Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model

Motivation High-resolution Hi-C contact matrices reveal the detailed three-dimensional architecture of the genome, but high-coverage experimental Hi-C data are expensive to generate. Simultaneously, chromatin structure analyses struggle with extremely sparse contact matrices. To address this problem...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics (Oxford, England) Vol. 40; no. Supplement_1; pp. i471 - i480
Main Authors: Fang, Tangqi, Liu, Yifeng, Woicik, Addie, Lu, Minsi, Jha, Anupama, Wang, Xiao, Li, Gang, Hristov, Borislav, Liu, Zixuan, Xu, Hanwen, Noble, William S, Wang, Sheng
Format: Journal Article
Language:English
Published: England Oxford University Press 28.06.2024
Oxford Publishing Limited (England)
Subjects:
ISSN:1367-4803, 1367-4811, 1367-4811
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motivation High-resolution Hi-C contact matrices reveal the detailed three-dimensional architecture of the genome, but high-coverage experimental Hi-C data are expensive to generate. Simultaneously, chromatin structure analyses struggle with extremely sparse contact matrices. To address this problem, computational methods to enhance low-coverage contact matrices have been developed, but existing methods are largely based on resolution enhancement methods for natural images and hence often employ models that do not distinguish between biologically meaningful contacts, such as loops and other stochastic contacts. Results We present Capricorn, a machine learning model for Hi-C resolution enhancement that incorporates small-scale chromatin features as additional views of the input Hi-C contact matrix and leverages a diffusion probability model backbone to generate a high-coverage matrix. We show that Capricorn outperforms the state of the art in a cross-cell-line setting, improving on existing methods by 17% in mean squared error and 26% in F1 score for chromatin loop identification from the generated high-coverage data. We also demonstrate that Capricorn performs well in the cross-chromosome setting and cross-chromosome, cross-cell-line setting, improving the downstream loop F1 score by 14% relative to existing methods. We further show that our multiview idea can also be used to improve several existing methods, HiCARN and HiCNN, indicating the wide applicability of this approach. Finally, we use DNA sequence to validate discovered loops and find that the fraction of CTCF-supported loops from Capricorn is similar to those identified from the high-coverage data. Capricorn is a powerful Hi-C resolution enhancement method that enables scientists to find chromatin features that cannot be identified in the low-coverage contact matrix. Availability and implementation Implementation of Capricorn and source code for reproducing all figures in this paper are available at https://github.com/CHNFTQ/Capricorn.
AbstractList High-resolution Hi-C contact matrices reveal the detailed three-dimensional architecture of the genome, but high-coverage experimental Hi-C data are expensive to generate. Simultaneously, chromatin structure analyses struggle with extremely sparse contact matrices. To address this problem, computational methods to enhance low-coverage contact matrices have been developed, but existing methods are largely based on resolution enhancement methods for natural images and hence often employ models that do not distinguish between biologically meaningful contacts, such as loops and other stochastic contacts. We present Capricorn, a machine learning model for Hi-C resolution enhancement that incorporates small-scale chromatin features as additional views of the input Hi-C contact matrix and leverages a diffusion probability model backbone to generate a high-coverage matrix. We show that Capricorn outperforms the state of the art in a cross-cell-line setting, improving on existing methods by 17% in mean squared error and 26% in F1 score for chromatin loop identification from the generated high-coverage data. We also demonstrate that Capricorn performs well in the cross-chromosome setting and cross-chromosome, cross-cell-line setting, improving the downstream loop F1 score by 14% relative to existing methods. We further show that our multiview idea can also be used to improve several existing methods, HiCARN and HiCNN, indicating the wide applicability of this approach. Finally, we use DNA sequence to validate discovered loops and find that the fraction of CTCF-supported loops from Capricorn is similar to those identified from the high-coverage data. Capricorn is a powerful Hi-C resolution enhancement method that enables scientists to find chromatin features that cannot be identified in the low-coverage contact matrix. Implementation of Capricorn and source code for reproducing all figures in this paper are available at https://github.com/CHNFTQ/Capricorn.
Motivation High-resolution Hi-C contact matrices reveal the detailed three-dimensional architecture of the genome, but high-coverage experimental Hi-C data are expensive to generate. Simultaneously, chromatin structure analyses struggle with extremely sparse contact matrices. To address this problem, computational methods to enhance low-coverage contact matrices have been developed, but existing methods are largely based on resolution enhancement methods for natural images and hence often employ models that do not distinguish between biologically meaningful contacts, such as loops and other stochastic contacts. Results We present Capricorn, a machine learning model for Hi-C resolution enhancement that incorporates small-scale chromatin features as additional views of the input Hi-C contact matrix and leverages a diffusion probability model backbone to generate a high-coverage matrix. We show that Capricorn outperforms the state of the art in a cross-cell-line setting, improving on existing methods by 17% in mean squared error and 26% in F1 score for chromatin loop identification from the generated high-coverage data. We also demonstrate that Capricorn performs well in the cross-chromosome setting and cross-chromosome, cross-cell-line setting, improving the downstream loop F1 score by 14% relative to existing methods. We further show that our multiview idea can also be used to improve several existing methods, HiCARN and HiCNN, indicating the wide applicability of this approach. Finally, we use DNA sequence to validate discovered loops and find that the fraction of CTCF-supported loops from Capricorn is similar to those identified from the high-coverage data. Capricorn is a powerful Hi-C resolution enhancement method that enables scientists to find chromatin features that cannot be identified in the low-coverage contact matrix. Availability and implementation Implementation of Capricorn and source code for reproducing all figures in this paper are available at https://github.com/CHNFTQ/Capricorn.
Motivation High-resolution Hi-C contact matrices reveal the detailed three-dimensional architecture of the genome, but high-coverage experimental Hi-C data are expensive to generate. Simultaneously, chromatin structure analyses struggle with extremely sparse contact matrices. To address this problem, computational methods to enhance low-coverage contact matrices have been developed, but existing methods are largely based on resolution enhancement methods for natural images and hence often employ models that do not distinguish between biologically meaningful contacts, such as loops and other stochastic contacts. Results We present Capricorn, a machine learning model for Hi-C resolution enhancement that incorporates small-scale chromatin features as additional views of the input Hi-C contact matrix and leverages a diffusion probability model backbone to generate a high-coverage matrix. We show that Capricorn outperforms the state of the art in a cross-cell-line setting, improving on existing methods by 17% in mean squared error and 26% in F1 score for chromatin loop identification from the generated high-coverage data. We also demonstrate that Capricorn performs well in the cross-chromosome setting and cross-chromosome, cross-cell-line setting, improving the downstream loop F1 score by 14% relative to existing methods. We further show that our multiview idea can also be used to improve several existing methods, HiCARN and HiCNN, indicating the wide applicability of this approach. Finally, we use DNA sequence to validate discovered loops and find that the fraction of CTCF-supported loops from Capricorn is similar to those identified from the high-coverage data. Capricorn is a powerful Hi-C resolution enhancement method that enables scientists to find chromatin features that cannot be identified in the low-coverage contact matrix. Availability and implementation Implementation of Capricorn and source code for reproducing all figures in this paper are available at https://github.com/CHNFTQ/Capricorn.
High-resolution Hi-C contact matrices reveal the detailed three-dimensional architecture of the genome, but high-coverage experimental Hi-C data are expensive to generate. Simultaneously, chromatin structure analyses struggle with extremely sparse contact matrices. To address this problem, computational methods to enhance low-coverage contact matrices have been developed, but existing methods are largely based on resolution enhancement methods for natural images and hence often employ models that do not distinguish between biologically meaningful contacts, such as loops and other stochastic contacts.MOTIVATIONHigh-resolution Hi-C contact matrices reveal the detailed three-dimensional architecture of the genome, but high-coverage experimental Hi-C data are expensive to generate. Simultaneously, chromatin structure analyses struggle with extremely sparse contact matrices. To address this problem, computational methods to enhance low-coverage contact matrices have been developed, but existing methods are largely based on resolution enhancement methods for natural images and hence often employ models that do not distinguish between biologically meaningful contacts, such as loops and other stochastic contacts.We present Capricorn, a machine learning model for Hi-C resolution enhancement that incorporates small-scale chromatin features as additional views of the input Hi-C contact matrix and leverages a diffusion probability model backbone to generate a high-coverage matrix. We show that Capricorn outperforms the state of the art in a cross-cell-line setting, improving on existing methods by 17% in mean squared error and 26% in F1 score for chromatin loop identification from the generated high-coverage data. We also demonstrate that Capricorn performs well in the cross-chromosome setting and cross-chromosome, cross-cell-line setting, improving the downstream loop F1 score by 14% relative to existing methods. We further show that our multiview idea can also be used to improve several existing methods, HiCARN and HiCNN, indicating the wide applicability of this approach. Finally, we use DNA sequence to validate discovered loops and find that the fraction of CTCF-supported loops from Capricorn is similar to those identified from the high-coverage data. Capricorn is a powerful Hi-C resolution enhancement method that enables scientists to find chromatin features that cannot be identified in the low-coverage contact matrix.RESULTSWe present Capricorn, a machine learning model for Hi-C resolution enhancement that incorporates small-scale chromatin features as additional views of the input Hi-C contact matrix and leverages a diffusion probability model backbone to generate a high-coverage matrix. We show that Capricorn outperforms the state of the art in a cross-cell-line setting, improving on existing methods by 17% in mean squared error and 26% in F1 score for chromatin loop identification from the generated high-coverage data. We also demonstrate that Capricorn performs well in the cross-chromosome setting and cross-chromosome, cross-cell-line setting, improving the downstream loop F1 score by 14% relative to existing methods. We further show that our multiview idea can also be used to improve several existing methods, HiCARN and HiCNN, indicating the wide applicability of this approach. Finally, we use DNA sequence to validate discovered loops and find that the fraction of CTCF-supported loops from Capricorn is similar to those identified from the high-coverage data. Capricorn is a powerful Hi-C resolution enhancement method that enables scientists to find chromatin features that cannot be identified in the low-coverage contact matrix.Implementation of Capricorn and source code for reproducing all figures in this paper are available at https://github.com/CHNFTQ/Capricorn.AVAILABILITY AND IMPLEMENTATIONImplementation of Capricorn and source code for reproducing all figures in this paper are available at https://github.com/CHNFTQ/Capricorn.
Author Woicik, Addie
Xu, Hanwen
Li, Gang
Fang, Tangqi
Jha, Anupama
Liu, Yifeng
Noble, William S
Lu, Minsi
Hristov, Borislav
Wang, Xiao
Liu, Zixuan
Wang, Sheng
Author_xml – sequence: 1
  givenname: Tangqi
  surname: Fang
  fullname: Fang, Tangqi
– sequence: 2
  givenname: Yifeng
  surname: Liu
  fullname: Liu, Yifeng
– sequence: 3
  givenname: Addie
  surname: Woicik
  fullname: Woicik, Addie
– sequence: 4
  givenname: Minsi
  surname: Lu
  fullname: Lu, Minsi
– sequence: 5
  givenname: Anupama
  orcidid: 0000-0003-3029-2086
  surname: Jha
  fullname: Jha, Anupama
– sequence: 6
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  email: swang@cs.washington.edu
– sequence: 7
  givenname: Gang
  surname: Li
  fullname: Li, Gang
  email: william-noble@uw.edu
– sequence: 8
  givenname: Borislav
  surname: Hristov
  fullname: Hristov, Borislav
– sequence: 9
  givenname: Zixuan
  surname: Liu
  fullname: Liu, Zixuan
– sequence: 10
  givenname: Hanwen
  surname: Xu
  fullname: Xu, Hanwen
– sequence: 11
  givenname: William S
  surname: Noble
  fullname: Noble, William S
  email: william-noble@uw.edu
– sequence: 12
  givenname: Sheng
  surname: Wang
  fullname: Wang, Sheng
  email: swang@cs.washington.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38940142$$D View this record in MEDLINE/PubMed
BookMark eNqNkctKAzEUhoMotlZfQQJu3Izm1rmIGylqBcGNa0MmF02ZSWqSUXx7U9sKutFVDuT7zknOfwB2nXcagGOMzjBq6HlrvXXGh14kK-N5m4QmGO-AMaZlVbAa493vGtEROIhxgRCaomm5D0a0bhjCjIzB07V7EU5a9wzntphB6V0SMsHcN1ipI8wzYOf9EiqdtEzWO_hu0wuciWUGfHAXUMB-6JJ9s_odKmvMEFdU75XuDsGeEV3UR5tzAh5vrh9n8-L-4fZudnVfSEaaVGAhSKuIbilWVElVVRSJkmFZ00ZMjcKGSNRWdaNLo2qCWL6mkuoWG8NyMQGn67bL4F8HHRPvbZS664TTfoicoooSOqWkzujJL3Thh-Dy4zjFhDFa11_U8YYa2l4rnv_ai_DBt4vLwOUakMHHGLTh0iaxWk8KwnYcI77Kif_MiW9yynr5S99O-FPEa9EPy_86nwIWsV8
CitedBy_id crossref_primary_10_1093_bioinformatics_btaf177
crossref_primary_10_1093_nar_gkaf289
Cites_doi 10.1038/nrg.2016.112
10.1038/nature14450
10.1016/j.cell.2015.05.048
10.1016/j.molcel.2020.03.002
10.1016/j.neucom.2022.01.029
10.1038/s41467-020-19562-7
10.1038/35066075
10.1371/journal.pcbi.1007287
10.1093/bioinformatics/btad266
10.1186/s13059-020-02167-0
10.1093/nar/gkx145
10.1126/science.1181369
10.1016/j.cell.2014.11.021
10.1038/s41598-021-88115-9
10.1038/nrm.2016.104
10.1093/bioinformatics/btr064
10.1038/s41467-022-34626-6
10.1038/nature21411
10.1093/bioinformatics/bty1059
10.1186/1748-7188-9-14
10.3389/fgene.2020.00353
10.1093/bioinformatics/btz251
10.1038/s41467-018-03113-2
10.1093/bioinformatics/btac156
10.1038/nature11082
10.1038/ng.857
10.1038/nmeth.3999
10.1186/s13059-019-1913-y
10.3390/genes10110862
10.1093/bioinformatics/btz317
10.1016/j.cell.2018.05.024
10.1016/j.ymeth.2009.03.001
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1093/bioinformatics/btae211
DatabaseName SDSU Near Archive Perpetual:
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: SDSU Near Archive Perpetual:
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate ISMB 2024 Proceedings
EISSN 1367-4811
EndPage i480
ExternalDocumentID 38940142
10_1093_bioinformatics_btae211
10.1093/bioinformatics/btae211
Genre Journal Article
GrantInformation_xml – fundername: NIH HHS
  grantid: R01HG011466
– fundername: Sony Faculty Research Award
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABGNP
ABIXL
ABNGD
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQPQ
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
CITATION
ROX
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c429t-1aa2bd2eb31d3dcd7730a641c839a5fd1f2c0b789e6fd820430a3c3eb1ff43c3
IEDL.DBID TOX
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001260513300056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Thu Jul 10 18:52:12 EDT 2025
Fri Oct 03 10:52:01 EDT 2025
Mon Jul 21 05:59:32 EDT 2025
Sat Nov 29 03:49:29 EST 2025
Tue Nov 18 21:25:39 EST 2025
Mon Jun 30 08:34:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Supplement_1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-1aa2bd2eb31d3dcd7730a641c839a5fd1f2c0b789e6fd820430a3c3eb1ff43c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3029-2086
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btae211
PMID 38940142
PQID 3124438828
PQPubID 36124
ParticipantIDs proquest_miscellaneous_3073235328
proquest_journals_3124438828
pubmed_primary_38940142
crossref_citationtrail_10_1093_bioinformatics_btae211
crossref_primary_10_1093_bioinformatics_btae211
oup_primary_10_1093_bioinformatics_btae211
PublicationCentury 2000
PublicationDate 2024-06-28
PublicationDateYYYYMMDD 2024-06-28
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2024
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Cremer (2024062809073943300_btae211-B7) 2001; 2
Schmitt (2024062809073943300_btae211-B39) 2016; 17
Sohl-Dickstein (2024062809073943300_btae211-B40) 2015
Handoko (2024062809073943300_btae211-B14) 2011; 43
Liu (2024062809073943300_btae211-B26) 2019; 35
Rombach (2024062809073943300_btae211-B35)
Ramesh (2024062809073943300_btae211-B32) 2022
Kagda (2024062809073943300_btae211-B21) 2023
Dimmick (2024062809073943300_btae211-B9) 2020
Cameron (2024062809073943300_btae211-B3) 2020; 21
Li (2024062809073943300_btae211-B23) 2020; 11
Mumbach (2024062809073943300_btae211-B29) 2016; 13
Schmidt (2024062809073943300_btae211-B38) 2009; 48
Zhang (2024062809073943300_btae211-B42) 2023; 39
Bonev (2024062809073943300_btae211-B2) 2016; 17
Filippova (2024062809073943300_btae211-B11) 2014; 9
Grant (2024062809073943300_btae211-B13) 2011; 27
Nichol (2024062809073943300_btae211-B30) 2021
Crane (2024062809073943300_btae211-B6) 2015; 523
Dali (2024062809073943300_btae211-B8) 2017; 45
Hong (2024062809073943300_btae211-B18) 2020; 16
Gao (2024062809073943300_btae211-B12) 2023
Highsmith (2024062809073943300_btae211-B16) 2021; 11
Hsieh (2024062809073943300_btae211-B19) 2015; 162
Carron (2024062809073943300_btae211-B4) 2019; 35
Liu (2024062809073943300_btae211-B27) 2019; 10
Saharia (2024062809073943300_btae211-B36) 2022
Beagrie (2024062809073943300_btae211-B1) 2017; 543
Ho (2024062809073943300_btae211-B17) 2020
Li (2024062809073943300_btae211-B22) 2022; 479
Lieberman-Aiden (2024062809073943300_btae211-B24) 2009; 326
Liu (2024062809073943300_btae211-B25) 2019; 35
Matthey-Doret (2024062809073943300_btae211-B28) 2020; 11
Roayaei Ardakany (2024062809073943300_btae211-B34) 2020; 21
Chakraborty (2024062809073943300_btae211-B5) 2022; 13
Hsieh (2024062809073943300_btae211-B20) 2020; 78
Hicks (2024062809073943300_btae211-B15) 2022; 38
Quinodoz (2024062809073943300_btae211-B31) 2018; 174
Zhang (2024062809073943300_btae211-B41) 2018; 9
Rao (2024062809073943300_btae211-B33) 2014; 159
Dixon (2024062809073943300_btae211-B10) 2012; 485
Saharia (2024062809073943300_btae211-B37) 2023; 45
References_xml – volume: 45
  start-page: 4713
  year: 2023
  ident: 2024062809073943300_btae211-B37
  article-title: Image super-resolution via iterative refinement
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 17
  start-page: 661
  year: 2016
  ident: 2024062809073943300_btae211-B2
  article-title: Organization and function of the 3D genome
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.112
– volume: 523
  start-page: 240
  year: 2015
  ident: 2024062809073943300_btae211-B6
  article-title: Condensin-driven remodelling of X chromosome topology during dosage compensation
  publication-title: Nature
  doi: 10.1038/nature14450
– start-page: 6840
  volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: 2024062809073943300_btae211-B17
– volume: 162
  start-page: 108
  year: 2015
  ident: 2024062809073943300_btae211-B19
  article-title: Mapping nucleosome resolution chromosome folding in yeast by micro-C
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.048
– volume: 78
  start-page: 539
  year: 2020
  ident: 2024062809073943300_btae211-B20
  article-title: Resolving the 3D landscape of Transcription-Linked mammalian chromatin folding
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.03.002
– volume: 479
  start-page: 47
  year: 2022
  ident: 2024062809073943300_btae211-B22
  article-title: SRDiff: single image super-resolution with diffusion probabilistic models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.029
– volume: 11
  start-page: 5795
  year: 2020
  ident: 2024062809073943300_btae211-B28
  article-title: Computer vision for pattern detection in chromosome contact maps
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-19562-7
– volume: 2
  start-page: 292
  year: 2001
  ident: 2024062809073943300_btae211-B7
  article-title: Chromosome territories, nuclear architecture and gene regulation in mammalian cells
  publication-title: Nat Rev Genet
  doi: 10.1038/35066075
– volume: 16
  start-page: e1007287
  year: 2020
  ident: 2024062809073943300_btae211-B18
  article-title: DeepHiC: a generative adversarial network for enhancing Hi-C data resolution
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007287
– volume: 39
  start-page: i386
  year: 2023
  ident: 2024062809073943300_btae211-B42
  article-title: Reference panel-guided super-resolution inference of Hi-C data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btad266
– volume: 21
  start-page: 256
  year: 2020
  ident: 2024062809073943300_btae211-B34
  article-title: Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02167-0
– volume: 45
  start-page: 2994
  year: 2017
  ident: 2024062809073943300_btae211-B8
  article-title: A critical assessment of topologically associating domain prediction tools
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx145
– volume: 326
  start-page: 289
  year: 2009
  ident: 2024062809073943300_btae211-B24
  article-title: Comprehensive mapping of long-range interactions reveals folding principles of the human genome
  publication-title: Science
  doi: 10.1126/science.1181369
– volume: 159
  start-page: 1665
  year: 2014
  ident: 2024062809073943300_btae211-B33
  article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.021
– volume: 11
  start-page: 8880
  year: 2021
  ident: 2024062809073943300_btae211-B16
  article-title: VEHiCLE: a variationally encoded Hi-C loss enhancement algorithm for improving and generating Hi-C data
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-88115-9
– volume: 17
  start-page: 743
  year: 2016
  ident: 2024062809073943300_btae211-B39
  article-title: Genome-wide mapping and analysis of chromosome architecture
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2016.104
– start-page: 10021
  year: 2023
  ident: 2024062809073943300_btae211-B12
– start-page: 16784
  year: 2021
  ident: 2024062809073943300_btae211-B30
– year: 2022
  ident: 2024062809073943300_btae211-B32
– volume: 27
  start-page: 1017
  year: 2011
  ident: 2024062809073943300_btae211-B13
  article-title: FIMO: scanning for occurrences of a given motif
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr064
– start-page: 2256
  volume-title: Proceedings of the 32nd International Conference on Machine Learning, Volume 37 of Proceedings of Machine Learning Research
  year: 2015
  ident: 2024062809073943300_btae211-B40
– volume: 13
  start-page: 6827
  year: 2022
  ident: 2024062809073943300_btae211-B5
  article-title: dcHiC detects differential compartments across multiple Hi-C datasets
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-34626-6
– volume: 543
  start-page: 519
  year: 2017
  ident: 2024062809073943300_btae211-B1
  article-title: Complex multi-enhancer contacts captured by genome architecture mapping
  publication-title: Nature
  doi: 10.1038/nature21411
– volume: 35
  start-page: 2724
  year: 2019
  ident: 2024062809073943300_btae211-B4
  article-title: Boost-HiC: computational enhancement of long-range contacts in chromosomal contact maps
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1059
– start-page: 10684
  ident: 2024062809073943300_btae211-B35
– volume: 9
  start-page: 14
  year: 2014
  ident: 2024062809073943300_btae211-B11
  article-title: Identification of alternative topological domains in chromatin
  publication-title: Algorithms Mol Biol
  doi: 10.1186/1748-7188-9-14
– volume: 11
  start-page: 353
  year: 2020
  ident: 2024062809073943300_btae211-B23
  article-title: SRHiC: a deep learning model to enhance the resolution of Hi-C data
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00353
– volume: 35
  start-page: 4222
  year: 2019
  ident: 2024062809073943300_btae211-B26
  article-title: HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz251
– volume: 9
  start-page: 750
  year: 2018
  ident: 2024062809073943300_btae211-B41
  article-title: Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03113-2
– volume: 38
  start-page: 2414
  year: 2022
  ident: 2024062809073943300_btae211-B15
  article-title: HiCARN: resolution enhancement of Hi-C data using cascading residual networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac156
– volume-title: Advances in Neural Information Processing Systems
  year: 2022
  ident: 2024062809073943300_btae211-B36
– year: 2020
  ident: 2024062809073943300_btae211-B9
– volume: 485
  start-page: 376
  year: 2012
  ident: 2024062809073943300_btae211-B10
  article-title: Topological domains in mammalian genomes identified by analysis of chromatin interactions
  publication-title: Nature
  doi: 10.1038/nature11082
– volume: 43
  start-page: 630
  year: 2011
  ident: 2024062809073943300_btae211-B14
  article-title: CTCF-mediated functional chromatin interactome in pluripotent cells
  publication-title: Nat Genet
  doi: 10.1038/ng.857
– year: 2023
  ident: 2024062809073943300_btae211-B21
– volume: 13
  start-page: 919
  year: 2016
  ident: 2024062809073943300_btae211-B29
  article-title: HiChIP: efficient and sensitive analysis of protein-directed genome architecture
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3999
– volume: 21
  start-page: 11
  year: 2020
  ident: 2024062809073943300_btae211-B3
  article-title: HIFI: estimating DNA-DNA interaction frequency from Hi-C data at restriction-fragment resolution
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1913-y
– volume: 10
  start-page: 862
  year: 2019
  ident: 2024062809073943300_btae211-B27
  article-title: HiCNN2: Enhancing the resolution of hi-C data using an ensemble of convolutional neural networks
  publication-title: Genes
  doi: 10.3390/genes10110862
– volume: 35
  start-page: i99
  year: 2019
  ident: 2024062809073943300_btae211-B25
  article-title: hicGAN infers super resolution Hi-C data with generative adversarial networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz317
– volume: 174
  start-page: 744
  year: 2018
  ident: 2024062809073943300_btae211-B31
  article-title: Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.024
– volume: 48
  start-page: 240
  year: 2009
  ident: 2024062809073943300_btae211-B38
  article-title: ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions
  publication-title: Methods
  doi: 10.1016/j.ymeth.2009.03.001
SSID ssj0005056
Score 2.4672692
Snippet Motivation High-resolution Hi-C contact matrices reveal the detailed three-dimensional architecture of the genome, but high-coverage experimental Hi-C data are...
High-resolution Hi-C contact matrices reveal the detailed three-dimensional architecture of the genome, but high-coverage experimental Hi-C data are expensive...
Motivation High-resolution Hi-C contact matrices reveal the detailed three-dimensional architecture of the genome, but high-coverage experimental Hi-C data are...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage i471
SubjectTerms Algorithms
Availability
Biological effects
Chromatin
Chromatin - chemistry
Chromatin - metabolism
Chromosomes
Computational Biology - methods
Humans
Image enhancement
Machine Learning
Nucleotide sequence
Probability learning
Software
Source code
Title Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model
URI https://www.ncbi.nlm.nih.gov/pubmed/38940142
https://www.proquest.com/docview/3124438828
https://www.proquest.com/docview/3073235328
Volume 40
WOSCitedRecordID wos001260513300056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: SDSU Near Archive Perpetual:
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_asEJf1m5tt3Rd0GBPAxPL8oe8txFS8jCyPYSRpxlZH1ugtUPiDPrf9052MrIx2u7N4NMHkk466e5-P4D3qHuZTUMZpBK3QMJnD_LMpah43OaxDFPjwaq_fc6mUzmf518PgG9zYf504ediWC7qDkSUgIuHZaNs5LN5eSKJs2D2Zf47qCP0fK2EQxZgS2KbE_zPavaOo70Ut78sTX_iXJ_8R19P4XlnXrJP7Xp4AQe2eglHLeHk3Rl8H1c_CWCj-sEmi2DEKFBd6YbdeqB-u2ZYKbup6yUztvFBWhWjl1o2UksUqFfVR6aYD0IklwIjepUNvbcxz6hzDrPr8Ww0CTqGhUDjOdQEXKmoNBFeqLkRRpsM9V2lMddoNqnEGe4iHZaZzG3qjKQ02lAJLXB_dy7GjwvoVXVlXwOTpeXOhBoNHBGLFEsTjn6eaBdLl3PXh2Q7zoXu0MeJBOOmaL3gotgfuqIbuj4Md-WWLf7GgyU-4DQ-WvhqO9tFp7zrQpDNI_DqIfvwbvcb1Y58Kaqy9QZlcGuMRCJI5lW7SnZNog2It9Y4unxKT97AcYT2EkWhRfIKes1qY9_CM_2rWaxXAzjM5nLgHwwGfsXfA89SBVs
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Hi-C+contact+matrices+for+loop+detection+with+Capricorn%3A+a+multiview+diffusion+model&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Fang%2C+Tangqi&rft.au=Liu%2C+Yifeng&rft.au=Woicik%2C+Addie&rft.au=Lu%2C+Minsi&rft.date=2024-06-28&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=40&rft.spage=i471&rft.epage=i480&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtae211&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon