Novel finite point approach for solving time-fractional convection-dominated diffusion equations

In this paper, a stabilized numerical method with high accuracy is proposed to solve time-fractional singularly perturbed convection-diffusion equation with variable coefficients. The tailored finite point method (TFPM) is adopted to discrete equation in the spatial direction, while the time directi...

Full description

Saved in:
Bibliographic Details
Published in:Advances in difference equations Vol. 2021; no. 1; pp. 1 - 22
Main Authors: Liu, Xiaomin, Abbas, Muhammad, Yang, Honghong, Qin, Xinqiang, Nazir, Tahir
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 06.01.2021
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:1687-1847, 1687-1839, 1687-1847
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a stabilized numerical method with high accuracy is proposed to solve time-fractional singularly perturbed convection-diffusion equation with variable coefficients. The tailored finite point method (TFPM) is adopted to discrete equation in the spatial direction, while the time direction is discreted by the G-L approximation and the L1 approximation. It can effectively eliminate non-physical oscillation or excessive numerical dispersion caused by convection dominant. The stability of the scheme is verified by theoretical analysis. Finally, one-dimensional and two-dimensional numerical examples are presented to verify the efficiency of the method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-03178-8