Novel finite point approach for solving time-fractional convection-dominated diffusion equations

In this paper, a stabilized numerical method with high accuracy is proposed to solve time-fractional singularly perturbed convection-diffusion equation with variable coefficients. The tailored finite point method (TFPM) is adopted to discrete equation in the spatial direction, while the time directi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in difference equations Ročník 2021; číslo 1; s. 1 - 22
Hlavní autoři: Liu, Xiaomin, Abbas, Muhammad, Yang, Honghong, Qin, Xinqiang, Nazir, Tahir
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 06.01.2021
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1687-1847, 1687-1839, 1687-1847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a stabilized numerical method with high accuracy is proposed to solve time-fractional singularly perturbed convection-diffusion equation with variable coefficients. The tailored finite point method (TFPM) is adopted to discrete equation in the spatial direction, while the time direction is discreted by the G-L approximation and the L1 approximation. It can effectively eliminate non-physical oscillation or excessive numerical dispersion caused by convection dominant. The stability of the scheme is verified by theoretical analysis. Finally, one-dimensional and two-dimensional numerical examples are presented to verify the efficiency of the method.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-03178-8