Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro
Current methods to promote growth of cultured neurons use two‐dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly‐L‐lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin‐1). However, these 2D surfaces represent a poor topological approxima...
Saved in:
| Published in: | Journal of biomedical materials research. Part A Vol. 76A; no. 4; pp. 851 - 860 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15.03.2006
|
| Subjects: | |
| ISSN: | 1549-3296, 1552-4965 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Current methods to promote growth of cultured neurons use two‐dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly‐L‐lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin‐1). However, these 2D surfaces represent a poor topological approximation of the three‐dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL‐coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin‐C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide‐modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006 |
|---|---|
| AbstractList | Current methods to promote growth of cultured neurons use two-dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly-L-lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin-1). However, these 2D surfaces represent a poor topological approximation of the three-dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL-coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin-C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide-modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury. Current methods to promote growth of cultured neurons use two‐dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly‐ L ‐lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin‐1). However, these 2D surfaces represent a poor topological approximation of the three‐dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo . Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL‐coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin‐C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro . Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide‐modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006 Current methods to promote growth of cultured neurons use two‐dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly‐L‐lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin‐1). However, these 2D surfaces represent a poor topological approximation of the three‐dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL‐coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin‐C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide‐modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury. © 2005 Wiley Periodicals, Inc. J Biomed Mater Res, 2006 Current methods to promote growth of cultured neurons use two-dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly-L-lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin-1). However, these 2D surfaces represent a poor topological approximation of the three-dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL-coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin-C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide-modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury.Current methods to promote growth of cultured neurons use two-dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly-L-lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin-1). However, these 2D surfaces represent a poor topological approximation of the three-dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL-coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin-C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide-modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury. |
| Author | Liu, Hsing-Yin Meiners, Sally Schindler, Melvin Ahmed, Ijaz Ponery, Abdul S. Mamiya, Ping C. Weik, Thom Babu, Ashwin N. |
| Author_xml | – sequence: 1 givenname: Ijaz surname: Ahmed fullname: Ahmed, Ijaz organization: Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 – sequence: 2 givenname: Hsing-Yin surname: Liu fullname: Liu, Hsing-Yin organization: Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 – sequence: 3 givenname: Ping C. surname: Mamiya fullname: Mamiya, Ping C. organization: Department of Psychology, Busch Campus, Rutgers University, New Brunswick, New Jersey 08903 – sequence: 4 givenname: Abdul S. surname: Ponery fullname: Ponery, Abdul S. organization: Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 – sequence: 5 givenname: Ashwin N. surname: Babu fullname: Babu, Ashwin N. organization: Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 – sequence: 6 givenname: Thom surname: Weik fullname: Weik, Thom organization: Donaldson Company, Inc., P.O. Box 1299, Minneapolis, Minnesota 55440 – sequence: 7 givenname: Melvin surname: Schindler fullname: Schindler, Melvin organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 – sequence: 8 givenname: Sally surname: Meiners fullname: Meiners, Sally email: meiners@umdnj.edu organization: Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16345089$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFv0zAUhy00xLbCiTvKiQtKceLYjo9QwRjaQKAhuFkv8Qv1SOxiuy297G_HWzeQOIyTLev7fvJ7v2Ny4LxDQp5WdF5RWr-87KY5zBnlrXxAjirO67JRgh9c3xtVslqJQ3Ic42WGBeX1I3JYCdZw2qojcnWxDIilsRO6aL2DsXDg_GC7YMcRQhHXYYAeY9H7DYzo0rgrJm_sYNEUW5uWRUIHsbeuXJQGg93k9xWukjVZQrcE12PhcB1uwr8Hv82OdcXGpuAfk4cDjBGf3J4z8uXtm4vFu_Ls48np4tVZ2Te1kiXrmKqZMGhaXjVSDA0H5AyxBWbqTnYcVAuma8CwFgdGG6xlPVAUvTGDADYjz_e5q-B_rjEmPdnYY57QoV9HLaQQVAr5X7BWXHKVPzMjz27BdTeh0atgJwg7fbfaDLzYA33wMQYc_iJUXxenc3Ea9E1xma7-oXubIOVGUgA73u9s7Yi7--L1-9fnd065d2xM-OuPA-FH3gGTXH_9cKKl_Hz-qfmmtGC_AUFGvgU |
| CitedBy_id | crossref_primary_10_1097_SAP_0b013e31818e48bf crossref_primary_10_1177_0885328208099086 crossref_primary_10_1039_c0jm04335d crossref_primary_10_3390_ijms15023088 crossref_primary_10_3390_polym3010413 crossref_primary_10_1016_j_biomaterials_2010_03_017 crossref_primary_10_1007_s10856_023_06763_x crossref_primary_10_1089_ten_tea_2011_0121 crossref_primary_10_1002_cnma_201700024 crossref_primary_10_1016_j_biomaterials_2013_11_017 crossref_primary_10_1016_j_actbio_2016_04_010 crossref_primary_10_1039_c2jm31161e crossref_primary_10_1016_j_brainresbull_2019_03_004 crossref_primary_10_3390_ma8084992 crossref_primary_10_1016_j_drudis_2022_01_005 crossref_primary_10_1016_j_wneu_2018_11_035 crossref_primary_10_1002_sca_21013 crossref_primary_10_1002_adfm_200901115 crossref_primary_10_1186_1556_276X_7_394 crossref_primary_10_1089_ten_tea_2010_0369 crossref_primary_10_2217_17435889_3_2_183 crossref_primary_10_1007_s10815_012_9916_6 crossref_primary_10_1089_teb_2007_0181 crossref_primary_10_1016_j_memsci_2008_07_022 crossref_primary_10_3109_13645706_2010_481398 crossref_primary_10_1039_D0BM02049D crossref_primary_10_1089_ten_tea_2016_0139 crossref_primary_10_1002_ar_23918 crossref_primary_10_5301_IJAO_2011_8511 crossref_primary_10_1002_jbm_b_34037 crossref_primary_10_1016_j_jddst_2020_101617 crossref_primary_10_1016_j_jneumeth_2015_03_004 crossref_primary_10_1163_016942409X12538865055953 crossref_primary_10_1016_j_acthis_2013_04_009 crossref_primary_10_1016_j_addr_2012_07_014 crossref_primary_10_1002_glia_20860 crossref_primary_10_1016_j_jconrel_2012_08_009 crossref_primary_10_1002_wnan_39 crossref_primary_10_1016_j_biomaterials_2006_08_044 crossref_primary_10_1088_1748_6041_4_4_045004 crossref_primary_10_1109_TSMCC_2012_2203301 crossref_primary_10_1002_adhm_201701024 crossref_primary_10_1002_marc_200800381 crossref_primary_10_1586_14737140_7_5_675 crossref_primary_10_1002_adfm_200600669 crossref_primary_10_1002_pi_2383 crossref_primary_10_1016_j_biomaterials_2006_07_043 crossref_primary_10_1016_j_addr_2009_07_009 crossref_primary_10_3390_polym3041684 crossref_primary_10_1002_cbin_10045 crossref_primary_10_1021_acsbiomaterials_9b01115 crossref_primary_10_1080_09205063_2019_1697170 crossref_primary_10_1088_1748_6041_3_3_034002 crossref_primary_10_1007_s11010_007_9654_8 |
| Cites_doi | 10.1111/j.1471-4159.2004.02779.x 10.1002/1096-9861(20001211)428:2<294::AID-CNE8>3.0.CO;2-Y 10.1016/j.bbrc.2005.03.195 10.1089/107632704323061997 10.1016/j.jbbm.2004.12.001 10.1016/S0896-6273(04)00108-4 10.1016/j.expneurol.2003.10.016 10.1007/s004410050004 10.1016/S0306-4522(02)00314-7 10.1016/j.biomaterials.2004.06.051 10.1016/j.biomaterials.2005.02.014 10.1002/jbm.10167 10.1002/jbm.a.10098 10.1111/j.1750-3639.2004.tb00077.x 10.1523/JNEUROSCI.21-18-07215.2001 10.1126/science.1064829 10.1163/1568562042459698 10.1211/0022357021778556 10.1016/S0301-4622(02)00138-2 10.1242/jcs.115.5.1005 10.1016/j.biomaterials.2004.01.063 10.1126/science.1093783 10.1523/JNEUROSCI.4519-03.2004 10.1038/nrn1326 10.1523/JNEUROSCI.10-03-00764.1990 10.1002/bit.10565 10.1016/j.expneurol.2004.10.005 10.1016/S0165-0270(00)00303-4 10.1038/nbt874 10.1385/MN:27:2:177 10.1038/nn1179 10.1089/ten.2005.11.847 10.1016/j.mcn.2004.08.017 10.1016/j.biomaterials.2004.08.012 10.1111/j.1460-9568.2004.03184.x |
| ContentType | Journal Article |
| Copyright | Copyright © 2005 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: Copyright © 2005 Wiley Periodicals, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
| DOI | 10.1002/jbm.a.30587 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1552-4965 |
| EndPage | 860 |
| ExternalDocumentID | 16345089 10_1002_jbm_a_30587 JBM30587 ark_67375_WNG_77RMQ4X9_6 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: New Jersey Commission on Spinal Cord Research funderid: 04–3034 SCR‐E‐O – fundername: National Institutes of Health funderid: R01 NS40394 – fundername: NINDS NIH HHS grantid: R01 NS40394 |
| GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BSCLL BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL SUPJJ UB1 V2E W8V W99 WIH WIK WJL WQJ WXSBR XG1 XV2 ZZTAW ~IA ~WT - 0R 31 3N 8RP ABFLS ABHUG ACXME ADAWD ADDAD AEUQT AFPWT AFVGU AGJLS ALUQN GA HZ IA IPNFZ NF P4A PQEST RWI WRC WT X Y3 AAYXX CITATION O8X AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CGR CUY CVF ECM EIF NPM 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c4297-3b39236ded851476f45ae53ee8a3d2b7b5a98adb4ad38ef304e272f0e6cddf6a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 82 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000235563000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-3296 |
| IngestDate | Thu Oct 02 11:41:59 EDT 2025 Sun Nov 09 11:29:35 EST 2025 Wed Feb 19 01:44:20 EST 2025 Tue Nov 18 20:52:21 EST 2025 Sat Nov 29 02:27:07 EST 2025 Fri Apr 02 05:00:54 EDT 2021 Tue Nov 11 03:33:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4297-3b39236ded851476f45ae53ee8a3d2b7b5a98adb4ad38ef304e272f0e6cddf6a3 |
| Notes | istex:B63FD554E9F0BBF4DF7632DBA6F82A8302D6ECAC New Jersey Commission on Spinal Cord Research - No. 04-3034 SCR-E-O ark:/67375/WNG-77RMQ4X9-6 National Institutes of Health - No. R01 NS40394 ArticleID:JBM30587 One or more of the authors, has received or will receive remuneration or other perquisites for personal or professional use from a commercial or industrial agent in direct or indirect relationship to their authorship. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 16345089 |
| PQID | 29575992 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_67660767 proquest_miscellaneous_29575992 pubmed_primary_16345089 crossref_primary_10_1002_jbm_a_30587 crossref_citationtrail_10_1002_jbm_a_30587 wiley_primary_10_1002_jbm_a_30587_JBM30587 istex_primary_ark_67375_WNG_77RMQ4X9_6 |
| ProviderPackageCode | 10A A03 ADOZA BFHJK BROTX AMBMR DCZOG ~IA ACAHQ LEEKS AFGKR 50Z AEUQT XG1 AAEVG MRSTM .3N MEWTI 1ZS H.T LP7 H.X LP6 51W 51X ACXME QB0 ADMGS UB1 AEIMD GNP ATUGU G-S AZBYB 52N 52O 52P ADEOM LATKE ZZTAW 52S 930 BAFTC 52T QRW SUPJJ HHY 52W DRSTM 1L6 52X HHZ AFPWT 4ZD DR2 G.N ACPOU AFZJQ ADAWD 7PT 66C ADIZJ .GA AAONW LYRES GODZA HBH LUTES ALUQN AAZKR MSFUL AIURR RWI ABHUG KQQ ACXQS R.K WQJ MXFUL P2W W8V W99 P2X WIH WIK JPC BDRZF BY8 MSSTM DPXWK 1OC F01 F00 NF~ BRXPI WRC AFVGU F04 ADZMN 8UM ABCUV N05 N04 ADDAD WJL ~WT 8-0 8-1 P4A 8-3 AGJLS 8-4 8-5 P4D LITHE J0M MXSTM DRFUL 33P Q.N 05W XV2 LOXES MRFUL D-F D-E |
| PublicationCentury | 2000 |
| PublicationDate | 15 March 2006 |
| PublicationDateYYYYMMDD | 2006-03-15 |
| PublicationDate_xml | – month: 03 year: 2006 text: 15 March 2006 day: 15 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Journal of biomedical materials research. Part A |
| PublicationTitleAlternate | J. Biomed. Mater. Res |
| PublicationYear | 2006 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Akbum BF, Chen M, Gunderson SL, Riefler GM, Scerri-Hansen MM, Firestein BL. Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci 2004; 7: 145-152. Gardiner NJ, Fernyhough P, Tomlinson DR, Mayer U, von der Mark H, Streuli CH. α7 integrin mediates neurite outgrowth of distinct populations of adult sensory neurons. Mol Cell Neurosci 2005; 28: 229-240. Escurat M, Djabali K, Gumpel M, Gros F, Portier MM. Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L) during the development of the rat. J Neurosci 1990; 10: 764-784. Ma W, Fitzgerald W, Liu Q-Y, O'Shaughnessy TJ, Maric D, Lin HJ, Alkon DL, Barker NJ. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol 2004; 190: 276-288. Nur-E-Kamal A, Ahmed I, Kamal J, Schindler M, Meiners S. Three dimensional nanofibrillar surfaces induce activation of Rac. Biochem Biophys Res Commun 2005; 331: 428-434. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001; 294: 1708-1712. Neiiendam JL, Kohler LB, Christensen C, Li S, Pedersen MV, Ditlevsen DK, Kornum MK, Kiselyvov VV, Berezin V, Bock E. An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J Neurochem 2004; 91: 920-935. Mercado MLT, Nur-E-Kamal A, Liu H-Y, Gross S, Movahed R, Meiners S. Neurite outgrowth by the alternatively spliced region of tenascin-C is mediated by neuronal α7β1 integrin. J Neurosci 2004; 24: 238-247. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 2003; 67: 531-537. Hammarberg H, Wallquist W, Piehl F, Risling M, Cullheim S. Regulation of laminin-associated integrin subunit mRNAs in rat spinal motoneurons during postnatal development and after axonal injury. J Comp Neurol 2000; 428: 294-304. Kidoaki S, Kwon IK, Matsuda T. Mesoscopic designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing of electrospinning techniques. Biomaterials 2005; 26: 37-46. Tyynela J, Cooper JD, Khan MN, Shemilts SJ, Haltia M. Hippocampal pathology in the human neuronal ceroid-lipofuscinoses: Distinct patterns of storage deposition, neurodegeneration and glial activation. Brain Pathol 2004; 14: 349-357. Venugopal J, Ramakrishna S. Biocompatible nanofibers matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng 2005; 11: 847-854. Chittchang M, Alur HH, Mitra AK, Johnston TP. Poly (L-lysine) as a model drug macromolecule with which to investigate secondary structure and membrane transport, part I: Physiochemical and stability studies. J Pharm Pharmacol 2002; 54: 315-323. Genove E, Shen C, Zhang S, Semino CE. The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 2005; 26: 3341-3351. Meiners S, Mercado MLT. Functional peptide sequences derived from extracellular matrix glycoproteins and their receptors: Strategies to improve neuronal regeneration. Mol Neurobiol 2003; 27: 177-196. Davies JE, Tang X, Denning JW, Archibald SJ, Davies SJ. Decorin suppresses neurocan, brevican, phosphacan, and NG2 expression and promotes axon growth across adult rat spinal cord injuries. Eur J Neurosci 2004; 19: 1226-1242. Silva GA, Czeisler C, Niece KL, Harrington D, Kessler JA, Stupp SI. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004; 303: 1352-1355. Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, Borisy GG, Gertler FB. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 2004; 42: 37-49. Edelman D, Keefer EW. A cultural renaissance: In vitro cell biology embraces three-dimensional context. Exp Neurol 2005; 192: 1-6. Moeschel K, Nouaimi M, Steinbrenner C, Bisswanger H. Immobilization of thermolysin to polyamide nonwoven materials. Biotechnol Bioeng 2002; 82: 190-199. Semino CE, Kasahara J, Hayashi H, Zhang S. Entrapment of migrating hippocampal neural cells in three-dimensional peptide nanofiber scaffold. Tissue Eng 2004; 10: 643-655. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004; 5: 146-156. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003; 21: 1171-1177. Meiners S, Nur-E-Kamal MS, Mercado MLT. Identification of a neurite outgrowth promoting motif within the alternatively spliced region of tenascin-C. J Neurosci 2001; 21: 7215-7225. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26: 2603-2610. Abrams GA, Goodman SL, Nealey PF, Franco M, Murphy CJ. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res 2000; 299: 39-46. Schindler M, Ahmed I, Nur-E-Kamal A, Kamal J, Grafe TH, Chung HY, Meiners S. Synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 2005; 26: 5624-5631. Hayman MW, Smith KH, Cameron NR, Przyboski SA. Growth of human stem cell-derived neurons on solid three-dimensional polymers. J Biochem Biophys Methods 2005; 62: 231-240. Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with image. J Biophoton Int 2004; 11: 36-42. Khan Z, Ferrari G, Kasper M, Tonge DA, Steiner JP, Hamilton GS, Gordon-Weeks PR. The non-immunosuppressive immunophilin ligand GPI-1046 potently stimulates regenerating axon growth from adult mouse dorsal root ganglia cultured in Matrigel. Neuroscience 2002; 114: 601-609. O'Conner SM, Stenger DA, Shaffer KM, Maric D, Barker JL, Ma W. Primary neuronal precursor expansion, differentiation and cytosolic Ca2+ response in three-dimensional collagen gel. J Neurosci Methods 2000; 102: 187-195. Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res 2002; 60: 613-621. Willits RK, Skornia SL. Effect of collagen gel stiffness on neurite extension. J Biomater Sci Polym 2004; 15: 121-1531. Chernousov MA, Carey DJ. Schwann cell extracellular matrix molecules and their receptors. Histol Histopathol 2000; 15: 593-601. Grigsby JJ, Blanch HW, Prausnitz JM. Effect of secondary structure on the potential of mean force for poly-L-lysine in the α-helix and β-sheet conformations. Biophys Chem 2002; 99: 107-116. Tsiper MV, Yurchenco PD. Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. J Cell Sci 2002; 115: 1005-1015. 2005; 192 1990; 10 2004; 42 2004; 303 2005; 331 2004; 7 2002; 114 2002; 54 2002; 99 2004; 24 2005; 62 2002; 115 2004; 5 2004 2002; 60 2002; 82 2000; 299 2005; 26 2004; 91 2005; 28 2001; 21 2004; 10 2004; 11 2001; 294 2000; 102 2000; 15 2004; 19 2004; 190 2004; 14 2004; 15 2000; 428 2003; 27 2005; 11 2003; 21 2003; 67 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 Escurat M (e_1_2_6_17_2) 1990; 10 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 Tsiper MV (e_1_2_6_10_2) 2002; 115 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 Chernousov MA (e_1_2_6_6_2) 2000; 15 Abramoff MD (e_1_2_6_19_2) 2004; 11 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
| References_xml | – reference: Escurat M, Djabali K, Gumpel M, Gros F, Portier MM. Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L) during the development of the rat. J Neurosci 1990; 10: 764-784. – reference: Kidoaki S, Kwon IK, Matsuda T. Mesoscopic designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing of electrospinning techniques. Biomaterials 2005; 26: 37-46. – reference: Semino CE, Kasahara J, Hayashi H, Zhang S. Entrapment of migrating hippocampal neural cells in three-dimensional peptide nanofiber scaffold. Tissue Eng 2004; 10: 643-655. – reference: Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell-matrix adhesions to the third dimension. Science 2001; 294: 1708-1712. – reference: Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005; 26: 2603-2610. – reference: Gardiner NJ, Fernyhough P, Tomlinson DR, Mayer U, von der Mark H, Streuli CH. α7 integrin mediates neurite outgrowth of distinct populations of adult sensory neurons. Mol Cell Neurosci 2005; 28: 229-240. – reference: Hayman MW, Smith KH, Cameron NR, Przyboski SA. Growth of human stem cell-derived neurons on solid three-dimensional polymers. J Biochem Biophys Methods 2005; 62: 231-240. – reference: Akbum BF, Chen M, Gunderson SL, Riefler GM, Scerri-Hansen MM, Firestein BL. Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci 2004; 7: 145-152. – reference: O'Conner SM, Stenger DA, Shaffer KM, Maric D, Barker JL, Ma W. Primary neuronal precursor expansion, differentiation and cytosolic Ca2+ response in three-dimensional collagen gel. J Neurosci Methods 2000; 102: 187-195. – reference: Abrams GA, Goodman SL, Nealey PF, Franco M, Murphy CJ. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res 2000; 299: 39-46. – reference: Tsiper MV, Yurchenco PD. Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. J Cell Sci 2002; 115: 1005-1015. – reference: Venugopal J, Ramakrishna S. Biocompatible nanofibers matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng 2005; 11: 847-854. – reference: Edelman D, Keefer EW. A cultural renaissance: In vitro cell biology embraces three-dimensional context. Exp Neurol 2005; 192: 1-6. – reference: Meiners S, Nur-E-Kamal MS, Mercado MLT. Identification of a neurite outgrowth promoting motif within the alternatively spliced region of tenascin-C. J Neurosci 2001; 21: 7215-7225. – reference: Khan Z, Ferrari G, Kasper M, Tonge DA, Steiner JP, Hamilton GS, Gordon-Weeks PR. The non-immunosuppressive immunophilin ligand GPI-1046 potently stimulates regenerating axon growth from adult mouse dorsal root ganglia cultured in Matrigel. Neuroscience 2002; 114: 601-609. – reference: Silva GA, Czeisler C, Niece KL, Harrington D, Kessler JA, Stupp SI. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004; 303: 1352-1355. – reference: Neiiendam JL, Kohler LB, Christensen C, Li S, Pedersen MV, Ditlevsen DK, Kornum MK, Kiselyvov VV, Berezin V, Bock E. An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J Neurochem 2004; 91: 920-935. – reference: Hammarberg H, Wallquist W, Piehl F, Risling M, Cullheim S. Regulation of laminin-associated integrin subunit mRNAs in rat spinal motoneurons during postnatal development and after axonal injury. J Comp Neurol 2000; 428: 294-304. – reference: Moeschel K, Nouaimi M, Steinbrenner C, Bisswanger H. Immobilization of thermolysin to polyamide nonwoven materials. Biotechnol Bioeng 2002; 82: 190-199. – reference: Abramoff MD, Magelhaes PJ, Ram SJ. Image processing with image. J Biophoton Int 2004; 11: 36-42. – reference: Tyynela J, Cooper JD, Khan MN, Shemilts SJ, Haltia M. Hippocampal pathology in the human neuronal ceroid-lipofuscinoses: Distinct patterns of storage deposition, neurodegeneration and glial activation. Brain Pathol 2004; 14: 349-357. – reference: Chittchang M, Alur HH, Mitra AK, Johnston TP. Poly (L-lysine) as a model drug macromolecule with which to investigate secondary structure and membrane transport, part I: Physiochemical and stability studies. J Pharm Pharmacol 2002; 54: 315-323. – reference: Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, Borisy GG, Gertler FB. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 2004; 42: 37-49. – reference: Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004; 5: 146-156. – reference: Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003; 21: 1171-1177. – reference: Ma W, Fitzgerald W, Liu Q-Y, O'Shaughnessy TJ, Maric D, Lin HJ, Alkon DL, Barker NJ. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol 2004; 190: 276-288. – reference: Nur-E-Kamal A, Ahmed I, Kamal J, Schindler M, Meiners S. Three dimensional nanofibrillar surfaces induce activation of Rac. Biochem Biophys Res Commun 2005; 331: 428-434. – reference: Mercado MLT, Nur-E-Kamal A, Liu H-Y, Gross S, Movahed R, Meiners S. Neurite outgrowth by the alternatively spliced region of tenascin-C is mediated by neuronal α7β1 integrin. J Neurosci 2004; 24: 238-247. – reference: Schindler M, Ahmed I, Nur-E-Kamal A, Kamal J, Grafe TH, Chung HY, Meiners S. Synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture. Biomaterials 2005; 26: 5624-5631. – reference: Meiners S, Mercado MLT. Functional peptide sequences derived from extracellular matrix glycoproteins and their receptors: Strategies to improve neuronal regeneration. Mol Neurobiol 2003; 27: 177-196. – reference: Genove E, Shen C, Zhang S, Semino CE. The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 2005; 26: 3341-3351. – reference: Willits RK, Skornia SL. Effect of collagen gel stiffness on neurite extension. J Biomater Sci Polym 2004; 15: 121-1531. – reference: Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J Biomed Mater Res 2002; 60: 613-621. – reference: Chernousov MA, Carey DJ. Schwann cell extracellular matrix molecules and their receptors. Histol Histopathol 2000; 15: 593-601. – reference: Grigsby JJ, Blanch HW, Prausnitz JM. Effect of secondary structure on the potential of mean force for poly-L-lysine in the α-helix and β-sheet conformations. Biophys Chem 2002; 99: 107-116. – reference: Davies JE, Tang X, Denning JW, Archibald SJ, Davies SJ. Decorin suppresses neurocan, brevican, phosphacan, and NG2 expression and promotes axon growth across adult rat spinal cord injuries. Eur J Neurosci 2004; 19: 1226-1242. – reference: Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 2003; 67: 531-537. – volume: 99 start-page: 107 year: 2002 end-page: 116 article-title: Effect of secondary structure on the potential of mean force for poly‐ ‐lysine in the α‐helix and β‐sheet conformations publication-title: Biophys Chem – volume: 428 start-page: 294 year: 2000 end-page: 304 article-title: Regulation of laminin‐associated integrin subunit mRNAs in rat spinal motoneurons during postnatal development and after axonal injury publication-title: J Comp Neurol – volume: 303 start-page: 1352 year: 2004 end-page: 1355 article-title: Selective differentiation of neural progenitor cells by high‐epitope density nanofibers publication-title: Science – volume: 82 start-page: 190 year: 2002 end-page: 199 article-title: Immobilization of thermolysin to polyamide nonwoven materials publication-title: Biotechnol Bioeng – volume: 7 start-page: 145 year: 2004 end-page: 152 article-title: Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly publication-title: Nat Neurosci – volume: 27 start-page: 177 year: 2003 end-page: 196 article-title: Functional peptide sequences derived from extracellular matrix glycoproteins and their receptors: Strategies to improve neuronal regeneration publication-title: Mol Neurobiol – volume: 294 start-page: 1708 year: 2001 end-page: 1712 article-title: Taking cell‐matrix adhesions to the third dimension publication-title: Science – volume: 11 start-page: 847 year: 2005 end-page: 854 article-title: Biocompatible nanofibers matrices for the engineering of a dermal substitute for skin regeneration publication-title: Tissue Eng – volume: 299 start-page: 39 year: 2000 end-page: 46 article-title: Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque publication-title: Cell Tissue Res – volume: 91 start-page: 920 year: 2004 end-page: 935 article-title: An NCAM‐derived FGF‐receptor agonist, the FGL‐peptide, induces neurite outgrowth and neuronal survival in primary rat neurons publication-title: J Neurochem – volume: 26 start-page: 2603 year: 2005 end-page: 2610 article-title: Electrospinning of nano/micro scale poly( ‐lactic acid) aligned fibers and their potential in neural tissue engineering publication-title: Biomaterials – volume: 21 start-page: 7215 year: 2001 end-page: 7225 article-title: Identification of a neurite outgrowth promoting motif within the alternatively spliced region of tenascin‐C publication-title: J Neurosci – volume: 14 start-page: 349 year: 2004 end-page: 357 article-title: Hippocampal pathology in the human neuronal ceroid‐lipofuscinoses: Distinct patterns of storage deposition, neurodegeneration and glial activation publication-title: Brain Pathol – volume: 26 start-page: 3341 year: 2005 end-page: 3351 article-title: The effect of functionalized self‐assembling peptide scaffolds on human aortic endothelial cell function publication-title: Biomaterials – volume: 26 start-page: 37 year: 2005 end-page: 46 article-title: Mesoscopic designs of nano‐ and microfiber meshes for tissue‐engineering matrix and scaffold based on newly devised multilayering and mixing of electrospinning techniques publication-title: Biomaterials – volume: 67 start-page: 531 year: 2003 end-page: 537 article-title: Nano‐fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment publication-title: J Biomed Mater Res A – volume: 102 start-page: 187 year: 2000 end-page: 195 article-title: Primary neuronal precursor expansion, differentiation and cytosolic Ca response in three‐dimensional collagen gel publication-title: J Neurosci Methods – volume: 5 start-page: 146 year: 2004 end-page: 156 article-title: Regeneration beyond the glial scar publication-title: Nat Rev Neurosci – volume: 60 start-page: 613 year: 2002 end-page: 621 article-title: Electrospun nanofibrous structure: A novel scaffold for tissue engineering publication-title: J Biomed Mater Res – volume: 54 start-page: 315 year: 2002 end-page: 323 article-title: Poly ( ‐lysine) as a model drug macromolecule with which to investigate secondary structure and membrane transport, part I: Physiochemical and stability studies publication-title: J Pharm Pharmacol – volume: 26 start-page: 5624 year: 2005 end-page: 5631 article-title: Synthetic nanofibrillar matrix promotes ‐like organization and morphogenesis for cells in culture publication-title: Biomaterials – volume: 19 start-page: 1226 year: 2004 end-page: 1242 article-title: Decorin suppresses neurocan, brevican, phosphacan, and NG2 expression and promotes axon growth across adult rat spinal cord injuries publication-title: Eur J Neurosci – volume: 42 start-page: 37 year: 2004 end-page: 49 article-title: Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin‐1 publication-title: Neuron – volume: 10 start-page: 643 year: 2004 end-page: 655 article-title: Entrapment of migrating hippocampal neural cells in three‐dimensional peptide nanofiber scaffold publication-title: Tissue Eng – volume: 15 start-page: 121 year: 2004 end-page: 1531 article-title: Effect of collagen gel stiffness on neurite extension publication-title: J Biomater Sci Polym – year: 2004 – volume: 15 start-page: 593 year: 2000 end-page: 601 article-title: Schwann cell extracellular matrix molecules and their receptors publication-title: Histol Histopathol – volume: 190 start-page: 276 year: 2004 end-page: 288 article-title: CNS stem and progenitor cell differentiation into functional neuronal circuits in three‐dimensional collagen gels publication-title: Exp Neurol – volume: 62 start-page: 231 year: 2005 end-page: 240 article-title: Growth of human stem cell‐derived neurons on solid three‐dimensional polymers publication-title: J Biochem Biophys Methods – volume: 331 start-page: 428 year: 2005 end-page: 434 article-title: Three dimensional nanofibrillar surfaces induce activation of Rac publication-title: Biochem Biophys Res Commun – volume: 24 start-page: 238 year: 2004 end-page: 247 article-title: Neurite outgrowth by the alternatively spliced region of tenascin‐C is mediated by neuronal α7β1 integrin publication-title: J Neurosci – volume: 28 start-page: 229 year: 2005 end-page: 240 article-title: α7 integrin mediates neurite outgrowth of distinct populations of adult sensory neurons publication-title: Mol Cell Neurosci – volume: 114 start-page: 601 year: 2002 end-page: 609 article-title: The non‐immunosuppressive immunophilin ligand GPI‐1046 potently stimulates regenerating axon growth from adult mouse dorsal root ganglia cultured in Matrigel publication-title: Neuroscience – volume: 192 start-page: 1 year: 2005 end-page: 6 article-title: A cultural renaissance: In vitro cell biology embraces three‐dimensional context publication-title: Exp Neurol – volume: 11 start-page: 36 year: 2004 end-page: 42 article-title: Image processing with image publication-title: J Biophoton Int – volume: 115 start-page: 1005 year: 2002 end-page: 1015 article-title: Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells publication-title: J Cell Sci – volume: 10 start-page: 764 year: 1990 end-page: 784 article-title: Differential expression of two neuronal intermediate‐filament proteins, peripherin and the low‐molecular‐mass neurofilament protein (NF‐L) during the development of the rat publication-title: J Neurosci – volume: 21 start-page: 1171 year: 2003 end-page: 1177 article-title: Fabrication of novel biomaterials through molecular self‐assembly publication-title: Nat Biotechnol – ident: e_1_2_6_39_2 doi: 10.1111/j.1471-4159.2004.02779.x – ident: e_1_2_6_22_2 doi: 10.1002/1096-9861(20001211)428:2<294::AID-CNE8>3.0.CO;2-Y – ident: e_1_2_6_12_2 doi: 10.1016/j.bbrc.2005.03.195 – volume: 11 start-page: 36 year: 2004 ident: e_1_2_6_19_2 article-title: Image processing with image publication-title: J Biophoton Int – ident: e_1_2_6_33_2 doi: 10.1089/107632704323061997 – ident: e_1_2_6_28_2 doi: 10.1016/j.jbbm.2004.12.001 – ident: e_1_2_6_25_2 doi: 10.1016/S0896-6273(04)00108-4 – ident: e_1_2_6_30_2 doi: 10.1016/j.expneurol.2003.10.016 – ident: e_1_2_6_9_2 doi: 10.1007/s004410050004 – ident: e_1_2_6_29_2 doi: 10.1016/S0306-4522(02)00314-7 – ident: e_1_2_6_26_2 doi: 10.1016/j.biomaterials.2004.06.051 – ident: e_1_2_6_11_2 doi: 10.1016/j.biomaterials.2005.02.014 – ident: e_1_2_6_8_2 doi: 10.1002/jbm.10167 – ident: e_1_2_6_20_2 doi: 10.1002/jbm.a.10098 – ident: e_1_2_6_38_2 doi: 10.1111/j.1750-3639.2004.tb00077.x – ident: e_1_2_6_14_2 doi: 10.1523/JNEUROSCI.21-18-07215.2001 – ident: e_1_2_6_24_2 doi: 10.1126/science.1064829 – ident: e_1_2_6_27_2 doi: 10.1163/1568562042459698 – ident: e_1_2_6_3_2 doi: 10.1211/0022357021778556 – ident: e_1_2_6_2_2 doi: 10.1016/S0301-4622(02)00138-2 – volume: 115 start-page: 1005 year: 2002 ident: e_1_2_6_10_2 article-title: Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells publication-title: J Cell Sci doi: 10.1242/jcs.115.5.1005 – ident: e_1_2_6_36_2 doi: 10.1016/j.biomaterials.2004.01.063 – ident: e_1_2_6_13_2 doi: 10.1126/science.1093783 – ident: e_1_2_6_15_2 doi: 10.1523/JNEUROSCI.4519-03.2004 – ident: e_1_2_6_5_2 doi: 10.1038/nrn1326 – volume: 10 start-page: 764 year: 1990 ident: e_1_2_6_17_2 article-title: Differential expression of two neuronal intermediate‐filament proteins, peripherin and the low‐molecular‐mass neurofilament protein (NF‐L) during the development of the rat publication-title: J Neurosci doi: 10.1523/JNEUROSCI.10-03-00764.1990 – ident: e_1_2_6_37_2 doi: 10.1002/bit.10565 – ident: e_1_2_6_21_2 doi: 10.1016/j.expneurol.2004.10.005 – ident: e_1_2_6_31_2 doi: 10.1016/S0165-0270(00)00303-4 – ident: e_1_2_6_32_2 doi: 10.1038/nbt874 – ident: e_1_2_6_4_2 doi: 10.1385/MN:27:2:177 – ident: e_1_2_6_16_2 doi: 10.1038/nn1179 – ident: e_1_2_6_35_2 doi: 10.1089/ten.2005.11.847 – ident: e_1_2_6_7_2 – ident: e_1_2_6_23_2 doi: 10.1016/j.mcn.2004.08.017 – ident: e_1_2_6_34_2 doi: 10.1016/j.biomaterials.2004.08.012 – ident: e_1_2_6_18_2 doi: 10.1111/j.1460-9568.2004.03184.x – volume: 15 start-page: 593 year: 2000 ident: e_1_2_6_6_2 article-title: Schwann cell extracellular matrix molecules and their receptors publication-title: Histol Histopathol |
| SSID | ssj0026052 |
| Score | 2.1387365 |
| Snippet | Current methods to promote growth of cultured neurons use two‐dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly‐L‐lysine... Current methods to promote growth of cultured neurons use two‐dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly‐ L... Current methods to promote growth of cultured neurons use two-dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly-L-lysine... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 851 |
| SubjectTerms | Amino Acid Sequence Animals Biocompatible Materials extracellular matrix Molecular Sequence Data nanofiber Nanotechnology neuron Neurons - cytology Neurons - drug effects peptide Peptides - chemistry Peptides - pharmacology Rats Surface Properties Tenascin - chemistry Tenascin - pharmacology tenascin-C |
| Title | Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro |
| URI | https://api.istex.fr/ark:/67375/WNG-77RMQ4X9-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.a.30587 https://www.ncbi.nlm.nih.gov/pubmed/16345089 https://www.proquest.com/docview/29575992 https://www.proquest.com/docview/67660767 |
| Volume | 76A |
| WOSCitedRecordID | wos000235563000022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1552-4965 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026052 issn: 1549-3296 databaseCode: DRFUL dateStart: 20030101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLXaGRaw4P0YHsWLigVS2hnb8UOsoDAg1I6gasXsLMcPGGiTKvMAdiz4AL6RL-HayQwUFSTELlKuHcc-9j32tY8R2hRCSWoYzYL3McxIB5lURmZ-4Jg1IQyITZL5u2I0kuOxerWGHi3PwjT6EKsFt9gz0ngdO7gppm1cn2y_L463zBaAVYp11CWAW9ZB3af7w8Pd1XwLmHoKdsIUKKNE8fZ43m_JTzmkbqzbT2exzdPkNXmf4aX_KvdldLElnfhxg5IraM2XV9GFX6QIr6GvB9Co_vuXby7K_TdSHbg0JWCvqOPNRDWezusQN3BhWwE8wVkdfcbHlZsEYLE4rudi4N8GXGoJ2ezErCDvBbw7iTtnHCT05bsIMpxENOMH3tbVR0g3KfFiMqur6-hw-Oxg50XW3tCQWfBjMDoVQK8od94BcWOCB5Ybn1PvpaGOFKLIjZLGFcw4Kn2gfeaJIKHvuXUucENvoE5Zlf4WwparuK4Zo8mESVYYJiBZoCS31gfheujhspm0beXL4y0aR7oRXiYaqlYbnaq2hzZXxieNasfZZg9Se69sTP0hbnQTuX4zeq6F2N97zcZK8x66vwSEhu4XYyqm9NV8qomKN5wq8mcLLjjvCw4fu9kg6WeJOGXAjxX8WgLM34qqXz7ZSw-3_8X4DjrfLBnRbJDfRZ1ZPff30Dm7mE2m9QZaF2O50faaHymKICE |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+nanofibrillar+surfaces+covalently+modified+with+tenascin-C-derived+peptides+enhance+neuronal+growth+in+vitro&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Ahmed%2C+Ijaz&rft.au=Liu%2C+Hsing-Yin&rft.au=Mamiya%2C+Ping+C&rft.au=Ponery%2C+Abdul+S&rft.date=2006-03-15&rft.issn=1549-3296&rft.volume=76&rft.issue=4&rft.spage=851&rft_id=info:doi/10.1002%2Fjbm.a.30587&rft_id=info%3Apmid%2F16345089&rft.externalDocID=16345089 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |