The dynamics of a Leslie type predator–prey model with fear and Allee effect

In this article, we discuss the dynamics of a Leslie–Gower ratio-dependent predator–prey model incorporating fear in the prey population. Moreover, the Allee effect in the predator growth is added into account from both biological and mathematical points of view. We explore the influence of the Alle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations Jg. 2021; H. 1; S. 1 - 22
Hauptverfasser: Vinoth, S., Sivasamy, R., Sathiyanathan, K., Unyong, Bundit, Rajchakit, Grienggrai, Vadivel, R., Gunasekaran, Nallappan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 16.07.2021
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1687-1847, 1687-1839, 1687-1847
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, we discuss the dynamics of a Leslie–Gower ratio-dependent predator–prey model incorporating fear in the prey population. Moreover, the Allee effect in the predator growth is added into account from both biological and mathematical points of view. We explore the influence of the Allee and fear effect on the existence of all positive equilibria. Furthermore, the local stability properties and possible bifurcation behaviors of the proposed system about positive equilibria are discussed with the help of trace and determinant values of the Jacobian matrix. With the help of Sotomayor’s theorem, the conditions for existence of saddle-node bifurcation are derived. Also, we show that the proposed system admits limit cycle dynamics, and its stability is discussed with the value of first Lyapunov coefficient. Moreover, the numerical simulations including phase portrait, one- and two-parameter bifurcation diagrams are performed to validate our important findings.
AbstractList Abstract In this article, we discuss the dynamics of a Leslie–Gower ratio-dependent predator–prey model incorporating fear in the prey population. Moreover, the Allee effect in the predator growth is added into account from both biological and mathematical points of view. We explore the influence of the Allee and fear effect on the existence of all positive equilibria. Furthermore, the local stability properties and possible bifurcation behaviors of the proposed system about positive equilibria are discussed with the help of trace and determinant values of the Jacobian matrix. With the help of Sotomayor’s theorem, the conditions for existence of saddle-node bifurcation are derived. Also, we show that the proposed system admits limit cycle dynamics, and its stability is discussed with the value of first Lyapunov coefficient. Moreover, the numerical simulations including phase portrait, one- and two-parameter bifurcation diagrams are performed to validate our important findings.
In this article, we discuss the dynamics of a Leslie–Gower ratio-dependent predator–prey model incorporating fear in the prey population. Moreover, the Allee effect in the predator growth is added into account from both biological and mathematical points of view. We explore the influence of the Allee and fear effect on the existence of all positive equilibria. Furthermore, the local stability properties and possible bifurcation behaviors of the proposed system about positive equilibria are discussed with the help of trace and determinant values of the Jacobian matrix. With the help of Sotomayor’s theorem, the conditions for existence of saddle-node bifurcation are derived. Also, we show that the proposed system admits limit cycle dynamics, and its stability is discussed with the value of first Lyapunov coefficient. Moreover, the numerical simulations including phase portrait, one- and two-parameter bifurcation diagrams are performed to validate our important findings.
ArticleNumber 338
Author Vadivel, R.
Sivasamy, R.
Vinoth, S.
Unyong, Bundit
Sathiyanathan, K.
Gunasekaran, Nallappan
Rajchakit, Grienggrai
Author_xml – sequence: 1
  givenname: S.
  surname: Vinoth
  fullname: Vinoth, S.
  organization: Department of Mathematics, SRMV College of Arts and Science
– sequence: 2
  givenname: R.
  surname: Sivasamy
  fullname: Sivasamy, R.
  organization: Department of Science and Humanities, M. Kumarasamy College of Engineering
– sequence: 3
  givenname: K.
  surname: Sathiyanathan
  fullname: Sathiyanathan, K.
  organization: Department of Mathematics, SRMV College of Arts and Science
– sequence: 4
  givenname: Bundit
  surname: Unyong
  fullname: Unyong, Bundit
  email: bundit.u@pkru.ac.th
  organization: Department of Mathematics, Faculty of Science and Technology, Phuket Rajabhat University
– sequence: 5
  givenname: Grienggrai
  surname: Rajchakit
  fullname: Rajchakit, Grienggrai
  organization: Department of Mathematics, Faculty of Science, Maejo University
– sequence: 6
  givenname: R.
  surname: Vadivel
  fullname: Vadivel, R.
  organization: Department of Mathematics, Faculty of Science and Technology, Phuket Rajabhat University
– sequence: 7
  givenname: Nallappan
  surname: Gunasekaran
  fullname: Gunasekaran, Nallappan
  organization: Department of Mathematical Sciences, Shibaura Institute of Technology
BookMark eNp9kU1OHDEQha2ISAGSC2RliXUT_7V_lggBQRqRDVlbbrsMHvW0J7YRzI47cMOcJA1NRJQFqyqV3vfqSe8A7U15AoS-UnJMqZbfKuVSso4w2hEuDOkePqB9KrXqqBZq75_9EzqodU0IM0LrfXR1fQs47Ca3Sb7iHLHDK6hjAtx2W8DbAsG1XH4_Ps3rDm9ygBHfp3aLI7iC3RTwyTgCYIgRfPuMPkY3VvjyOg_Rz_Oz69Pv3erHxeXpyarzgpnWUUNAGqO4VJoMHhRRUnMRRARuBBmMIlIFqefng3IcuNbq-UCjEFEHxw_R5eIbslvbbUkbV3Y2u2RfDrncWFda8iNYwwCGgYOgnAkvg6aUc0KVcL7v3QCz19HitS351x3UZtf5rkxzfMv6nlHNTS9nlV5UvuRaC0TrU3Mt5akVl0ZLiX1uwi5N2LkJ-9KEfZhR9h_6N_C7EF-gOounGyhvqd6h_gBq7J1O
CitedBy_id crossref_primary_10_1155_2023_5537632
crossref_primary_10_3390_math11143118
crossref_primary_10_1002_mma_10032
crossref_primary_10_1080_00207179_2022_2078425
crossref_primary_10_1371_journal_pone_0324299
crossref_primary_10_1007_s12346_024_01124_7
crossref_primary_10_3390_math11132902
crossref_primary_10_1155_2022_6931354
crossref_primary_10_1007_s12190_024_02119_y
crossref_primary_10_1016_j_chaos_2024_114498
crossref_primary_10_1016_j_matcom_2024_07_034
crossref_primary_10_1140_epjp_s13360_024_04909_6
crossref_primary_10_1142_S0218127425500798
crossref_primary_10_1142_S0218127425500853
crossref_primary_10_1155_2022_1116671
crossref_primary_10_1155_2022_4071375
crossref_primary_10_3390_math10162857
Cites_doi 10.1007/s11071-018-4219-9
10.1111/j.1365-2656.2009.01552.x
10.2307/2333294
10.1016/j.matcom.2020.10.013
10.1016/j.jmaa.2019.123471
10.1016/S0022-5193(89)80211-5
10.1016/j.cam.2004.10.001
10.1007/s10336-010-0638-1
10.1007/s00285-016-0989-1
10.1007/s00285-015-0856-5
10.5890/JAND.2019.12.008
10.1016/j.nonrwa.2019.01.002
10.1016/j.cnsns.2016.02.038
10.1142/S0218127419501852
10.3934/mbe.2019258
10.1016/j.nonrwa.2016.05.010
10.1016/j.ecocom.2012.01.002
10.1016/j.jmaa.2006.12.079
10.2307/j.ctv301f9v
10.1016/j.chaos.2014.12.007
10.1016/j.ecocom.2020.100826
10.1007/s11071-017-3637-4
10.1007/s11071-015-1927-2
10.1016/j.apm.2018.07.021
10.1142/S1793524518500894
10.1186/s13662-021-03216-z
10.1111/j.1939-7445.1989.tb00119.x
10.1142/S0218127415300074
10.2307/1313225
10.4039/Ent91385-7
10.1515/zna-2018-0449
10.1126/science.1210908
10.1007/s002850100097
10.2307/1940007
10.1016/j.tpb.2004.06.007
10.1016/j.cam.2019.01.034
10.1016/S0893-9659(03)90096-6
10.1038/118558a0
10.4039/Ent91293-5
10.1142/S0218348X21500146
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1186/s13662-021-03490-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 22
ExternalDocumentID oai_doaj_org_article_92eebb3e41324c6d811330174ac55abe
10_1186_s13662_021_03490_x
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c429t-190e699736780bce7076834d4fe3940b97067d68edab7a3e388767d61f44f8da3
IEDL.DBID DOA
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675634100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-1847
1687-1839
IngestDate Tue Oct 14 19:04:01 EDT 2025
Tue Sep 30 13:11:35 EDT 2025
Tue Nov 18 21:05:11 EST 2025
Sat Nov 29 01:43:51 EST 2025
Fri Feb 21 02:48:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Leslie–Gower predator–prey model
Ratio-dependent functional response
Hopf bifurcation
Fear effect
Allee effect
Local stability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-190e699736780bce7076834d4fe3940b97067d68edab7a3e388767d61f44f8da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/92eebb3e41324c6d811330174ac55abe
PQID 2552183956
PQPubID 237355
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_92eebb3e41324c6d811330174ac55abe
proquest_journals_2552183956
crossref_citationtrail_10_1186_s13662_021_03490_x
crossref_primary_10_1186_s13662_021_03490_x
springer_journals_10_1186_s13662_021_03490_x
PublicationCentury 2000
PublicationDate 2021-07-16
PublicationDateYYYYMMDD 2021-07-16
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-16
  day: 16
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Chen (CR37) 2005; 180
Leslie, Gower (CR10) 1960; 47
Perko (CR41) 2013
Lima (CR21) 1998; 48
Pal, Majhi, Mandal, Pal (CR27) 2019; 74
Sen, Banerjee, Morozov (CR16) 2012; 11
Sheriff, Krebs, Boonstra (CR35) 2009; 78
Indrajaya, Suryanto, Alghofari (CR39) 2016; 31
Vinoth, Sivasamy, Sathiyanathan, Rajchakit, Hammachukiattikul, Vadivel, Gunasekaran (CR44) 2021; 2021
Feng, Kang (CR12) 2015; 80
CR14
Zanette, White, Allen, Clinchy (CR23) 2011; 334
Xu, Tian, Guo, Song (CR34) 2018; 93
Holling (CR4) 1959; 91
Lotka (CR1) 1926; 21
Sasmal, Takeuchi (CR30) 2020; 481
Liang, Pan (CR5) 2007; 334
Arditi, Ginzburg (CR8) 1989; 139
Liang, Zeng, Pang, Liang (CR18) 2017; 89
Sasmal (CR29) 2018; 64
Dennis (CR15) 1989; 3
Sivasamy, Sathiyanathan, Balachandran (CR7) 2019; 8
Pal, Pal, Samanta, Chattopadhyay (CR25) 2019; 16
CR2
CR3
Sen, Banerjee (CR19) 2015; 25
Thieme (CR36) 2018
Xiao, Ruan (CR38) 2001; 43
Hu, Cao (CR33) 2017; 33
Pal, Sasmal, Pal (CR43) 2018; 11
Zhou, Liu, Wang (CR31) 2005; 67
Qiao, Cai, Fu, Wang (CR28) 2019; 29
Terry (CR32) 2015; 71
Guan, Chen (CR6) 2019; 48
Wang, Zanette, Zou (CR26) 2016; 73
Wiggins (CR42) 2003
Aziz-Alaoui, Okiye (CR11) 2003; 16
Pal, Saha (CR20) 2015; 73
Zhang, Cai, Fu, Wang (CR24) 2019; 356
Yuan, Zhao, Huang, Xiao (CR13) 2021; 181
Arditi, Saiah (CR9) 1992; 73
Cheng, Cao (CR17) 2016; 38
Cresswell (CR22) 2011; 152
Sarkar, Khajanchi (CR40) 2020; 42
J. Xu (3490_CR34) 2018; 93
X. Wang (3490_CR26) 2016; 73
S. Wiggins (3490_CR42) 2003
H. Zhang (3490_CR24) 2019; 356
A.J. Terry (3490_CR32) 2015; 71
S. Pal (3490_CR43) 2018; 11
S. Pal (3490_CR27) 2019; 74
D. Xiao (3490_CR38) 2001; 43
J. Yuan (3490_CR13) 2021; 181
S. Vinoth (3490_CR44) 2021; 2021
A.J. Lotka (3490_CR1) 1926; 21
C.S. Holling (3490_CR4) 1959; 91
P. Feng (3490_CR12) 2015; 80
B. Dennis (3490_CR15) 1989; 3
M. Sen (3490_CR16) 2012; 11
T. Qiao (3490_CR28) 2019; 29
M. Sen (3490_CR19) 2015; 25
M.J. Sheriff (3490_CR35) 2009; 78
L. Perko (3490_CR41) 2013
P. Leslie (3490_CR10) 1960; 47
3490_CR14
H.R. Thieme (3490_CR36) 2018
Z. Liang (3490_CR18) 2017; 89
M. Aziz-Alaoui (3490_CR11) 2003; 16
L.Y. Zanette (3490_CR23) 2011; 334
S. Pal (3490_CR25) 2019; 16
D. Hu (3490_CR33) 2017; 33
S.K. Sasmal (3490_CR29) 2018; 64
K. Sarkar (3490_CR40) 2020; 42
3490_CR2
3490_CR3
P.J. Pal (3490_CR20) 2015; 73
F. Chen (3490_CR37) 2005; 180
Z. Liang (3490_CR5) 2007; 334
R. Arditi (3490_CR8) 1989; 139
L. Cheng (3490_CR17) 2016; 38
R. Arditi (3490_CR9) 1992; 73
S.L. Lima (3490_CR21) 1998; 48
S.K. Sasmal (3490_CR30) 2020; 481
W. Cresswell (3490_CR22) 2011; 152
S.-R. Zhou (3490_CR31) 2005; 67
D. Indrajaya (3490_CR39) 2016; 31
R. Sivasamy (3490_CR7) 2019; 8
X. Guan (3490_CR6) 2019; 48
References_xml – volume: 93
  start-page: 705
  issue: 2
  year: 2018
  end-page: 720
  ident: CR34
  article-title: Dynamical analysis of a pest management Leslie–Gower model with ratio-dependent functional response
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4219-9
– volume: 78
  start-page: 1249
  issue: 6
  year: 2009
  end-page: 1258
  ident: CR35
  article-title: The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2009.01552.x
– volume: 47
  start-page: 219
  issue: 3/4
  year: 1960
  end-page: 234
  ident: CR10
  article-title: The properties of a stochastic model for the predator-prey type of interaction between two species
  publication-title: Biometrika
  doi: 10.2307/2333294
– volume: 181
  start-page: 562
  year: 2021
  end-page: 580
  ident: CR13
  article-title: Stability and bifurcation analysis of a fractional predator–prey model involving two nonidentical delays
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2020.10.013
– volume: 31
  start-page: 60
  issue: 3
  year: 2016
  end-page: 71
  ident: CR39
  article-title: Dynamics of modified Leslie–Gower predator-prey model with Beddington–DeAngelis functional response and additive Allee effect
  publication-title: Int. J. Ecol. Dev.
– volume: 481
  issue: 1
  year: 2020
  ident: CR30
  article-title: Dynamics of a predator-prey system with fear and group defense
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.123471
– volume: 139
  start-page: 311
  issue: 3
  year: 1989
  end-page: 326
  ident: CR8
  article-title: Coupling in predator-prey dynamics: ratio-dependence
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(89)80211-5
– ident: CR14
– ident: CR2
– volume: 180
  start-page: 33
  issue: 1
  year: 2005
  end-page: 49
  ident: CR37
  article-title: On a nonlinear nonautonomous predator–prey model with diffusion and distributed delay
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2004.10.001
– volume: 152
  start-page: 251
  issue: 1
  year: 2011
  end-page: 263
  ident: CR22
  article-title: Predation in bird populations
  publication-title: J. Ornithol.
  doi: 10.1007/s10336-010-0638-1
– volume: 73
  start-page: 1179
  issue: 5
  year: 2016
  end-page: 1204
  ident: CR26
  article-title: Modelling the fear effect in predator–prey interactions
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-016-0989-1
– volume: 71
  start-page: 1325
  issue: 6–7
  year: 2015
  end-page: 1352
  ident: CR32
  article-title: Predator–prey models with component Allee effect for predator reproduction
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-015-0856-5
– volume: 8
  start-page: 621
  issue: 4
  year: 2019
  end-page: 636
  ident: CR7
  article-title: Dynamics of a modified Leslie–Gower model with Crowley–Martin functional response and prey harvesting
  publication-title: J. Appl. Nonlinear Dyn.
  doi: 10.5890/JAND.2019.12.008
– volume: 48
  start-page: 71
  year: 2019
  end-page: 93
  ident: CR6
  article-title: Dynamical analysis of a two species amensalism model with Beddington–DeAngelis functional response and Allee effect on the second species
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2019.01.002
– volume: 21
  start-page: 341
  issue: 82
  year: 1926
  end-page: 343
  ident: CR1
  article-title: Elements of physical biology
  publication-title: Sci. Prog. Twent. Century
– volume: 38
  start-page: 288
  year: 2016
  end-page: 302
  ident: CR17
  article-title: Bifurcation analysis of a discrete-time ratio-dependent predator–prey model with Allee effect
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.02.038
– volume: 29
  issue: 13
  year: 2019
  ident: CR28
  article-title: Stability and Hopf bifurcation in a predator–prey model with the cost of anti-predator behaviors
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127419501852
– year: 2013
  ident: CR41
  publication-title: Differential Equations and Dynamical Systems
– volume: 16
  start-page: 5146
  year: 2019
  end-page: 5179
  ident: CR25
  article-title: Fear effect in prey and hunting cooperation among predators in a Leslie–Gower model
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2019258
– volume: 33
  start-page: 58
  year: 2017
  end-page: 82
  ident: CR33
  article-title: Stability and bifurcation analysis in a predator–prey system with Michaelis–Menten type predator harvesting
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2016.05.010
– volume: 11
  start-page: 12
  year: 2012
  end-page: 27
  ident: CR16
  article-title: Bifurcation analysis of a ratio-dependent prey–predator model with the Allee effect
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2012.01.002
– volume: 334
  start-page: 954
  issue: 2
  year: 2007
  end-page: 964
  ident: CR5
  article-title: Qualitative analysis of a ratio-dependent Holling–Tanner model
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.12.079
– year: 2018
  ident: CR36
  publication-title: Mathematics in Population Biology
  doi: 10.2307/j.ctv301f9v
– volume: 73
  start-page: 36
  year: 2015
  end-page: 63
  ident: CR20
  article-title: Qualitative analysis of a predator–prey system with double Allee effect in prey
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2014.12.007
– year: 2003
  ident: CR42
  publication-title: Introduction to Applied Nonlinear Dynamical Systems and Chaos
– volume: 42
  year: 2020
  ident: CR40
  article-title: Impact of fear effect on the growth of prey in a predator-prey interaction model
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2020.100826
– ident: CR3
– volume: 89
  start-page: 2941
  issue: 4
  year: 2017
  end-page: 2955
  ident: CR18
  article-title: Periodic solution of a Leslie predator–prey system with ratio-dependent and state impulsive feedback control
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3637-4
– volume: 80
  start-page: 1051
  issue: 1–2
  year: 2015
  end-page: 1062
  ident: CR12
  article-title: Dynamics of a modified Leslie–Gower model with double Allee effects
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-1927-2
– volume: 64
  start-page: 1
  year: 2018
  end-page: 14
  ident: CR29
  article-title: Population dynamics with multiple Allee effects induced by fear factors—A mathematical study on prey-predator interactions
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.07.021
– volume: 11
  issue: 07
  year: 2018
  ident: CR43
  article-title: Chaos control in a discrete-time predator–prey model with weak Allee effect
  publication-title: Int. J. Biomath.
  doi: 10.1142/S1793524518500894
– volume: 2021
  issue: 1
  year: 2021
  ident: CR44
  article-title: Dynamical analysis of a delayed food chain model with additive Allee effect
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-021-03216-z
– volume: 3
  start-page: 481
  issue: 4
  year: 1989
  end-page: 538
  ident: CR15
  article-title: Allee effects: population growth, critical density, and the chance of extinction
  publication-title: Nat. Resour. Model.
  doi: 10.1111/j.1939-7445.1989.tb00119.x
– volume: 25
  issue: 03
  year: 2015
  ident: CR19
  article-title: Rich global dynamics in a prey–predator model with Allee effect and density dependent death rate of predator
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127415300074
– volume: 48
  start-page: 25
  issue: 1
  year: 1998
  end-page: 34
  ident: CR21
  article-title: Nonlethal effects in the ecology of predator-prey interactions
  publication-title: Bioscience
  doi: 10.2307/1313225
– volume: 91
  start-page: 385
  issue: 7
  year: 1959
  end-page: 398
  ident: CR4
  article-title: Some characteristics of simple types of predation and parasitism
  publication-title: Can. Entomol.
  doi: 10.4039/Ent91385-7
– volume: 74
  start-page: 581
  issue: 7
  year: 2019
  end-page: 595
  ident: CR27
  article-title: Role of fear in a predator–prey model with Beddington–DeAngelis functional response
  publication-title: Z. Naturforsch. A
  doi: 10.1515/zna-2018-0449
– volume: 334
  start-page: 1398
  issue: 6061
  year: 2011
  end-page: 1401
  ident: CR23
  article-title: Perceived predation risk reduces the number of offspring songbirds produce per year
  publication-title: Science
  doi: 10.1126/science.1210908
– volume: 43
  start-page: 268
  issue: 3
  year: 2001
  end-page: 290
  ident: CR38
  article-title: Global dynamics of a ratio-dependent predator-prey system
  publication-title: J. Math. Biol.
  doi: 10.1007/s002850100097
– volume: 73
  start-page: 1544
  issue: 5
  year: 1992
  end-page: 1551
  ident: CR9
  article-title: Empirical evidence of the role of heterogeneity in ratio-dependent consumption
  publication-title: Ecology
  doi: 10.2307/1940007
– volume: 67
  start-page: 23
  issue: 1
  year: 2005
  end-page: 31
  ident: CR31
  article-title: The stability of predator–prey systems subject to the Allee effects
  publication-title: Theor. Popul. Biol.
  doi: 10.1016/j.tpb.2004.06.007
– volume: 356
  start-page: 328
  year: 2019
  end-page: 337
  ident: CR24
  article-title: Impact of the fear effect in a prey-predator model incorporating a prey refuge
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.cam.2019.01.034
– volume: 16
  start-page: 1069
  issue: 7
  year: 2003
  end-page: 1075
  ident: CR11
  article-title: Boundedness and global stability for a predator-prey model with modified Leslie–Gower and Holling-type II schemes
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(03)90096-6
– volume: 21
  start-page: 341
  issue: 82
  year: 1926
  ident: 3490_CR1
  publication-title: Sci. Prog. Twent. Century
– volume: 139
  start-page: 311
  issue: 3
  year: 1989
  ident: 3490_CR8
  publication-title: J. Theor. Biol.
  doi: 10.1016/S0022-5193(89)80211-5
– volume: 47
  start-page: 219
  issue: 3/4
  year: 1960
  ident: 3490_CR10
  publication-title: Biometrika
  doi: 10.2307/2333294
– volume: 356
  start-page: 328
  year: 2019
  ident: 3490_CR24
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.cam.2019.01.034
– volume-title: Introduction to Applied Nonlinear Dynamical Systems and Chaos
  year: 2003
  ident: 3490_CR42
– volume: 31
  start-page: 60
  issue: 3
  year: 2016
  ident: 3490_CR39
  publication-title: Int. J. Ecol. Dev.
– volume: 67
  start-page: 23
  issue: 1
  year: 2005
  ident: 3490_CR31
  publication-title: Theor. Popul. Biol.
  doi: 10.1016/j.tpb.2004.06.007
– ident: 3490_CR2
  doi: 10.1038/118558a0
– volume: 48
  start-page: 25
  issue: 1
  year: 1998
  ident: 3490_CR21
  publication-title: Bioscience
  doi: 10.2307/1313225
– volume: 11
  start-page: 12
  year: 2012
  ident: 3490_CR16
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2012.01.002
– volume: 16
  start-page: 5146
  year: 2019
  ident: 3490_CR25
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2019258
– volume-title: Mathematics in Population Biology
  year: 2018
  ident: 3490_CR36
  doi: 10.2307/j.ctv301f9v
– volume: 11
  issue: 07
  year: 2018
  ident: 3490_CR43
  publication-title: Int. J. Biomath.
  doi: 10.1142/S1793524518500894
– volume: 25
  issue: 03
  year: 2015
  ident: 3490_CR19
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127415300074
– volume: 73
  start-page: 1179
  issue: 5
  year: 2016
  ident: 3490_CR26
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-016-0989-1
– volume: 2021
  issue: 1
  year: 2021
  ident: 3490_CR44
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-021-03216-z
– volume: 334
  start-page: 1398
  issue: 6061
  year: 2011
  ident: 3490_CR23
  publication-title: Science
  doi: 10.1126/science.1210908
– volume: 334
  start-page: 954
  issue: 2
  year: 2007
  ident: 3490_CR5
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.12.079
– volume: 8
  start-page: 621
  issue: 4
  year: 2019
  ident: 3490_CR7
  publication-title: J. Appl. Nonlinear Dyn.
  doi: 10.5890/JAND.2019.12.008
– volume: 74
  start-page: 581
  issue: 7
  year: 2019
  ident: 3490_CR27
  publication-title: Z. Naturforsch. A
  doi: 10.1515/zna-2018-0449
– volume: 152
  start-page: 251
  issue: 1
  year: 2011
  ident: 3490_CR22
  publication-title: J. Ornithol.
  doi: 10.1007/s10336-010-0638-1
– volume: 48
  start-page: 71
  year: 2019
  ident: 3490_CR6
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2019.01.002
– volume: 16
  start-page: 1069
  issue: 7
  year: 2003
  ident: 3490_CR11
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(03)90096-6
– volume: 38
  start-page: 288
  year: 2016
  ident: 3490_CR17
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.02.038
– volume: 89
  start-page: 2941
  issue: 4
  year: 2017
  ident: 3490_CR18
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3637-4
– volume: 78
  start-page: 1249
  issue: 6
  year: 2009
  ident: 3490_CR35
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2009.01552.x
– ident: 3490_CR3
  doi: 10.4039/Ent91293-5
– volume: 80
  start-page: 1051
  issue: 1–2
  year: 2015
  ident: 3490_CR12
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-1927-2
– volume: 3
  start-page: 481
  issue: 4
  year: 1989
  ident: 3490_CR15
  publication-title: Nat. Resour. Model.
  doi: 10.1111/j.1939-7445.1989.tb00119.x
– volume: 33
  start-page: 58
  year: 2017
  ident: 3490_CR33
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2016.05.010
– volume: 64
  start-page: 1
  year: 2018
  ident: 3490_CR29
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.07.021
– volume: 73
  start-page: 36
  year: 2015
  ident: 3490_CR20
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2014.12.007
– volume: 73
  start-page: 1544
  issue: 5
  year: 1992
  ident: 3490_CR9
  publication-title: Ecology
  doi: 10.2307/1940007
– volume: 29
  issue: 13
  year: 2019
  ident: 3490_CR28
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127419501852
– volume: 91
  start-page: 385
  issue: 7
  year: 1959
  ident: 3490_CR4
  publication-title: Can. Entomol.
  doi: 10.4039/Ent91385-7
– volume: 43
  start-page: 268
  issue: 3
  year: 2001
  ident: 3490_CR38
  publication-title: J. Math. Biol.
  doi: 10.1007/s002850100097
– volume: 180
  start-page: 33
  issue: 1
  year: 2005
  ident: 3490_CR37
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2004.10.001
– volume-title: Differential Equations and Dynamical Systems
  year: 2013
  ident: 3490_CR41
– ident: 3490_CR14
  doi: 10.1142/S0218348X21500146
– volume: 42
  year: 2020
  ident: 3490_CR40
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2020.100826
– volume: 71
  start-page: 1325
  issue: 6–7
  year: 2015
  ident: 3490_CR32
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-015-0856-5
– volume: 481
  issue: 1
  year: 2020
  ident: 3490_CR30
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.123471
– volume: 181
  start-page: 562
  year: 2021
  ident: 3490_CR13
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2020.10.013
– volume: 93
  start-page: 705
  issue: 2
  year: 2018
  ident: 3490_CR34
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4219-9
SSID ssj0029488
Score 2.378416
Snippet In this article, we discuss the dynamics of a Leslie–Gower ratio-dependent predator–prey model incorporating fear in the prey population. Moreover, the Allee...
Abstract In this article, we discuss the dynamics of a Leslie–Gower ratio-dependent predator–prey model incorporating fear in the prey population. Moreover,...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Allee effect
Analysis
Behavior
Bifurcation theory
Difference and Functional Equations
Dynamic stability
Equilibrium
Existence theorems
Fear
Fear effect
Functional Analysis
Hopf bifurcation
Jacobi matrix method
Jacobian matrix
Leslie–Gower predator–prey model
Local stability
Mathematical models
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Population
Predation
Predator-prey simulation
Predators
Ratio-dependent functional response
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB61tAc4lLZQsUArH3oDi80669inChCoh2pVqa3EzXLsCUJa7W43C4Ib79A37JMw4yTLj1QuvUWJnVien29sT-YD-Gx0kXsVUXL1cJlj7EuvVSZLAt8KyTRjMIlsohiNzNmZ_d5uuNVtWmXnE5OjjtPAe-QHFPomNB_qL7Pfklmj-HS1pdB4Ca-4SkKWUvd-LBdcNk-8k5kmQ-K-3U8zRh_UmdJ6IDlBgSu09OX1I2BK9fsfBZ1PzkkT_Jyu_-_A38KbNvAUh42mvIMXOHkPaw_KEW7AiHRGxIaivhbTSnjxDSkORcEbtWI2x8hL9L-3f-jyRiQSHcEbuaIiexF-EsXheIwomiSRTfh1evLz-Kts-RZkIFRaSIoNUFtbKAKwfhmw4FM6lUcSGvOnl7YgaIva0MfKwitU5KD4RlbleWWiVx9gZTKd4BaIfiQ_YD1pQkWza4INWA0JB60tK00C6EHWTbYLbTFy5sQYu7QoMdo1AnIkIJcE5K57sLfsM2tKcTzb-ohluGzJZbTTjen83LVW6ewAsSwVEpIP8qCjyWjJTj4q92E49CX2YLeTqWttu3b3Au3BfqcV94__PaTt59-2A6uDpI-krHoXVhbzS_wIr8PV4qKef0qafQetbPxJ
  priority: 102
  providerName: ProQuest
Title The dynamics of a Leslie type predator–prey model with fear and Allee effect
URI https://link.springer.com/article/10.1186/s13662-021-03490-x
https://www.proquest.com/docview/2552183956
https://doaj.org/article/92eebb3e41324c6d811330174ac55abe
Volume 2021
WOSCitedRecordID wos000675634100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-1847
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0029488
  issn: 1687-1847
  databaseCode: DOA
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hwgEOFVAQW5aVD9zAarJO_HPcolagwiqCVmq5WI49kSqtdqvdBZVb36Fv2Cfp2ElKi1S4cLEi21Gsb8b-PPZkBuCtlqpwIiCP0cN5gSHjToqc10S-DdLUDF6nZBNqOtXHx6a6leor-oS14YFb4HbMGLGuBdJiOy68DDonq4rUqHC-LF2NcfXNlOmNqc7UMqSX_S8yWu6sciHlmEd3hBiPJePnd2goReu_s8X841Y0kc3-U9jsdols0o7uGTzA-XN4cit24BZMScAstPnkV2zRMMc-I20akcVTVXa2xBDt6auLS3r8xVLGGxZPXVlDys3cPLDJbIbIWo-OF3C0v3f44SPvkiNwTxSy5kTkKI1Rgtgmqz2qeKUmikAIx2TntVHEQ0Fq-litnEBBq0msyJuiaHRw4iVszBdzfAUsCzRpjSOxNQSO9sZjUxJpGVM3kvAbQN5jZX0XOTwmsJjZZEFoaVt8LeFrE772fADvbt45a-Nm_LX3bhTBTc8Y8zpVkCbYThPsvzRhAMNegLabiCtLFlPaBJZyAO97of5uvn9I2_9jSK_h8TgpneK5HMLGevkD38Aj_3N9ulqO4OHu3rT6OkqqS-WB4qPoe_qNyqr8Tu3Vpy_VyTV_s_JF
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qBQlY8CxqoMAsYAWjxh5nPLNAqDyqVgkRiyJ1N9gz16hSsFM7QLPjH_gPPoov4c7YTikS3XXBLnIcZ-w559w7D98D8ETJNMmEQ-6rh_ME3ZBnUkQ8p-BbIFHTWRXMJtLpVB0e6vdr8LN_F8Zvq-w1MQi1q6yfI9-m1DdE85F8OT_m3jXKr672FhotLMa4_EZDtubF_hvq36dxvPv24PUe71wFuCXtXXCKgCi1TgXJ9DC3mPq1KJE4app3Cc91SgLupEKX5WkmUBAN_YGoSJJCuUzQdS_B5USo1PNqnPLVAE8nwecykkRc39b-JR0lt5tISBlzvyHCV4QZ8pMzgTD4BZxJcv9alw3hbvfm__agbsGNLrFmOy0TbsMalnfg-h_lFu_ClDjB3LLMPh_ZhlUFy9gEKc9G5iei2bym_1hU9a_vP-jjkgWTIOYnqllB98Oy0rGd2QyRtZtgNuDDhdzQPVgvqxI3gQ0d6ZzOCOkF9aay2mIxojivdV5I6vABRH3nGtsVW_eeHzMTBl1KmhYQhgBhAiDMyQCerX4zb0uNnHv2K4-Z1Zm-THg4UNWfTKc6RseIeS6QMpU4sdKpKBKk6ERPOxplOQ5gq8eQ6bSrMacAGsDzHoWnX_-7SffPv9pjuLp38G5iJvvT8QO4FgcuEFHkFqwv6i_4EK7Yr4ujpn4UWMXg40Wj8zfCBVcM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAc-C1ioYAPcAJrN3HWiQ8IFcqKqtVqDyBVXIxjT1ClJVmSBbo33oG34XF4EsZOsqVI9NYDtyi_Tvx9M2N7Mh_A40ymiREOua8ezhN0I26kiHhOzrdAoqazWRCbSKfT7PBQzTbgZ_8vjE-r7G1iMNSusn6OfEihb_DmYzksurSI2e7kxeIz9wpSfqW1l9NoIbKPq280fGue7-1SXz-J48nrt6_e8E5hgFuyw0tO3hClUqkgkz3KLaZ-XUokjprpFcNzlZIxdzJDZ_LUCBRESb8jKpKkyJwRdN8LcDGlMaZPJ5yN368HeyoJmpeRJBL7dvc_7GRy2ERCypj75AhfHWbEj085xaAdcCrg_WuNNri-yfX_-aPdgGtdwM12WobchA0sb8HVP8ow3oYpcYW5VWk-HdmGVQUz7AAp_kbmJ6jZoqZnLKv61_cftLliQTyI-QlsVtD7MFM6tjOfI7I2OWYL3p3LC92BzbIq8S6wkSP7pwwxoKCezayyWIzJ_yuVF5I6fwBR39HadkXYvRbIXIfBWCZ1Cw5N4NABHPp4AE_X1yzaEiRnnv3S42d9pi8fHnZU9UfdWSOtYsQ8F0gRTJxY6bIoEmTpibZ2PDY5DmC7x5PubFqjT8A0gGc9Ik8O_7tJ986-2yO4TKDUB3vT_ftwJQ60IM7Ibdhc1l_wAVyyX5dHTf0wEIzBh_MG52-7MWAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dynamics+of+a+Leslie+type+predator%E2%80%93prey+model+with+fear+and+Allee+effect&rft.jtitle=Advances+in+difference+equations&rft.au=Vinoth%2C+S.&rft.au=Sivasamy%2C+R.&rft.au=Sathiyanathan%2C+K.&rft.au=Unyong%2C+Bundit&rft.date=2021-07-16&rft.pub=Springer+International+Publishing&rft.eissn=1687-1847&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-021-03490-x&rft.externalDocID=10_1186_s13662_021_03490_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon