Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro

Current methods to promote growth of cultured neurons use two‐dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly‐L‐lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin‐1). However, these 2D surfaces represent a poor topological approxima...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part A Vol. 76A; no. 4; pp. 851 - 860
Main Authors: Ahmed, Ijaz, Liu, Hsing-Yin, Mamiya, Ping C., Ponery, Abdul S., Babu, Ashwin N., Weik, Thom, Schindler, Melvin, Meiners, Sally
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.03.2006
Subjects:
ISSN:1549-3296, 1552-4965
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Current methods to promote growth of cultured neurons use two‐dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly‐L‐lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin‐1). However, these 2D surfaces represent a poor topological approximation of the three‐dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL‐coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin‐C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide‐modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006
AbstractList Current methods to promote growth of cultured neurons use two-dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly-L-lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin-1). However, these 2D surfaces represent a poor topological approximation of the three-dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL-coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin-C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide-modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury.
Current methods to promote growth of cultured neurons use two‐dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly‐ L ‐lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin‐1). However, these 2D surfaces represent a poor topological approximation of the three‐dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo . Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL‐coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin‐C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro . Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide‐modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006
Current methods to promote growth of cultured neurons use two‐dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly‐L‐lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin‐1). However, these 2D surfaces represent a poor topological approximation of the three‐dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL‐coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin‐C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide‐modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006
Current methods to promote growth of cultured neurons use two-dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly-L-lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin-1). However, these 2D surfaces represent a poor topological approximation of the three-dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL-coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin-C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide-modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury.Current methods to promote growth of cultured neurons use two-dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly-L-lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin-1). However, these 2D surfaces represent a poor topological approximation of the three-dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL-coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin-C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide-modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury.
Author Liu, Hsing-Yin
Meiners, Sally
Schindler, Melvin
Ahmed, Ijaz
Ponery, Abdul S.
Mamiya, Ping C.
Weik, Thom
Babu, Ashwin N.
Author_xml – sequence: 1
  givenname: Ijaz
  surname: Ahmed
  fullname: Ahmed, Ijaz
  organization: Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
– sequence: 2
  givenname: Hsing-Yin
  surname: Liu
  fullname: Liu, Hsing-Yin
  organization: Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
– sequence: 3
  givenname: Ping C.
  surname: Mamiya
  fullname: Mamiya, Ping C.
  organization: Department of Psychology, Busch Campus, Rutgers University, New Brunswick, New Jersey 08903
– sequence: 4
  givenname: Abdul S.
  surname: Ponery
  fullname: Ponery, Abdul S.
  organization: Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
– sequence: 5
  givenname: Ashwin N.
  surname: Babu
  fullname: Babu, Ashwin N.
  organization: Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
– sequence: 6
  givenname: Thom
  surname: Weik
  fullname: Weik, Thom
  organization: Donaldson Company, Inc., P.O. Box 1299, Minneapolis, Minnesota 55440
– sequence: 7
  givenname: Melvin
  surname: Schindler
  fullname: Schindler, Melvin
  organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
– sequence: 8
  givenname: Sally
  surname: Meiners
  fullname: Meiners, Sally
  email: meiners@umdnj.edu
  organization: Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16345089$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFv0zAUhy00xLbCiTvKiQtKceLYjo9QwRjaQKAhuFkv8Qv1SOxiuy297G_HWzeQOIyTLev7fvJ7v2Ny4LxDQp5WdF5RWr-87KY5zBnlrXxAjirO67JRgh9c3xtVslqJQ3Ic42WGBeX1I3JYCdZw2qojcnWxDIilsRO6aL2DsXDg_GC7YMcRQhHXYYAeY9H7DYzo0rgrJm_sYNEUW5uWRUIHsbeuXJQGg93k9xWukjVZQrcE12PhcB1uwr8Hv82OdcXGpuAfk4cDjBGf3J4z8uXtm4vFu_Ls48np4tVZ2Te1kiXrmKqZMGhaXjVSDA0H5AyxBWbqTnYcVAuma8CwFgdGG6xlPVAUvTGDADYjz_e5q-B_rjEmPdnYY57QoV9HLaQQVAr5X7BWXHKVPzMjz27BdTeh0atgJwg7fbfaDLzYA33wMQYc_iJUXxenc3Ea9E1xma7-oXubIOVGUgA73u9s7Yi7--L1-9fnd065d2xM-OuPA-FH3gGTXH_9cKKl_Hz-qfmmtGC_AUFGvgU
CitedBy_id crossref_primary_10_1097_SAP_0b013e31818e48bf
crossref_primary_10_1177_0885328208099086
crossref_primary_10_1039_c0jm04335d
crossref_primary_10_3390_ijms15023088
crossref_primary_10_3390_polym3010413
crossref_primary_10_1016_j_biomaterials_2010_03_017
crossref_primary_10_1007_s10856_023_06763_x
crossref_primary_10_1089_ten_tea_2011_0121
crossref_primary_10_1002_cnma_201700024
crossref_primary_10_1016_j_biomaterials_2013_11_017
crossref_primary_10_1016_j_actbio_2016_04_010
crossref_primary_10_1039_c2jm31161e
crossref_primary_10_1016_j_brainresbull_2019_03_004
crossref_primary_10_3390_ma8084992
crossref_primary_10_1016_j_drudis_2022_01_005
crossref_primary_10_1016_j_wneu_2018_11_035
crossref_primary_10_1002_sca_21013
crossref_primary_10_1002_adfm_200901115
crossref_primary_10_1186_1556_276X_7_394
crossref_primary_10_1089_ten_tea_2010_0369
crossref_primary_10_2217_17435889_3_2_183
crossref_primary_10_1007_s10815_012_9916_6
crossref_primary_10_1089_teb_2007_0181
crossref_primary_10_1016_j_memsci_2008_07_022
crossref_primary_10_3109_13645706_2010_481398
crossref_primary_10_1039_D0BM02049D
crossref_primary_10_1089_ten_tea_2016_0139
crossref_primary_10_1002_ar_23918
crossref_primary_10_5301_IJAO_2011_8511
crossref_primary_10_1002_jbm_b_34037
crossref_primary_10_1016_j_jddst_2020_101617
crossref_primary_10_1016_j_jneumeth_2015_03_004
crossref_primary_10_1163_016942409X12538865055953
crossref_primary_10_1016_j_acthis_2013_04_009
crossref_primary_10_1016_j_addr_2012_07_014
crossref_primary_10_1002_glia_20860
crossref_primary_10_1016_j_jconrel_2012_08_009
crossref_primary_10_1002_wnan_39
crossref_primary_10_1016_j_biomaterials_2006_08_044
crossref_primary_10_1088_1748_6041_4_4_045004
crossref_primary_10_1109_TSMCC_2012_2203301
crossref_primary_10_1002_adhm_201701024
crossref_primary_10_1002_marc_200800381
crossref_primary_10_1586_14737140_7_5_675
crossref_primary_10_1002_adfm_200600669
crossref_primary_10_1002_pi_2383
crossref_primary_10_1016_j_biomaterials_2006_07_043
crossref_primary_10_1016_j_addr_2009_07_009
crossref_primary_10_3390_polym3041684
crossref_primary_10_1002_cbin_10045
crossref_primary_10_1021_acsbiomaterials_9b01115
crossref_primary_10_1080_09205063_2019_1697170
crossref_primary_10_1088_1748_6041_3_3_034002
crossref_primary_10_1007_s11010_007_9654_8
Cites_doi 10.1111/j.1471-4159.2004.02779.x
10.1002/1096-9861(20001211)428:2<294::AID-CNE8>3.0.CO;2-Y
10.1016/j.bbrc.2005.03.195
10.1089/107632704323061997
10.1016/j.jbbm.2004.12.001
10.1016/S0896-6273(04)00108-4
10.1016/j.expneurol.2003.10.016
10.1007/s004410050004
10.1016/S0306-4522(02)00314-7
10.1016/j.biomaterials.2004.06.051
10.1016/j.biomaterials.2005.02.014
10.1002/jbm.10167
10.1002/jbm.a.10098
10.1111/j.1750-3639.2004.tb00077.x
10.1523/JNEUROSCI.21-18-07215.2001
10.1126/science.1064829
10.1163/1568562042459698
10.1211/0022357021778556
10.1016/S0301-4622(02)00138-2
10.1242/jcs.115.5.1005
10.1016/j.biomaterials.2004.01.063
10.1126/science.1093783
10.1523/JNEUROSCI.4519-03.2004
10.1038/nrn1326
10.1523/JNEUROSCI.10-03-00764.1990
10.1002/bit.10565
10.1016/j.expneurol.2004.10.005
10.1016/S0165-0270(00)00303-4
10.1038/nbt874
10.1385/MN:27:2:177
10.1038/nn1179
10.1089/ten.2005.11.847
10.1016/j.mcn.2004.08.017
10.1016/j.biomaterials.2004.08.012
10.1111/j.1460-9568.2004.03184.x
ContentType Journal Article
Copyright Copyright © 2005 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1002/jbm.a.30587
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 860
ExternalDocumentID 16345089
10_1002_jbm_a_30587
JBM30587
ark_67375_WNG_77RMQ4X9_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: New Jersey Commission on Spinal Cord Research
  funderid: 04–3034 SCR‐E‐O
– fundername: National Institutes of Health
  funderid: R01 NS40394
– fundername: NINDS NIH HHS
  grantid: R01 NS40394
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
SUPJJ
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
-
0R
31
3N
8RP
ABFLS
ABHUG
ACXME
ADAWD
ADDAD
AEUQT
AFPWT
AFVGU
AGJLS
ALUQN
GA
HZ
IA
IPNFZ
NF
P4A
PQEST
RWI
WRC
WT
X
Y3
AAYXX
CITATION
O8X
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c4297-3b39236ded851476f45ae53ee8a3d2b7b5a98adb4ad38ef304e272f0e6cddf6a3
IEDL.DBID DRFUL
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000235563000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-3296
IngestDate Thu Oct 02 11:41:59 EDT 2025
Sun Nov 09 11:29:35 EST 2025
Wed Feb 19 01:44:20 EST 2025
Tue Nov 18 20:52:21 EST 2025
Sat Nov 29 02:27:07 EST 2025
Fri Apr 02 05:00:54 EDT 2021
Tue Nov 11 03:33:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4297-3b39236ded851476f45ae53ee8a3d2b7b5a98adb4ad38ef304e272f0e6cddf6a3
Notes istex:B63FD554E9F0BBF4DF7632DBA6F82A8302D6ECAC
New Jersey Commission on Spinal Cord Research - No. 04-3034 SCR-E-O
ark:/67375/WNG-77RMQ4X9-6
National Institutes of Health - No. R01 NS40394
ArticleID:JBM30587
One or more of the authors, has received or will receive remuneration or other perquisites for personal or professional use from a commercial or industrial agent in direct or indirect relationship to their authorship.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 16345089
PQID 29575992
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_67660767
proquest_miscellaneous_29575992
pubmed_primary_16345089
crossref_primary_10_1002_jbm_a_30587
crossref_citationtrail_10_1002_jbm_a_30587
wiley_primary_10_1002_jbm_a_30587_JBM30587
istex_primary_ark_67375_WNG_77RMQ4X9_6
ProviderPackageCode 10A
A03
ADOZA
BFHJK
BROTX
AMBMR
DCZOG
~IA
ACAHQ
LEEKS
AFGKR
50Z
AEUQT
XG1
AAEVG
MRSTM
.3N
MEWTI
1ZS
H.T
LP7
H.X
LP6
51W
51X
ACXME
QB0
ADMGS
UB1
AEIMD
GNP
ATUGU
G-S
AZBYB
52N
52O
52P
ADEOM
LATKE
ZZTAW
52S
930
BAFTC
52T
QRW
SUPJJ
HHY
52W
DRSTM
1L6
52X
HHZ
AFPWT
4ZD
DR2
G.N
ACPOU
AFZJQ
ADAWD
7PT
66C
ADIZJ
.GA
AAONW
LYRES
GODZA
HBH
LUTES
ALUQN
AAZKR
MSFUL
AIURR
RWI
ABHUG
KQQ
ACXQS
R.K
WQJ
MXFUL
P2W
W8V
W99
P2X
WIH
WIK
JPC
BDRZF
BY8
MSSTM
DPXWK
1OC
F01
F00
NF~
BRXPI
WRC
AFVGU
F04
ADZMN
8UM
ABCUV
N05
N04
ADDAD
WJL
~WT
8-0
8-1
P4A
8-3
AGJLS
8-4
8-5
P4D
LITHE
J0M
MXSTM
DRFUL
33P
Q.N
05W
XV2
LOXES
MRFUL
D-F
D-E
PublicationCentury 2000
PublicationDate 15 March 2006
PublicationDateYYYYMMDD 2006-03-15
PublicationDate_xml – month: 03
  year: 2006
  text: 15 March 2006
  day: 15
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J. Biomed. Mater. Res
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Akbum BF, Chen M, Gunderson SL, Riefler GM, Scerri-Hansen MM, Firestein BL. Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci 2004; 7: 145-152.
Gardiner NJ, Fernyhough P, Tomlinson DR, Mayer U, von der Mark H, Streuli CH. α7 integrin mediates neurite outgrowth of distinct populations of adult sensory neurons. Mol Cell Neurosci 2005; 28: 229-240.
Escurat M, Djabali K, Gumpel M, Gros F, Portier MM. Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L) during the development of the rat. J Neurosci 1990; 10: 764-784.
Ma W, Fitzgerald W, Liu Q-Y, O'Shaughnessy TJ, Maric D, Lin HJ, Alkon DL, Barker NJ. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol 2004; 190: 276-288.
Nur-E-Kamal A, Ahmed I, Kamal J, Schindler M, Meiners S. Three dimensional nanofibrillar surfaces induce activation of Rac. Biochem Biophys Res Commun 2005; 331: 428-434.
Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001; 294: 1708-1712.
Neiiendam JL, Kohler LB, Christensen C, Li S, Pedersen MV, Ditlevsen DK, Kornum MK, Kiselyvov VV, Berezin V, Bock E. An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J Neurochem 2004; 91: 920-935.
Mercado MLT, Nur-E-Kamal A, Liu H-Y, Gross S, Movahed R, Meiners S. Neurite outgrowth by the alternatively spliced region of tenascin-C is mediated by neuronal α7β1 integrin. J Neurosci 2004; 24: 238-247.
Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 2003; 67: 531-537.
Hammarberg H, Wallquist W, Piehl F, Risling M, Cullheim S. Regulation of laminin-associated integrin subunit mRNAs in rat spinal motoneurons during postnatal development and after axonal injury. J Comp Neurol 2000; 428: 294-304.
Kidoaki S, Kwon IK, Matsuda T. Mesoscopic designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing of electrospinning techniques. Biomaterials 2005; 26: 37-46.
Tyynela J, Cooper JD, Khan MN, Shemilts SJ, Haltia M. Hippocampal pathology in the human neuronal ceroid-lipofuscinoses: Distinct patterns of storage deposition, neurodegeneration and glial activation. Brain Pathol 2004; 14: 349-357.
Venugopal J, Ramakrishna S. Biocompatible nanofibers matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng 2005; 11: 847-854.
Chittchang M, Alur HH, Mitra AK, Johnston TP. Poly (L-lysine) as a model drug macromolecule with which to investigate secondary structure and membrane transport, part I: Physiochemical and stability studies. J Pharm Pharmacol 2002; 54: 315-323.
Genove E, Shen C, Zhang S, Semino CE. The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 2005; 26: 3341-3351.
Meiners S, Mercado MLT. Functional peptide sequences derived from extracellular matrix glycoproteins and their receptors: Strategies to improve neuronal regeneration. Mol Neurobiol 2003; 27: 177-196.
Davies JE, Tang X, Denning JW, Archibald SJ, Davies SJ. Decorin suppresses neurocan, brevican, phosphacan, and NG2 expression and promotes axon growth across adult rat spinal cord injuries. Eur J Neurosci 2004; 19: 1226-1242.
Silva GA, Czeisler C, Niece KL, Harrington D, Kessler JA, Stupp SI. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004; 303: 1352-1355.
Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, Borisy GG, Gertler FB. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 2004; 42: 37-49.
Edelman D, Keefer EW. A cultural renaissance: In vitro cell biology embraces three-dimensional context. Exp Neurol 2005; 192: 1-6.
Moeschel K, Nouaimi M, Steinbrenner C, Bisswanger H. Immobilization of thermolysin to polyamide nonwoven materials. Biotechnol Bioeng 2002; 82: 190-199.
Semino CE, Kasahara J, Hayashi H, Zhang S. Entrapment of migrating hippocampal neural cells in three-dimensional peptide nanofiber scaffold. Tissue Eng 2004; 10: 643-655.
Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004; 5: 146-156.
Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003; 21: 1171-1177.
Meiners S, Nur-E-Kamal MS, Mercado MLT. Identification of a neurite outgrowth promoting motif within the alternatively spliced region of tenascin-C. J Neurosci 2001; 21: 7215-7225.
Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26: 2603-2610.
Abrams GA, Goodman SL, Nealey PF, Franco M, Murphy CJ. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res 2000; 299: 39-46.
Schindler M, Ahmed I, Nur-E-Kamal A, Kamal J, Grafe TH, Chung HY, Meiners S. Synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 2005; 26: 5624-5631.
Hayman MW, Smith KH, Cameron NR, Przyboski SA. Growth of human stem cell-derived neurons on solid three-dimensional polymers. J Biochem Biophys Methods 2005; 62: 231-240.
Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with image. J Biophoton Int 2004; 11: 36-42.
Khan Z, Ferrari G, Kasper M, Tonge DA, Steiner JP, Hamilton GS, Gordon-Weeks PR. The non-immunosuppressive immunophilin ligand GPI-1046 potently stimulates regenerating axon growth from adult mouse dorsal root ganglia cultured in Matrigel. Neuroscience 2002; 114: 601-609.
O'Conner SM, Stenger DA, Shaffer KM, Maric D, Barker JL, Ma W. Primary neuronal precursor expansion, differentiation and cytosolic Ca2+ response in three-dimensional collagen gel. J Neurosci Methods 2000; 102: 187-195.
Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res 2002; 60: 613-621.
Willits RK, Skornia SL. Effect of collagen gel stiffness on neurite extension. J Biomater Sci Polym 2004; 15: 121-1531.
Chernousov MA, Carey DJ. Schwann cell extracellular matrix molecules and their receptors. Histol Histopathol 2000; 15: 593-601.
Grigsby JJ, Blanch HW, Prausnitz JM. Effect of secondary structure on the potential of mean force for poly-L-lysine in the α-helix and β-sheet conformations. Biophys Chem 2002; 99: 107-116.
Tsiper MV, Yurchenco PD. Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. J Cell Sci 2002; 115: 1005-1015.
2005; 192
1990; 10
2004; 42
2004; 303
2005; 331
2004; 7
2002; 114
2002; 54
2002; 99
2004; 24
2005; 62
2002; 115
2004; 5
2004
2002; 60
2002; 82
2000; 299
2005; 26
2004; 91
2005; 28
2001; 21
2004; 10
2004; 11
2001; 294
2000; 102
2000; 15
2004; 19
2004; 190
2004; 14
2004; 15
2000; 428
2003; 27
2005; 11
2003; 21
2003; 67
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
Escurat M (e_1_2_6_17_2) 1990; 10
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
Tsiper MV (e_1_2_6_10_2) 2002; 115
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
Chernousov MA (e_1_2_6_6_2) 2000; 15
Abramoff MD (e_1_2_6_19_2) 2004; 11
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Escurat M, Djabali K, Gumpel M, Gros F, Portier MM. Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L) during the development of the rat. J Neurosci 1990; 10: 764-784.
– reference: Kidoaki S, Kwon IK, Matsuda T. Mesoscopic designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing of electrospinning techniques. Biomaterials 2005; 26: 37-46.
– reference: Semino CE, Kasahara J, Hayashi H, Zhang S. Entrapment of migrating hippocampal neural cells in three-dimensional peptide nanofiber scaffold. Tissue Eng 2004; 10: 643-655.
– reference: Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001; 294: 1708-1712.
– reference: Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26: 2603-2610.
– reference: Gardiner NJ, Fernyhough P, Tomlinson DR, Mayer U, von der Mark H, Streuli CH. α7 integrin mediates neurite outgrowth of distinct populations of adult sensory neurons. Mol Cell Neurosci 2005; 28: 229-240.
– reference: Hayman MW, Smith KH, Cameron NR, Przyboski SA. Growth of human stem cell-derived neurons on solid three-dimensional polymers. J Biochem Biophys Methods 2005; 62: 231-240.
– reference: Akbum BF, Chen M, Gunderson SL, Riefler GM, Scerri-Hansen MM, Firestein BL. Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci 2004; 7: 145-152.
– reference: O'Conner SM, Stenger DA, Shaffer KM, Maric D, Barker JL, Ma W. Primary neuronal precursor expansion, differentiation and cytosolic Ca2+ response in three-dimensional collagen gel. J Neurosci Methods 2000; 102: 187-195.
– reference: Abrams GA, Goodman SL, Nealey PF, Franco M, Murphy CJ. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res 2000; 299: 39-46.
– reference: Tsiper MV, Yurchenco PD. Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. J Cell Sci 2002; 115: 1005-1015.
– reference: Venugopal J, Ramakrishna S. Biocompatible nanofibers matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng 2005; 11: 847-854.
– reference: Edelman D, Keefer EW. A cultural renaissance: In vitro cell biology embraces three-dimensional context. Exp Neurol 2005; 192: 1-6.
– reference: Meiners S, Nur-E-Kamal MS, Mercado MLT. Identification of a neurite outgrowth promoting motif within the alternatively spliced region of tenascin-C. J Neurosci 2001; 21: 7215-7225.
– reference: Khan Z, Ferrari G, Kasper M, Tonge DA, Steiner JP, Hamilton GS, Gordon-Weeks PR. The non-immunosuppressive immunophilin ligand GPI-1046 potently stimulates regenerating axon growth from adult mouse dorsal root ganglia cultured in Matrigel. Neuroscience 2002; 114: 601-609.
– reference: Silva GA, Czeisler C, Niece KL, Harrington D, Kessler JA, Stupp SI. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004; 303: 1352-1355.
– reference: Neiiendam JL, Kohler LB, Christensen C, Li S, Pedersen MV, Ditlevsen DK, Kornum MK, Kiselyvov VV, Berezin V, Bock E. An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J Neurochem 2004; 91: 920-935.
– reference: Hammarberg H, Wallquist W, Piehl F, Risling M, Cullheim S. Regulation of laminin-associated integrin subunit mRNAs in rat spinal motoneurons during postnatal development and after axonal injury. J Comp Neurol 2000; 428: 294-304.
– reference: Moeschel K, Nouaimi M, Steinbrenner C, Bisswanger H. Immobilization of thermolysin to polyamide nonwoven materials. Biotechnol Bioeng 2002; 82: 190-199.
– reference: Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with image. J Biophoton Int 2004; 11: 36-42.
– reference: Tyynela J, Cooper JD, Khan MN, Shemilts SJ, Haltia M. Hippocampal pathology in the human neuronal ceroid-lipofuscinoses: Distinct patterns of storage deposition, neurodegeneration and glial activation. Brain Pathol 2004; 14: 349-357.
– reference: Chittchang M, Alur HH, Mitra AK, Johnston TP. Poly (L-lysine) as a model drug macromolecule with which to investigate secondary structure and membrane transport, part I: Physiochemical and stability studies. J Pharm Pharmacol 2002; 54: 315-323.
– reference: Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, Borisy GG, Gertler FB. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 2004; 42: 37-49.
– reference: Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004; 5: 146-156.
– reference: Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003; 21: 1171-1177.
– reference: Ma W, Fitzgerald W, Liu Q-Y, O'Shaughnessy TJ, Maric D, Lin HJ, Alkon DL, Barker NJ. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol 2004; 190: 276-288.
– reference: Nur-E-Kamal A, Ahmed I, Kamal J, Schindler M, Meiners S. Three dimensional nanofibrillar surfaces induce activation of Rac. Biochem Biophys Res Commun 2005; 331: 428-434.
– reference: Mercado MLT, Nur-E-Kamal A, Liu H-Y, Gross S, Movahed R, Meiners S. Neurite outgrowth by the alternatively spliced region of tenascin-C is mediated by neuronal α7β1 integrin. J Neurosci 2004; 24: 238-247.
– reference: Schindler M, Ahmed I, Nur-E-Kamal A, Kamal J, Grafe TH, Chung HY, Meiners S. Synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 2005; 26: 5624-5631.
– reference: Meiners S, Mercado MLT. Functional peptide sequences derived from extracellular matrix glycoproteins and their receptors: Strategies to improve neuronal regeneration. Mol Neurobiol 2003; 27: 177-196.
– reference: Genove E, Shen C, Zhang S, Semino CE. The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 2005; 26: 3341-3351.
– reference: Willits RK, Skornia SL. Effect of collagen gel stiffness on neurite extension. J Biomater Sci Polym 2004; 15: 121-1531.
– reference: Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res 2002; 60: 613-621.
– reference: Chernousov MA, Carey DJ. Schwann cell extracellular matrix molecules and their receptors. Histol Histopathol 2000; 15: 593-601.
– reference: Grigsby JJ, Blanch HW, Prausnitz JM. Effect of secondary structure on the potential of mean force for poly-L-lysine in the α-helix and β-sheet conformations. Biophys Chem 2002; 99: 107-116.
– reference: Davies JE, Tang X, Denning JW, Archibald SJ, Davies SJ. Decorin suppresses neurocan, brevican, phosphacan, and NG2 expression and promotes axon growth across adult rat spinal cord injuries. Eur J Neurosci 2004; 19: 1226-1242.
– reference: Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 2003; 67: 531-537.
– volume: 99
  start-page: 107
  year: 2002
  end-page: 116
  article-title: Effect of secondary structure on the potential of mean force for poly‐ ‐lysine in the α‐helix and β‐sheet conformations
  publication-title: Biophys Chem
– volume: 428
  start-page: 294
  year: 2000
  end-page: 304
  article-title: Regulation of laminin‐associated integrin subunit mRNAs in rat spinal motoneurons during postnatal development and after axonal injury
  publication-title: J Comp Neurol
– volume: 303
  start-page: 1352
  year: 2004
  end-page: 1355
  article-title: Selective differentiation of neural progenitor cells by high‐epitope density nanofibers
  publication-title: Science
– volume: 82
  start-page: 190
  year: 2002
  end-page: 199
  article-title: Immobilization of thermolysin to polyamide nonwoven materials
  publication-title: Biotechnol Bioeng
– volume: 7
  start-page: 145
  year: 2004
  end-page: 152
  article-title: Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly
  publication-title: Nat Neurosci
– volume: 27
  start-page: 177
  year: 2003
  end-page: 196
  article-title: Functional peptide sequences derived from extracellular matrix glycoproteins and their receptors: Strategies to improve neuronal regeneration
  publication-title: Mol Neurobiol
– volume: 294
  start-page: 1708
  year: 2001
  end-page: 1712
  article-title: Taking cell‐matrix adhesions to the third dimension
  publication-title: Science
– volume: 11
  start-page: 847
  year: 2005
  end-page: 854
  article-title: Biocompatible nanofibers matrices for the engineering of a dermal substitute for skin regeneration
  publication-title: Tissue Eng
– volume: 299
  start-page: 39
  year: 2000
  end-page: 46
  article-title: Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque
  publication-title: Cell Tissue Res
– volume: 91
  start-page: 920
  year: 2004
  end-page: 935
  article-title: An NCAM‐derived FGF‐receptor agonist, the FGL‐peptide, induces neurite outgrowth and neuronal survival in primary rat neurons
  publication-title: J Neurochem
– volume: 26
  start-page: 2603
  year: 2005
  end-page: 2610
  article-title: Electrospinning of nano/micro scale poly( ‐lactic acid) aligned fibers and their potential in neural tissue engineering
  publication-title: Biomaterials
– volume: 21
  start-page: 7215
  year: 2001
  end-page: 7225
  article-title: Identification of a neurite outgrowth promoting motif within the alternatively spliced region of tenascin‐C
  publication-title: J Neurosci
– volume: 14
  start-page: 349
  year: 2004
  end-page: 357
  article-title: Hippocampal pathology in the human neuronal ceroid‐lipofuscinoses: Distinct patterns of storage deposition, neurodegeneration and glial activation
  publication-title: Brain Pathol
– volume: 26
  start-page: 3341
  year: 2005
  end-page: 3351
  article-title: The effect of functionalized self‐assembling peptide scaffolds on human aortic endothelial cell function
  publication-title: Biomaterials
– volume: 26
  start-page: 37
  year: 2005
  end-page: 46
  article-title: Mesoscopic designs of nano‐ and microfiber meshes for tissue‐engineering matrix and scaffold based on newly devised multilayering and mixing of electrospinning techniques
  publication-title: Biomaterials
– volume: 67
  start-page: 531
  year: 2003
  end-page: 537
  article-title: Nano‐fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment
  publication-title: J Biomed Mater Res A
– volume: 102
  start-page: 187
  year: 2000
  end-page: 195
  article-title: Primary neuronal precursor expansion, differentiation and cytosolic Ca response in three‐dimensional collagen gel
  publication-title: J Neurosci Methods
– volume: 5
  start-page: 146
  year: 2004
  end-page: 156
  article-title: Regeneration beyond the glial scar
  publication-title: Nat Rev Neurosci
– volume: 60
  start-page: 613
  year: 2002
  end-page: 621
  article-title: Electrospun nanofibrous structure: A novel scaffold for tissue engineering
  publication-title: J Biomed Mater Res
– volume: 54
  start-page: 315
  year: 2002
  end-page: 323
  article-title: Poly ( ‐lysine) as a model drug macromolecule with which to investigate secondary structure and membrane transport, part I: Physiochemical and stability studies
  publication-title: J Pharm Pharmacol
– volume: 26
  start-page: 5624
  year: 2005
  end-page: 5631
  article-title: Synthetic nanofibrillar matrix promotes ‐like organization and morphogenesis for cells in culture
  publication-title: Biomaterials
– volume: 19
  start-page: 1226
  year: 2004
  end-page: 1242
  article-title: Decorin suppresses neurocan, brevican, phosphacan, and NG2 expression and promotes axon growth across adult rat spinal cord injuries
  publication-title: Eur J Neurosci
– volume: 42
  start-page: 37
  year: 2004
  end-page: 49
  article-title: Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin‐1
  publication-title: Neuron
– volume: 10
  start-page: 643
  year: 2004
  end-page: 655
  article-title: Entrapment of migrating hippocampal neural cells in three‐dimensional peptide nanofiber scaffold
  publication-title: Tissue Eng
– volume: 15
  start-page: 121
  year: 2004
  end-page: 1531
  article-title: Effect of collagen gel stiffness on neurite extension
  publication-title: J Biomater Sci Polym
– year: 2004
– volume: 15
  start-page: 593
  year: 2000
  end-page: 601
  article-title: Schwann cell extracellular matrix molecules and their receptors
  publication-title: Histol Histopathol
– volume: 190
  start-page: 276
  year: 2004
  end-page: 288
  article-title: CNS stem and progenitor cell differentiation into functional neuronal circuits in three‐dimensional collagen gels
  publication-title: Exp Neurol
– volume: 62
  start-page: 231
  year: 2005
  end-page: 240
  article-title: Growth of human stem cell‐derived neurons on solid three‐dimensional polymers
  publication-title: J Biochem Biophys Methods
– volume: 331
  start-page: 428
  year: 2005
  end-page: 434
  article-title: Three dimensional nanofibrillar surfaces induce activation of Rac
  publication-title: Biochem Biophys Res Commun
– volume: 24
  start-page: 238
  year: 2004
  end-page: 247
  article-title: Neurite outgrowth by the alternatively spliced region of tenascin‐C is mediated by neuronal α7β1 integrin
  publication-title: J Neurosci
– volume: 28
  start-page: 229
  year: 2005
  end-page: 240
  article-title: α7 integrin mediates neurite outgrowth of distinct populations of adult sensory neurons
  publication-title: Mol Cell Neurosci
– volume: 114
  start-page: 601
  year: 2002
  end-page: 609
  article-title: The non‐immunosuppressive immunophilin ligand GPI‐1046 potently stimulates regenerating axon growth from adult mouse dorsal root ganglia cultured in Matrigel
  publication-title: Neuroscience
– volume: 192
  start-page: 1
  year: 2005
  end-page: 6
  article-title: A cultural renaissance: In vitro cell biology embraces three‐dimensional context
  publication-title: Exp Neurol
– volume: 11
  start-page: 36
  year: 2004
  end-page: 42
  article-title: Image processing with image
  publication-title: J Biophoton Int
– volume: 115
  start-page: 1005
  year: 2002
  end-page: 1015
  article-title: Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells
  publication-title: J Cell Sci
– volume: 10
  start-page: 764
  year: 1990
  end-page: 784
  article-title: Differential expression of two neuronal intermediate‐filament proteins, peripherin and the low‐molecular‐mass neurofilament protein (NF‐L) during the development of the rat
  publication-title: J Neurosci
– volume: 21
  start-page: 1171
  year: 2003
  end-page: 1177
  article-title: Fabrication of novel biomaterials through molecular self‐assembly
  publication-title: Nat Biotechnol
– ident: e_1_2_6_39_2
  doi: 10.1111/j.1471-4159.2004.02779.x
– ident: e_1_2_6_22_2
  doi: 10.1002/1096-9861(20001211)428:2<294::AID-CNE8>3.0.CO;2-Y
– ident: e_1_2_6_12_2
  doi: 10.1016/j.bbrc.2005.03.195
– volume: 11
  start-page: 36
  year: 2004
  ident: e_1_2_6_19_2
  article-title: Image processing with image
  publication-title: J Biophoton Int
– ident: e_1_2_6_33_2
  doi: 10.1089/107632704323061997
– ident: e_1_2_6_28_2
  doi: 10.1016/j.jbbm.2004.12.001
– ident: e_1_2_6_25_2
  doi: 10.1016/S0896-6273(04)00108-4
– ident: e_1_2_6_30_2
  doi: 10.1016/j.expneurol.2003.10.016
– ident: e_1_2_6_9_2
  doi: 10.1007/s004410050004
– ident: e_1_2_6_29_2
  doi: 10.1016/S0306-4522(02)00314-7
– ident: e_1_2_6_26_2
  doi: 10.1016/j.biomaterials.2004.06.051
– ident: e_1_2_6_11_2
  doi: 10.1016/j.biomaterials.2005.02.014
– ident: e_1_2_6_8_2
  doi: 10.1002/jbm.10167
– ident: e_1_2_6_20_2
  doi: 10.1002/jbm.a.10098
– ident: e_1_2_6_38_2
  doi: 10.1111/j.1750-3639.2004.tb00077.x
– ident: e_1_2_6_14_2
  doi: 10.1523/JNEUROSCI.21-18-07215.2001
– ident: e_1_2_6_24_2
  doi: 10.1126/science.1064829
– ident: e_1_2_6_27_2
  doi: 10.1163/1568562042459698
– ident: e_1_2_6_3_2
  doi: 10.1211/0022357021778556
– ident: e_1_2_6_2_2
  doi: 10.1016/S0301-4622(02)00138-2
– volume: 115
  start-page: 1005
  year: 2002
  ident: e_1_2_6_10_2
  article-title: Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells
  publication-title: J Cell Sci
  doi: 10.1242/jcs.115.5.1005
– ident: e_1_2_6_36_2
  doi: 10.1016/j.biomaterials.2004.01.063
– ident: e_1_2_6_13_2
  doi: 10.1126/science.1093783
– ident: e_1_2_6_15_2
  doi: 10.1523/JNEUROSCI.4519-03.2004
– ident: e_1_2_6_5_2
  doi: 10.1038/nrn1326
– volume: 10
  start-page: 764
  year: 1990
  ident: e_1_2_6_17_2
  article-title: Differential expression of two neuronal intermediate‐filament proteins, peripherin and the low‐molecular‐mass neurofilament protein (NF‐L) during the development of the rat
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.10-03-00764.1990
– ident: e_1_2_6_37_2
  doi: 10.1002/bit.10565
– ident: e_1_2_6_21_2
  doi: 10.1016/j.expneurol.2004.10.005
– ident: e_1_2_6_31_2
  doi: 10.1016/S0165-0270(00)00303-4
– ident: e_1_2_6_32_2
  doi: 10.1038/nbt874
– ident: e_1_2_6_4_2
  doi: 10.1385/MN:27:2:177
– ident: e_1_2_6_16_2
  doi: 10.1038/nn1179
– ident: e_1_2_6_35_2
  doi: 10.1089/ten.2005.11.847
– ident: e_1_2_6_7_2
– ident: e_1_2_6_23_2
  doi: 10.1016/j.mcn.2004.08.017
– ident: e_1_2_6_34_2
  doi: 10.1016/j.biomaterials.2004.08.012
– ident: e_1_2_6_18_2
  doi: 10.1111/j.1460-9568.2004.03184.x
– volume: 15
  start-page: 593
  year: 2000
  ident: e_1_2_6_6_2
  article-title: Schwann cell extracellular matrix molecules and their receptors
  publication-title: Histol Histopathol
SSID ssj0026052
Score 2.1387365
Snippet Current methods to promote growth of cultured neurons use two‐dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly‐L‐lysine...
Current methods to promote growth of cultured neurons use two‐dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly‐ L...
Current methods to promote growth of cultured neurons use two-dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly-L-lysine...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 851
SubjectTerms Amino Acid Sequence
Animals
Biocompatible Materials
extracellular matrix
Molecular Sequence Data
nanofiber
Nanotechnology
neuron
Neurons - cytology
Neurons - drug effects
peptide
Peptides - chemistry
Peptides - pharmacology
Rats
Surface Properties
Tenascin - chemistry
Tenascin - pharmacology
tenascin-C
Title Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro
URI https://api.istex.fr/ark:/67375/WNG-77RMQ4X9-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.a.30587
https://www.ncbi.nlm.nih.gov/pubmed/16345089
https://www.proquest.com/docview/29575992
https://www.proquest.com/docview/67660767
Volume 76A
WOSCitedRecordID wos000235563000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1552-4965
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026052
  issn: 1549-3296
  databaseCode: DRFUL
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLXaGRaw4P0YHsWLigVS2hnb8UOsoDAg1I6gasXsLMcPGGiTKvMAdiz4AL6RL-HayQwUFSTELlKuHcc-9j32tY8R2hRCSWoYzYL3McxIB5lURmZ-4Jg1IQyITZL5u2I0kuOxerWGHi3PwjT6EKsFt9gz0ngdO7gppm1cn2y_L463zBaAVYp11CWAW9ZB3af7w8Pd1XwLmHoKdsIUKKNE8fZ43m_JTzmkbqzbT2exzdPkNXmf4aX_KvdldLElnfhxg5IraM2XV9GFX6QIr6GvB9Co_vuXby7K_TdSHbg0JWCvqOPNRDWezusQN3BhWwE8wVkdfcbHlZsEYLE4rudi4N8GXGoJ2ezErCDvBbw7iTtnHCT05bsIMpxENOMH3tbVR0g3KfFiMqur6-hw-Oxg50XW3tCQWfBjMDoVQK8od94BcWOCB5Ybn1PvpaGOFKLIjZLGFcw4Kn2gfeaJIKHvuXUucENvoE5Zlf4WwparuK4Zo8mESVYYJiBZoCS31gfheujhspm0beXL4y0aR7oRXiYaqlYbnaq2hzZXxieNasfZZg9Se69sTP0hbnQTuX4zeq6F2N97zcZK8x66vwSEhu4XYyqm9NV8qomKN5wq8mcLLjjvCw4fu9kg6WeJOGXAjxX8WgLM34qqXz7ZSw-3_8X4DjrfLBnRbJDfRZ1ZPff30Dm7mE2m9QZaF2O50faaHymKICE
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+nanofibrillar+surfaces+covalently+modified+with+tenascin-C-derived+peptides+enhance+neuronal+growth+in+vitro&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Ahmed%2C+Ijaz&rft.au=Liu%2C+Hsing-Yin&rft.au=Mamiya%2C+Ping+C&rft.au=Ponery%2C+Abdul+S&rft.date=2006-03-15&rft.issn=1549-3296&rft.volume=76&rft.issue=4&rft.spage=851&rft_id=info:doi/10.1002%2Fjbm.a.30587&rft_id=info%3Apmid%2F16345089&rft.externalDocID=16345089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon