniC.IncM.Fundamental solutions of anomalous diffusion equations with the decay exponential kernelMath. Methods Appl. Sci.201942114054406039742251425.35228
– reference: SinghJ.KumarD.HammouchZ.AtanganaA.A fractional epidemiological model for computer viruses pertaining to a new fractional derivativeAppl. Math. Comput.201831650451537039841426.68015
– reference: YangX.J.Local Fractional Functional Analysis & Its Applications2011Hong KongAsian Academic Publisher
– reference: YangX.J.BaleanuD.SrivastavaH.M.Local Fractional Integral Transforms and Their Applications2015AmsterdamElsevier1336.44001
– reference: YangX.J.General Fractional Derivatives: Theory, Methods and Applications2019New YorkTaylor & Francis Group1417.26001
– reference: YangX.J.Abdel-AtyM.CattaniC.A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transferTherm. Sci.2019233 Part A16771681
– reference: LakestaniM.SarayB.N.DehghanM.Numerical solution for the weakly singular Fredholm integro-differential equations using Legendre multiwaveletsJ. Comput. Appl. Math.2011235113291330327840441216.65185
– reference: IakovlevaV.VanegasC.J.On the solution of differential equations with delayed and advanced argumentsElectron. J. Differ. Equ.20051323129061092.34549
– reference: ValliammalN.RavichandranC.HammouchZ.BaskonusH.M.A new investigation on fractional-ordered neutral differential systems with state-dependent delayInt. J. Nonlinear Sci. Numer. Simul.2019207–8803809403167607168390
– reference: LakestaniM.JokarM.DehghanM.Numerical solution of nth-order integro-differential equations using trigonometric waveletsMath. Methods Appl. Sci.201134111317132928393751226.65113
– reference: RusI.A.Dârzu-IleaV.A.First order functional-differential equations with both advanced and retarded argumentsFixed Point Theory20045110311520737101062.34067
– reference: SubashiniR.RavichandranC.JothimaniK.BaskonusH.M.Existence results of Hilfer integro-differential equations with fractional orderDiscrete Contin. Dyn. Syst., Ser. S2020133911923406640507200479
– reference: JothimaniK.KalirajK.HammouchZ.RavichandranC.New results on controllability in the framework of fractional integrodifferential equations with nondense domainEur. Phys. J. Plus20191349
– reference: KumarS.AhmadianA.KumarR.KumarD.SinghJ.BaleanuD.SalimiM.An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein waveletsMathematics202084
– reference: DehghanM.ShakourifarM.HamidiA.The solution of linear and nonlinear systems of Volterra functional equations using Adomian–Pade techniqueChaos Solitons Fractals20093952509252125194151197.65223
– reference: PatrícioM.S.RamosH.PatrícioM.Solving initial and boundary value problems of fractional ordinary differential equations by using collocation and fractional powersJ. Comput. Appl. Math.201935434835939448981432.65112
– reference: GaoW.VeereshaP.PrakashaD.G.NovelB.H.M.Dynamic structures of 2019-nCoV with nonlocal operator via powerful computational techniqueBiology202095
– reference: JavidiM.Modified homotopy perturbation method for solving system of linear Fredholm integral equationsMath. Comput. Model.2009501–215916525425971185.65236
– reference: RamadanM.A.DumitruB.HighlyN.M.A.Accurate numerical technique for population models via rational Chebyshev collocation methodMathematics2019710
– reference: ErturkV.S.MomaniS.OdibatZ.Application of generalized differential transform method to multi-order fractional differential equationsCommun. Nonlinear Sci. Numer. Simul.20081381642165423986961221.34022
– reference: YangX.J.New non-conventional methods for quantitative concepts of anomalous rheologyTherm. Sci.2019236B41174127
– reference: ZhuL.FanQ.Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev waveletCommun. Nonlinear Sci. Numer. Simul.20121762333234128776791335.45002
– reference: YangY.ChenY.HuangY.Spectral-collocation method for fractional Fredholm integro-differential equationsJ. Korean Math. Soc.201451120322431593251284.65193
– reference: HouJ.YangC.LvX.Jacobi collocation methods for solving the fractional Bagley–Torvik equationInt. J. Appl. Math.20205011141204111028
– reference: Fakhar-IzadiF.DehghanM.The spectral methods for parabolic Volterra integro-differential equationsJ. Comput. Appl. Math.2011235144032404628014261219.65161
– reference: ArikogluA.OzkolI.Solutions of integral and integro-differential equation systems by using differential transform methodComput. Math. Appl.20085692411241724667631165.45300
– reference: YusufoğluE.An efficient algorithm for solving integro-differential equations systemAppl. Math. Comput.20071921515523855681193.65234
– reference: KumarS.GhoshS.SametB.GoufoE.F.An analysis for heat equations arises in diffusion process using new Yang–Abdel–Aty–Cattani fractional operatorMath. Methods Appl. Sci.2020439606260804101637
– reference: YangX.J.Tenreiro MachadoJ.A.A new fractal nonlinear Burgers’ equation arising in the acoustic signals propagationMath. Methods Appl. Sci.201942187539754440379911435.35412
– reference: Al-GhafriK.S.RezazadehH.Solitons and other solutions of (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(3+ 1)$\end{document}-dimensional space-time fractional modified KdV-Zakharov–Kuznetsov equationAppl. Math. Nonlinear Sci.2019422893043984997
– reference: AliK.K.Abd El SalamM.A.MohamedE.M.H.Chebyshev operational matrix for solving fractional order delay-differential equations using spectral collocation methodArab J. Basic Appl. Sci.2019261342352
– reference: KumarS.KumarR.AgarwalR.P.SametB.A study of fractional Lotka–Volterra population model using Haar wavelet and Adams–Bashforth–Moulton methodsMath. Methods Appl. Sci.202043855645578408895107236879
– reference: SaadatmandiA.DehghanM.Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficientsComput. Math. Appl.20105982996300426080061193.65229
– reference: EslahchiM.R.DehghanM.ParviziM.Application of the collocation method for solving nonlinear fractional integro-differential equationsJ. Comput. Appl. Math.201425710512831074101296.65106
– reference: KürkçüÖ.AslanE.SezerM.A numerical approach with error estimation to solve general integro-differential-difference equations using Dickson polynomialsAppl. Math. Comput.201627632433934520201410.65240
– reference: GaoW.BaskonusH.M.ShiL.New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV systemAdv. Differ. Equ.2020202014142226
– reference: OğuzC.SezerM.Chelyshkov collocation method for a class of mixed functional integro-differential equationsAppl. Math. Comput.2015259943954333842406881779
– reference: YangA.M.HanY.LiJ.LiuW.X.On steady heat flow problem involving Yang–Srivastava–Machado fractional derivative without singular kernelTherm. Sci.201620suppl. 3717721
– reference: ArqubO.A.OsmanM.S.Abdel-AtyA.H.MohamedA.B.A.MomaniS.A numerical algorithm for the solutions of ABC singular Lane–Emden type models arising in astrophysics using reproducing kernel discretization methodMathematics202086
– reference: AzinH.MohammadiF.MachadoJ.T.A piecewise spectral-collocation method for solving fractional Riccati differential equation in large domainsComput. Appl. Math.2019383394738907101733
– reference: YüzbaşıŞ.Laguerre approach for solving pantograph-type Volterra integro-differential equationsAppl. Math. Comput.20142321183119931813481410.65510
– reference: KumarS.KumarR.CattaniC.SametB.Chaotic behaviour of fractional predator-prey dynamical systemChaos Solitons Fractals20201354093639
– reference: RaslanK.R.AliK.K.Abd El SalamM.A.MohamedE.M.H.Spectral Tau method for solving general fractional order differential equations with linear functional argumentJ. Egypt. Math. Soc.2019271409205807134433
– reference: SaadatmandiA.DehghanM.A Legendre collocation method for fractional integro-differential equationsJ. Vib. Control201117132050205828958621271.65157
– reference: MaleknejadK.MirzaeeF.Numerical solution of integro-differential equations by using rationalized Haar functions methodKybernetes200635101735174422985211160.45303
– reference: El-WakilS.A.ElhanbalyA.AbdouM.A.Adomian decomposition method for solving fractional nonlinear differential equationsAppl. Math. Comput.2006182131332422920421106.65115
– reference: AtanganaA.Blind in a commutative world: simple illustrations with functions and chaotic attractorsChaos Solitons Fractals201811434736338566561415.34009
– reference: GürbüzB.SezerM.GülerC.Laguerre collocation method for solving Fredholm integro-differential equations with functional argumentsJ. Appl. Math.201420143226320
– reference: SaeediH.MoghadamM.M.MollahasaniN.ChuevG.N.A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional orderCommun. Nonlinear Sci. Numer. Simul.20111631154116327366231221.65354
– reference: OdibatZ.KumarS.A robust computational algorithm of homotopy asymptotic method for solving systems of fractional differential equationsJ. Comput. Nonlinear Dyn.2019148
– reference: DehghanM.ShakeriF.Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration techniqueInt. J. Numer. Methods Biomed. Eng.201026670571526422451192.65158
– reference: PodlubnyI.Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications1998Solvak RepublicTechnical University of Kosice0924.34008
– reference: ŞahinN.YüzbaşiŞ.SezerM.A Bessel polynomial approach for solving general linear Fredholm integro-differential-difference equationsInt. J. Comput. Math.201188143093311128350421242.65288
– reference: Xiao-JunX.J.SrivastavaH.M.MachadoJ.T.A new fractional derivative without singular kernelTherm. Sci.2016202753756
– reference: JerriA.Introduction to Integral Equations with Applications19992New YorkWiley0938.45001
– reference: AliK.K.CattaniC.Gómez-AguilarcJ.F.BaleanuD.OsmanM.S.Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard–Bishop modelChaos Solitons Fractals20201394121993
– reference: TohidiE.EzadkhahM.M.ShateyiS.Numerical solution of nonlinear fractional Volterra integro-differential equations via Bernoulli polynomialsAbstract and Applied Analysis 20142014
– reference: OsmanM.S.RezazadehH.EslamiM.NeiramehA.MirzazadehM.Analytical study of solitons to Benjamin–Bona–Mahony–Peregrine equation with power law nonlinearity by using three methodsUPB Sci. Bull., Ser. A, Appl. Math. Phys.201880426727838873101438.35365
– reference: OsmanM.S.New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamicsPramana2019932
– reference: OsmanM.S.RezazadehH.EslamiM.Traveling wave solutions for (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(3+ 1)$\end{document} dimensional conformable fractional Zakharov–Kuznetsov equation with power law nonlinearityNonlinear Eng.201981559567
– reference: AtanganaA.Fractional discretization: the African’s tortoise walkChaos Solitons Fractals20201304016971
– reference: CaoY.MaW.G.MaL.C.Local fractional functional method for solving diffusion equations on Cantor setsAbstr. Appl. Anal.20142014324887607023104
– reference: GülsuM.ÖztürkY.SezerM.A new collocation method for solution of mixed linear integro-differential-difference equationsAppl. Math. Comput.201021672183219826470871192.65161
– volume-title: Abstract and Applied Analysis 2014
  year: 2014
  ident: 2951_CR68
– volume: 192
  start-page: 51
  issue: 1
  year: 2007
  ident: 2951_CR27
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.02.134
– volume: 26
  start-page: 342
  issue: 1
  year: 2019
  ident: 2951_CR64
  publication-title: Arab J. Basic Appl. Sci.
  doi: 10.1080/25765299.2019.1629543
– volume: 13
  start-page: 911
  issue: 3
  year: 2020
  ident: 2951_CR2
  publication-title: Discrete Contin. Dyn. Syst., Ser. S
– volume: 235
  start-page: 3291
  issue: 11
  year: 2011
  ident: 2951_CR35
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2011.01.043
– volume: 41
  start-page: 9312
  issue: 18
  year: 2018
  ident: 2951_CR45
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5341
– volume: 134
  issue: 9
  year: 2019
  ident: 2951_CR7
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2019-12858-8
– volume: 2014
  year: 2014
  ident: 2951_CR47
  publication-title: Abstr. Appl. Anal.
– volume: 50
  start-page: 159
  issue: 1–2
  year: 2009
  ident: 2951_CR28
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2009.02.003
– volume: 23
  start-page: 3751
  issue: 6B
  year: 2019
  ident: 2951_CR56
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI180921260Y
– volume: 114
  start-page: 347
  year: 2018
  ident: 2951_CR24
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.07.022
– volume: 8
  issue: 6
  year: 2020
  ident: 2951_CR30
  publication-title: Mathematics
  doi: 10.3390/math8060923
– volume: 139
  year: 2020
  ident: 2951_CR29
  publication-title: Chaos Solitons Fractals
– volume: 42
  start-page: 4054
  issue: 11
  year: 2019
  ident: 2951_CR14
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5634
– volume: 43
  start-page: 5564
  issue: 8
  year: 2020
  ident: 2951_CR16
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6297
– volume: 200
  start-page: 217
  issue: 1
  year: 2007
  ident: 2951_CR38
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.12.015
– volume-title: Local Fractional Integral Transforms and Their Applications
  year: 2015
  ident: 2951_CR23
– volume-title: Advanced Local Fractional Calculus & Its Applications
  year: 2012
  ident: 2951_CR22
– volume-title: General Fractional Derivatives: Theory, Methods and Applications
  year: 2019
  ident: 2951_CR71
  doi: 10.1201/9780429284083
– volume: 130
  year: 2020
  ident: 2951_CR21
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2019.109399
– volume: 50
  start-page: 114
  issue: 1
  year: 2020
  ident: 2951_CR43
  publication-title: Int. J. Appl. Math.
– volume: 88
  start-page: 3093
  issue: 14
  year: 2011
  ident: 2951_CR62
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160.2011.584973
– volume: 63
  start-page: 1277
  issue: 3–4
  year: 2013
  ident: 2951_CR61
  publication-title: Results Math.
  doi: 10.1007/s00025-012-0268-4
– volume: 56
  start-page: 2411
  issue: 9
  year: 2008
  ident: 2951_CR31
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.05.017
– volume: 257
  start-page: 105
  year: 2014
  ident: 2951_CR34
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.07.044
– volume: 17
  start-page: 2050
  issue: 13
  year: 2011
  ident: 2951_CR69
  publication-title: J. Vib. Control
  doi: 10.1177/1077546310395977
– volume: 20
  start-page: 717
  issue: suppl. 3
  year: 2016
  ident: 2951_CR13
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI16S3717Y
– volume: 276
  start-page: 324
  year: 2016
  ident: 2951_CR50
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.12.025
– volume: 39
  start-page: 2509
  issue: 5
  year: 2009
  ident: 2951_CR26
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2007.07.028
– volume: 35
  start-page: 1735
  issue: 10
  year: 2006
  ident: 2951_CR39
  publication-title: Kybernetes
  doi: 10.1108/03684920610688694
– volume: 5
  start-page: 103
  issue: 1
  year: 2004
  ident: 2951_CR60
  publication-title: Fixed Point Theory
– volume: 182
  start-page: 313
  issue: 1
  year: 2006
  ident: 2951_CR66
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.02.055
– volume: 5
  start-page: 171
  issue: 1
  year: 2020
  ident: 2951_CR9
  publication-title: Appl. Math. Nonlinear Sci.
  doi: 10.2478/amns.2020.1.00016
– volume: 7
  issue: 10
  year: 2019
  ident: 2951_CR44
  publication-title: Mathematics
  doi: 10.3390/math7100913
– volume: 259
  start-page: 943
  year: 2015
  ident: 2951_CR48
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.03.024
– volume: 59
  start-page: 2996
  issue: 8
  year: 2010
  ident: 2951_CR49
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.02.018
– volume: 27
  issue: 1
  year: 2019
  ident: 2951_CR63
  publication-title: J. Egypt. Math. Soc.
  doi: 10.1186/s42787-019-0039-4
– volume: 232
  start-page: 1183
  year: 2014
  ident: 2951_CR52
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.01.075
– volume: 20
  start-page: 803
  issue: 7–8
  year: 2019
  ident: 2951_CR3
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns-2018-0362
– volume: 23
  start-page: 1677
  issue: 3 Part A
  year: 2019
  ident: 2951_CR11
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI180320239Y
– volume: 14
  issue: 8
  year: 2019
  ident: 2951_CR58
  publication-title: J. Comput. Nonlinear Dyn.
– volume: 42
  start-page: 7539
  issue: 18
  year: 2019
  ident: 2951_CR46
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5904
– volume-title: Introduction to Integral Equations with Applications
  year: 1999
  ident: 2951_CR4
– volume: 354
  start-page: 348
  year: 2019
  ident: 2951_CR42
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.07.034
– volume-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
  year: 1998
  ident: 2951_CR18
– volume: 316
  start-page: 504
  year: 2018
  ident: 2951_CR25
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2017.08.048
– volume: 235
  start-page: 4032
  issue: 14
  year: 2011
  ident: 2951_CR37
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2011.02.030
– volume-title: Local Fractional Functional Analysis & Its Applications
  year: 2011
  ident: 2951_CR70
– volume: 80
  start-page: 267
  issue: 4
  year: 2018
  ident: 2951_CR53
  publication-title: UPB Sci. Bull., Ser. A, Appl. Math. Phys.
– volume: 4
  start-page: 289
  issue: 2
  year: 2019
  ident: 2951_CR6
  publication-title: Appl. Math. Nonlinear Sci.
  doi: 10.2478/AMNS.2019.2.00026
– volume: 13
  year: 2005
  ident: 2951_CR59
  publication-title: Electron. J. Differ. Equ.
– volume: 13
  start-page: 1642
  issue: 8
  year: 2008
  ident: 2951_CR67
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2007.02.006
– volume: 17
  start-page: 2333
  issue: 6
  year: 2012
  ident: 2951_CR33
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.10.014
– volume: 216
  start-page: 2183
  issue: 7
  year: 2010
  ident: 2951_CR51
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.03.054
– volume: 135
  year: 2020
  ident: 2951_CR57
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109811
– volume: 38
  issue: 3
  year: 2019
  ident: 2951_CR41
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-019-0860-2
– volume: 43
  start-page: 6062
  issue: 9
  year: 2020
  ident: 2951_CR15
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.6347
– volume: 2020
  issue: 1
  year: 2020
  ident: 2951_CR10
  publication-title: Adv. Differ. Equ.
– volume: 8
  issue: 4
  year: 2020
  ident: 2951_CR17
  publication-title: Mathematics
  doi: 10.3390/math8040558
– volume: 93
  issue: 2
  year: 2019
  ident: 2951_CR5
  publication-title: Pramana
  doi: 10.1007/s12043-019-1785-4
– volume: 26
  start-page: 705
  issue: 6
  year: 2010
  ident: 2951_CR8
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.1166
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 2951_CR19
– volume: 34
  start-page: 1317
  issue: 11
  year: 2011
  ident: 2951_CR36
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.1439
– volume-title: General Fractional Derivatives with Applications in Viscoelasticity
  year: 2020
  ident: 2951_CR1
– volume: 51
  start-page: 203
  issue: 1
  year: 2014
  ident: 2951_CR40
  publication-title: J. Korean Math. Soc.
  doi: 10.4134/JKMS.2014.51.1.203
– volume: 9
  issue: 5
  year: 2020
  ident: 2951_CR20
  publication-title: Biology
– volume: 8
  start-page: 559
  issue: 1
  year: 2019
  ident: 2951_CR54
  publication-title: Nonlinear Eng.
  doi: 10.1515/nleng-2018-0163
– volume: 20
  start-page: 753
  issue: 2
  year: 2016
  ident: 2951_CR12
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI151224222Y
– volume: 23
  start-page: 4117
  issue: 6B
  year: 2019
  ident: 2951_CR55
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI191028427Y
– volume: 2014
  year: 2014
  ident: 2951_CR65
  publication-title: J. Appl. Math.
  doi: 10.1155/2014/682398
– volume: 16
  start-page: 1154
  issue: 3
  year: 2011
  ident: 2951_CR32
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.05.036
SSID ssj0029488
Score 2.4989035
Snippet In the present work, a numerical technique for solving a general form of nonlinear fractional order integro-differential equations (GNFIDEs) with linear...
Abstract In the present work, a numerical technique for solving a general form of nonlinear fractional order integro-differential equations (GNFIDEs) with...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Applications
Caputo fractional derivatives
Chebyshev approximation
Chebyshev collocation method
Collocation methods
Derivatives
Difference and Functional Equations
Differential equations
Functional Analysis
Functional argument
Mathematics
Mathematics and Statistics
Methods
Nonlinear equations
Nonlinear fractional integro-differential equations
Nonlinear systems
Ordinary Differential Equations
Partial Differential Equations
Topics in Special Functions and q-Special Functions: Theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ4kAPFYVW3UKRD9zAwk4cx3OkCMRpxQEkbpbj2AvSirbJLof9Ef3NjO2EQiXohWv8IdvznJmxPW8IOSilA6W5Z1a0LZOyCKxBw4JFHrzal1KJRqZkE_V0qm9u4PJZqq_4JizTA-eFO-a-hobbWlW2jT9S23LudKtl66BybWIv5TWMztTgagHicgyR0eq4F6VSBYuuEpZVgq1eqKHE1v_CxPznVjQpm_Mt8nGwEulJHt0nsubvt8mHZ9yBO-TPdJkvW-Z0hA9FA5TOMo_03cq39D7zYNiOhi4HMGDtTBDxk42pUXCLz6n_nSm_exoPZunYCpXe0Mp2s2WKhqPxpfyMnt76eLLtH2jEsO8_k-vzs6vTCzYkV2AOVdCCCRusgqpyUDpAj7poIChhIwOfkuBQb3mtpCuCh1CVTeDWga1x0UOkLKpU-YWs4yz8V0KdULpuNIpdBMlLC9zVoCWaXiX2WcCEiHGtjRuYx2MCjLlJHohWJsvHoHxMko9ZTcjhU5tfmXfjzdo_ogifakbO7PQBkWQGJJn_IWlC9kYAmGEj9watnwJnp7SYkKMRFH-LXx_St_cY0i7ZLBJogYlqj6wvuqX_Tjbcw-Ku7_YT5B8BO-QG-g
  priority: 102
  providerName: Directory of Open Access Journals
Title Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series
URI https://link.springer.com/article/10.1186/s13662-020-02951-z
https://www.proquest.com/docview/2442687681
https://doaj.org/article/0e79b0a765ad4718ad00c8d84dc95cd5
Volume 2020
WOSCitedRecordID wos000573073900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5QCHlqdYaFc-cAOrcWI79gnRqlURYhXxkAoXy_FjW2nVbZPdHvZH9DczdpJti0QvXHxIZixbM-MZj-1vEHpXMKuEzDwx1DnCWB5IDYEFiTh4pS-YoDVLxSbKyUSenKiqT7i1_bXKYU1MC7Wb25gj3wM3lAswXUk_XlySWDUqnq72JTQeos2IkkDT1b3v6w2XYqnuJAU-EiOB4dGMFHstLYTISdw8AR2nZHXHMSX8_jtB51_npMn9HG3_78Cfoq0-8MSfOk15hh748-foyS04whfoerLszm9meNBIDDEtnnbQ1Gcr7_B5B61hGhya7k0EUHeYE3MyVFuBVWOG_WWHIt7imOvFAxf40Z7LNNNlemCH4-X7KT449TFZ7q9wNAvfvkQ_jw5_HByTvl4DseDVFoSaYITi3KrCKtik57UKgpoI6ieYsuAKvRTM5sGrwIs6ZMYqUzqrQkRB4qJ4hTZgFv41wjbKrJagSTSwrDAqs6WSDGRYQJ-5GiE6CEvbHsw81tSY6bSpkUJ3AtYgYJ0ErFcj9H7Nc9FBedxLvR91YE0ZYbjTh3kz1b1V68yXqs5MKbhx0csbl2VWOslgUtw6PkI7g07ofm1o9Y1CjNCHQatufv97SG_u7-0tepwnfVaE8h20sWiWfhc9sleLs7YZo839w0n1bZySDtB-Kck4WQu0Ff8N_6vPX6tffwD-Ixyd
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQcyr9YWsAHOIHVOHEc-1BVUKhabVlxKFJvxnGcpdKq2ya7RexD8Cg8I2M72VIkeuuBa2JbtvPNeMaT-QbgVcatEjJx1LCqopynNS3RsKCeB69wGRes5KHYRDEayaMj9XkFfvW5MP63yl4nBkVdTa2_I9_EYygVKLqSbZ-eUV81ykdX-xIaERZD9-M7umzt1v4H_L6v03T34-HOHu2qClCLundGmamNUHluVWYVupJpqWrBjKeeE1xZVNhOCm7T2qk6z8o6MVaZorKq9lw9uchw3Btwk2ey8HI1LOjSwVM81LlkOE_qLY8-SUeKzZZlQqTUO2vYLmd0cekgDPUCLhm5f8Vlw3G3e-9_26j7sNYZ1uRdlIQHsOJOHsLdP-gWH8HP0TzGpyaklziCNjsZR-rt44WryEmkDjENqZuY84GtI6fGlPbVZFArTog7iyzpLfF32aTvhXZC18s043lIICQ-uWBMdr45Hwxw58SLvWsfw5dr2ZAnsIqrcE-BWI-RUqKksJonmVGJLZTkiJkMx0zVAFgPDm07snZfM2Sig9MmhY6A0ggoHQClFwN4s-xzGqlKrmz93mNu2dLTjIcH02asO62lE1eoMjGFyE3lrRhTJYmVleS4qNxW-QA2egzqTve1-gKAA3jbo_ji9b-n9Ozq0V7C7b3DTwf6YH80XIc7aZAlRVm-AauzZu6ewy17PjtumxdBKgl8vW50_wZq_XMy
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQQgO_BaxUMAHOIG1cWI79gEhaFlRFa32AFLFxTiOvVRaddtkt4h9CB6Ip2NsJ1uKRG89cE1sy3G-Gc94PN8g9LxgVgmZOWJoXRPGck8qMCxI4MErXcEErVgsNlGOx_LgQE020K8-FyZcq-x1YlTU9dyGM_IhbEO5ANGVdOi7axGT3dGb4xMSKkiFSGtfTiNBZN_9-A7uW_t6bxf-9Ys8H73_tPOBdBUGiAU9vCDUeCMU51YVVoFbmVfKC2oCDZ1gyoLydlIwm3unPC8qnxmrTFlb5QNvDxcFjHsFXS3BxwzXCSf8y9rZUyzWvKQwZxKskD5hR4phSwshchIcN2jHKVmd2xRj7YBzBu9fMdq49Y1u_8-Ldgfd6gxu_DZJyF204Y7uoZt_0DDeRz_HyxS3muFeEjHY8niaKLkPV67GR4lSxDTYNykXBFonro056avMgLacYXeS2NNbHM64cd8L7Ieul2mmy5hYiEPSwRTvfHMhSOBOcVAHrt1Cny9lQR6gTfgK9xBhG_BSSZAg6llWGJXZUkkG-ClgzFwNEO2Bom1H4h5qicx0dOak0AlcGsClI7j0aoBervscJwqTC1u_C_hbtwz04_HBvJnqTpvpzJWqykwpuKmDdWPqLLOylgw-ituaD9B2j0fd6cRWn4FxgF71iD57_e8pPbp4tGfoOoBaf9wb7z9GN_IoVopQvo02F83SPUHX7OnisG2eRgHF6Otlg_s3nAd8Vg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+for+generalized+nonlinear+fractional+integro-differential+equations+with+linear+functional+arguments+using+Chebyshev+series&rft.jtitle=Advances+in+difference+equations&rft.au=Ali%2C+Khalid+K.&rft.au=Abd+El+Salam%2C+Mohamed+A.&rft.au=Mohamed%2C+Emad+M.+H.&rft.au=Samet%2C+Bessem&rft.date=2020-09-15&rft.pub=Springer+International+Publishing&rft.eissn=1687-1847&rft.volume=2020&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-020-02951-z&rft.externalDocID=10_1186_s13662_020_02951_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon