Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring
The last decade brought a spectacular development of so‐called environmental (e)DNA studies. In general, “environmental DNA” is defined as DNA isolated from environmental samples, in contrast to genomic DNA that is extracted directly from specimens. However, the variety of different sources of eDNA...
Uložené v:
| Vydané v: | Molecular ecology Ročník 29; číslo 22; s. 4258 - 4264 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Blackwell Publishing Ltd
01.11.2020
|
| Predmet: | |
| ISSN: | 0962-1083, 1365-294X, 1365-294X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The last decade brought a spectacular development of so‐called environmental (e)DNA studies. In general, “environmental DNA” is defined as DNA isolated from environmental samples, in contrast to genomic DNA that is extracted directly from specimens. However, the variety of different sources of eDNA and the range of taxonomic groups that are targeted by eDNA studies is large, which has led to some discussion about the breadth of the eDNA concept. In particular, there is a recent trend to restrict the use of the term “eDNA” to the DNA of macro‐organisms, which are not physically present in environmental samples. In this paper, we argue that such a distinction may not be ideal, because the eDNA signal can come from organisms across the whole tree of life. Consequently, we advocate that the term “eDNA” should be used in its generic sense, as originally defined, encompassing the DNA of all organisms present in environmental samples, including microbial, meiofaunal and macrobial taxa. We first suggest specifying the environmental origin of the DNA sample, such as water eDNA, sediment eDNA or soil eDNA. A second specification would then define the taxonomic group targeted through polymerase chain reaction amplification, such as fish eDNA, invertebrate eDNA and bacterial eDNA. This terminology does also not require assumptions about the specific state of the DNA sampled (intracellular or extracellular). We hope that such terminology will help better define the scope of eDNA studies, especially for environmental managers, who use them as reference in routine biomonitoring and bioassessment. |
|---|---|
| AbstractList | The last decade brought a spectacular development of so‐called environmental (e)DNA studies. In general, “environmental DNA” is defined as DNA isolated from environmental samples, in contrast to genomic DNA that is extracted directly from specimens. However, the variety of different sources of eDNA and the range of taxonomic groups that are targeted by eDNA studies is large, which has led to some discussion about the breadth of the eDNA concept. In particular, there is a recent trend to restrict the use of the term “eDNA” to the DNA of macro‐organisms, which are not physically present in environmental samples. In this paper, we argue that such a distinction may not be ideal, because the eDNA signal can come from organisms across the whole tree of life. Consequently, we advocate that the term “eDNA” should be used in its generic sense, as originally defined, encompassing the DNA of all organisms present in environmental samples, including microbial, meiofaunal and macrobial taxa. We first suggest specifying the environmental origin of the DNA sample, such as water eDNA, sediment eDNA or soil eDNA. A second specification would then define the taxonomic group targeted through polymerase chain reaction amplification, such as fish eDNA, invertebrate eDNA and bacterial eDNA. This terminology does also not require assumptions about the specific state of the DNA sampled (intracellular or extracellular). We hope that such terminology will help better define the scope of eDNA studies, especially for environmental managers, who use them as reference in routine biomonitoring and bioassessment. The last decade brought a spectacular development of so-called environmental (e)DNA studies. In general, "environmental DNA" is defined as DNA isolated from environmental samples, in contrast to genomic DNA that is extracted directly from specimens. However, the variety of different sources of eDNA and the range of taxonomic groups that are targeted by eDNA studies is large, which has led to some discussion about the breadth of the eDNA concept. In particular, there is a recent trend to restrict the use of the term "eDNA" to the DNA of macro-organisms, which are not physically present in environmental samples. In this paper, we argue that such a distinction may not be ideal, because the eDNA signal can come from organisms across the whole tree of life. Consequently, we advocate that the term "eDNA" should be used in its generic sense, as originally defined, encompassing the DNA of all organisms present in environmental samples, including microbial, meiofaunal and macrobial taxa. We first suggest specifying the environmental origin of the DNA sample, such as water eDNA, sediment eDNA or soil eDNA. A second specification would then define the taxonomic group targeted through polymerase chain reaction amplification, such as fish eDNA, invertebrate eDNA and bacterial eDNA. This terminology does also not require assumptions about the specific state of the DNA sampled (intracellular or extracellular). We hope that such terminology will help better define the scope of eDNA studies, especially for environmental managers, who use them as reference in routine biomonitoring and bioassessment.The last decade brought a spectacular development of so-called environmental (e)DNA studies. In general, "environmental DNA" is defined as DNA isolated from environmental samples, in contrast to genomic DNA that is extracted directly from specimens. However, the variety of different sources of eDNA and the range of taxonomic groups that are targeted by eDNA studies is large, which has led to some discussion about the breadth of the eDNA concept. In particular, there is a recent trend to restrict the use of the term "eDNA" to the DNA of macro-organisms, which are not physically present in environmental samples. In this paper, we argue that such a distinction may not be ideal, because the eDNA signal can come from organisms across the whole tree of life. Consequently, we advocate that the term "eDNA" should be used in its generic sense, as originally defined, encompassing the DNA of all organisms present in environmental samples, including microbial, meiofaunal and macrobial taxa. We first suggest specifying the environmental origin of the DNA sample, such as water eDNA, sediment eDNA or soil eDNA. A second specification would then define the taxonomic group targeted through polymerase chain reaction amplification, such as fish eDNA, invertebrate eDNA and bacterial eDNA. This terminology does also not require assumptions about the specific state of the DNA sampled (intracellular or extracellular). We hope that such terminology will help better define the scope of eDNA studies, especially for environmental managers, who use them as reference in routine biomonitoring and bioassessment. |
| Author | Pawlowski, Jan Altermatt, Florian Apothéloz‐Perret‐Gentil, Laure |
| Author_xml | – sequence: 1 givenname: Jan orcidid: 0000-0003-2421-388X surname: Pawlowski fullname: Pawlowski, Jan email: jan.pawlowski@unige.ch, janpawlowski@iopan.pl organization: Polish Academy of Sciences – sequence: 2 givenname: Laure orcidid: 0000-0002-8592-3079 surname: Apothéloz‐Perret‐Gentil fullname: Apothéloz‐Perret‐Gentil, Laure organization: ID‐Gene ecodiagnostics, Campus Biotech Innovation Park – sequence: 3 givenname: Florian orcidid: 0000-0002-4831-6958 surname: Altermatt fullname: Altermatt, Florian organization: University of Zurich |
| BookMark | eNqF0U1rFDEYB_BQKnRbPfQbBHqoHqbN-0y8SFnXF2jrRbG3IZN90k2ZSWqSUfbgdzftioeCmssD4ff8Ifkfov0QAyB0TMkZred8AntGpRJ8Dy0oV7JhWtzsowXRijWUdPwAHeZ8RwjlTMoF-rkK332KYYJQzIjfXl-8xl83ppxmPMDGhzUuG8AF0vQGL0eTvNv6cPvn0oc4xtstNhUmsHGqOWtTfAwZu5iwL3XOZU6A5wzYBzz4OMXgS0w15zl65syY4cXveYS-vFt9Xn5oLj-9_7i8uGysYJo3ijBiBwEd19JqQQkdyKBoB4JbawfL15a0yjreSeEGsjbMKQWulaCIY2D5EXq5y71P8dsMufSTzxbG0QSIc-6Z7hQXmvD2_1QIqVuh2wd68oTexTmF-pCqZMcZbRWv6tVO2RRzTuD6--Qnk7Y9Jf1DZ33trH_srNrzJ9b68vidJRk__mvjhx9h-_fo_mq13G38AuJBqvY |
| CitedBy_id | crossref_primary_10_1002_edn3_228 crossref_primary_10_3897_neobiota_101_153314 crossref_primary_10_1016_j_marpolbul_2025_117609 crossref_primary_10_1111_1755_0998_70037 crossref_primary_10_1111_mec_15759 crossref_primary_10_7717_peerj_16969 crossref_primary_10_1016_j_jenvman_2024_121412 crossref_primary_10_1002_edn3_70016 crossref_primary_10_1038_s44358_025_00044_x crossref_primary_10_1111_eea_13546 crossref_primary_10_18307_2025_0402 crossref_primary_10_1002_edn3_70136 crossref_primary_10_1002_edn3_70134 crossref_primary_10_1111_1755_0998_13401 crossref_primary_10_3389_fenvs_2024_1415338 crossref_primary_10_1002_edn3_507 crossref_primary_10_1016_j_pecon_2024_01_006 crossref_primary_10_1371_journal_pone_0298905 crossref_primary_10_5897_JENE2024_0972 crossref_primary_10_1111_jfb_70056 crossref_primary_10_1007_s11355_023_00549_7 crossref_primary_10_1111_ddi_70053 crossref_primary_10_3390_f16030437 crossref_primary_10_1016_j_quascirev_2022_107703 crossref_primary_10_1016_j_scitotenv_2025_179057 crossref_primary_10_1016_j_marenvres_2025_107094 crossref_primary_10_1038_s41467_024_50873_1 crossref_primary_10_1016_j_ecolind_2024_112538 crossref_primary_10_3390_biology13110951 crossref_primary_10_1007_s12686_022_01279_y crossref_primary_10_1016_j_ecolind_2025_113469 crossref_primary_10_1016_j_ecolind_2024_111577 crossref_primary_10_1111_mec_16955 crossref_primary_10_1002_lno_12323 crossref_primary_10_1002_edn3_334 crossref_primary_10_1002_edn3_335 crossref_primary_10_1111_brv_70059 crossref_primary_10_1007_s11104_021_05261_9 crossref_primary_10_1080_20421338_2025_2490357 crossref_primary_10_1111_mec_15742 crossref_primary_10_1002_ece3_9810 crossref_primary_10_1038_s41598_023_44908_8 crossref_primary_10_1007_s10661_025_13998_4 crossref_primary_10_1111_1755_0998_13658 crossref_primary_10_3390_agronomy15061332 crossref_primary_10_3389_fevo_2022_913279 crossref_primary_10_1016_j_scitotenv_2023_162322 crossref_primary_10_1093_etojnl_vgaf031 crossref_primary_10_1002_edn3_342 crossref_primary_10_1007_s10641_022_01350_5 crossref_primary_10_1111_gcb_17066 crossref_primary_10_1002_edn3_405 crossref_primary_10_1371_journal_pone_0296305 crossref_primary_10_1002_edn3_528 crossref_primary_10_1002_lom3_10459 crossref_primary_10_1111_mec_16023 crossref_primary_10_1111_mec_16144 crossref_primary_10_1111_mec_17355 crossref_primary_10_1002_ece3_8972 crossref_primary_10_1016_j_ecolind_2022_108732 crossref_primary_10_7717_peerj_15210 crossref_primary_10_1007_s10201_024_00751_y crossref_primary_10_1016_j_pocean_2024_103230 crossref_primary_10_2981_wlb_00808 crossref_primary_10_1111_1755_0998_13746 crossref_primary_10_3390_biology12071038 crossref_primary_10_1016_j_marpolbul_2025_118036 crossref_primary_10_1007_s44211_023_00280_1 crossref_primary_10_1016_j_hal_2021_102124 crossref_primary_10_1111_mec_17073 crossref_primary_10_1002_ajb2_16120 crossref_primary_10_3389_fmicb_2022_1026596 crossref_primary_10_1002_edn3_253 crossref_primary_10_1139_cjfas_2023_0053 crossref_primary_10_1007_s00338_024_02597_3 crossref_primary_10_1016_j_jenvman_2025_126054 crossref_primary_10_1007_s10661_024_12788_8 crossref_primary_10_1016_j_fawpar_2022_e00183 crossref_primary_10_3389_fenvs_2021_669582 crossref_primary_10_1007_s00248_025_02580_7 crossref_primary_10_1111_mec_15725 crossref_primary_10_1002_edn3_477 crossref_primary_10_1002_edn3_512 crossref_primary_10_1002_edn3_70168 crossref_primary_10_1038_s41598_021_97619_3 crossref_primary_10_1002_edn3_70043 crossref_primary_10_1111_ele_70212 crossref_primary_10_1007_s12686_024_01362_6 crossref_primary_10_1002_ece3_7139 crossref_primary_10_1111_1755_0998_13998 crossref_primary_10_1111_1462_2920_70086 crossref_primary_10_1038_s41598_021_89942_6 crossref_primary_10_3390_d14010043 crossref_primary_10_3390_d14060463 crossref_primary_10_1111_2041_210X_14317 crossref_primary_10_3897_neobiota_66_60751 crossref_primary_10_1002_edn3_480 crossref_primary_10_1016_j_cub_2023_04_075 crossref_primary_10_1002_edn3_429 crossref_primary_10_1007_s00300_023_03187_9 crossref_primary_10_1016_j_bios_2025_117930 crossref_primary_10_1007_s00436_024_08423_7 crossref_primary_10_1111_mec_16364 crossref_primary_10_1111_mec_16881 crossref_primary_10_1002_ece3_8995 crossref_primary_10_1111_mam_70006 crossref_primary_10_1016_j_ecss_2024_108731 crossref_primary_10_3389_fevo_2023_1179158 crossref_primary_10_1002_wat2_1749 crossref_primary_10_1016_j_tree_2023_09_017 crossref_primary_10_1371_journal_pone_0274736 crossref_primary_10_1002_ece3_9206 crossref_primary_10_1038_s41598_021_03733_7 crossref_primary_10_1134_S1022795424701758 crossref_primary_10_3390_w17050661 crossref_primary_10_1111_1755_0998_13723 crossref_primary_10_1007_s10661_024_12861_2 crossref_primary_10_1016_j_jenvman_2025_126630 crossref_primary_10_1016_j_actatropica_2024_107402 crossref_primary_10_1007_s10661_025_14272_3 crossref_primary_10_3390_microorganisms9020361 crossref_primary_10_1002_edn3_430 crossref_primary_10_1111_2041_210X_70152 crossref_primary_10_3897_subtbiol_53_165710 crossref_primary_10_1007_s44211_023_00289_6 crossref_primary_10_1016_j_landurbplan_2025_105376 crossref_primary_10_3389_fmars_2025_1605996 crossref_primary_10_3390_w13030331 crossref_primary_10_1016_j_ecoinf_2025_103251 crossref_primary_10_7717_peerj_15425 crossref_primary_10_1002_edn3_499 crossref_primary_10_1007_s00248_022_02168_5 crossref_primary_10_1016_j_scitotenv_2021_149724 crossref_primary_10_1038_s41598_023_35614_6 crossref_primary_10_3389_fevo_2022_874558 crossref_primary_10_1007_s10750_022_04959_w crossref_primary_10_1111_mec_15942 crossref_primary_10_3390_su16198335 crossref_primary_10_1002_edn3_70073 crossref_primary_10_1007_s11356_024_35025_8 crossref_primary_10_1093_tafafs_vnaf036 crossref_primary_10_1111_ecog_07267 crossref_primary_10_1111_faf_12582 crossref_primary_10_1016_j_fishres_2023_106708 crossref_primary_10_3897_mbmg_6_85652 crossref_primary_10_1002_bit_28592 crossref_primary_10_1002_edn3_267 crossref_primary_10_1002_edn3_261 crossref_primary_10_1002_edn3_382 crossref_primary_10_1002_ps_8950 crossref_primary_10_1002_edn3_448 crossref_primary_10_1002_rse2_366 crossref_primary_10_1016_j_watbs_2022_100007 crossref_primary_10_3897_BDJ_12_e116921 crossref_primary_10_1016_j_watres_2025_123257 crossref_primary_10_1002_edn3_70111 crossref_primary_10_1007_s10528_025_11200_5 crossref_primary_10_1007_s12686_023_01333_3 crossref_primary_10_1038_s41598_024_71398_z crossref_primary_10_1038_s44185_024_00040_y crossref_primary_10_1089_forensic_2023_0007 crossref_primary_10_1002_edn3_70075 crossref_primary_10_1111_faf_12553 crossref_primary_10_1111_2041_210X_70093 crossref_primary_10_1016_j_scitotenv_2023_166675 crossref_primary_10_1002_wat2_1681 crossref_primary_10_1002_jwmg_70102 crossref_primary_10_1016_j_marpol_2024_106151 crossref_primary_10_1002_edn3_570 crossref_primary_10_1111_1462_2920_16458 crossref_primary_10_1002_ece3_9234 crossref_primary_10_1007_s10750_022_04891_z crossref_primary_10_1093_aobpla_plac031 crossref_primary_10_3390_biology10121223 crossref_primary_10_1016_j_scitotenv_2021_148810 crossref_primary_10_1111_1755_0998_13399 crossref_primary_10_1016_j_ecolind_2023_111171 crossref_primary_10_1016_j_scitotenv_2024_173092 crossref_primary_10_3390_ijerph19159445 crossref_primary_10_1111_1755_0998_13677 crossref_primary_10_1111_1755_0998_13710 crossref_primary_10_1111_rec_13831 crossref_primary_10_1002_edn3_70090 crossref_primary_10_1007_s12237_022_01080_y crossref_primary_10_1007_s00338_023_02375_7 crossref_primary_10_1371_journal_pone_0257510 crossref_primary_10_1002_ajb2_70020 |
| Cites_doi | 10.1111/j.1550-7408.2003.tb00248.x 10.1007/978-1-4757-0611-6_1 10.1016/j.biocon.2014.11.019 10.1111/jfb.14177 10.1016/j.tree.2014.04.003 10.1128/aem.53.1.170-179.1987 10.1038/ncomms12544 10.1111/mec.14350 10.1128/aem.63.3.983-989.1997 10.1016/j.tim.2018.10.012 10.1128/AEM.55.3.548-554.1989 10.1002/ece3.6088 10.1016/j.scitotenv.2018.05.002 10.1128/JB.176.23.7352-7361.1994 10.1111/1755-0998.12302 10.1099/ijs.0.63229-0 10.1128/AEM.56.3.782-787.1990 10.1126/science.239.4839.487 10.1128/aem.52.4.654-659.1986 10.1038/417063a 10.1128/aem.43.6.1393-1399.1982 10.1111/1755-0998.12926 10.1016/j.jnc.2017.07.002 10.1038/s41467-020-17337-8 10.1146/annurev.mi.40.100186.002005 10.1111/brv.12480 10.1126/science.1251156 10.1128/aem.58.9.2717-2722.1992 10.1111/oik.06806 10.1038/s41467-019-14105-1 10.1016/j.margen.2015.10.008 10.1111/j.1574-695X.2010.00690.x 10.1086/655118 10.1038/345060a0 10.1186/1741-7007-2-13 10.1098/rsbl.2008.0118 10.1111/j.1365-294X.2011.05418.x 10.1016/j.envres.2011.02.001 10.1126/science.224.4647.409 10.1016/j.envint.2019.105307 10.1371/journal.pone.0139633 10.1016/0167-7012(87)90025-X 10.1128/jb.173.14.4371-4378.1991 10.1111/2041-210X.12206 10.1016/j.biocon.2014.11.018 10.1016/j.tree.2018.09.003 10.1002/edn3.16 10.1016/j.tree.2014.08.001 10.1093/oso/9780198767220.001.0001 10.1002/edn3.34 10.1038/s41598-019-48984-7 10.1016/j.biocon.2014.11.040 10.1111/j.1365-294X.2012.05505.x 10.1111/1755-0998.12940 10.1086/678128 10.1016/j.marpolbul.2017.11.065 10.1128/AEM.54.12.2908-2915.1988 10.1111/j.1365-294X.2012.05542.x 10.1016/j.cub.2019.08.002 10.1038/s41598-017-12501-5 10.1038/s41598-018-20302-7 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons Ltd Copyright © 2020 John Wiley & Sons Ltd 2020 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: Copyright © 2020 John Wiley & Sons Ltd – notice: 2020 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1111/mec.15643 |
| DatabaseName | CrossRef Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Entomology Abstracts AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| EISSN | 1365-294X |
| EndPage | 4264 |
| ExternalDocumentID | 10_1111_mec_15643 MEC15643 |
| Genre | article News |
| GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: 31003A_173074; 31003A_179125 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4293-6020cb4e8395c94101b0b618e43cccbc3dc076cf3854fb0da2f66ef75e60f2ec3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 196 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578641600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0962-1083 1365-294X |
| IngestDate | Fri Sep 05 17:19:16 EDT 2025 Sun Nov 09 12:40:14 EST 2025 Wed Aug 13 06:37:49 EDT 2025 Sat Nov 29 05:23:47 EST 2025 Tue Nov 18 21:53:41 EST 2025 Wed Jan 22 16:59:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4293-6020cb4e8395c94101b0b618e43cccbc3dc076cf3854fb0da2f66ef75e60f2ec3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-News-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-2421-388X 0000-0002-4831-6958 0000-0002-8592-3079 |
| PQID | 2458321763 |
| PQPubID | 31465 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2986349037 proquest_miscellaneous_2445974977 proquest_journals_2458321763 crossref_primary_10_1111_mec_15643 crossref_citationtrail_10_1111_mec_15643 wiley_primary_10_1111_mec_15643_MEC15643 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Molecular ecology |
| PublicationYear | 2020 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 1994; 176 2017; 7 2015; 183 2010; 59 1990; 56 1990; 345 2019; 94 2018; 127 1987; 7 2020; 129 1992; 58 2004; 2 2014; 29 2020; 11 2008; 4 2020; 10 2003; 50 2018; 42 2011; 111 2018; 8 2014; 5 1986; 40 2019; 27 1986 2019; 29 2020; 135 2018; 33 2012; 21 2015; 15 2019; 9 1991; 173 1987; 53 2018; 637–638 1986; 52 2017; 26 1984; 224 2019; 1 1997; 63 2015; 10 1988; 54 2002; 417 2010; 85 2016; 55 2004; 54 2018; 18 2016; 7 1989; 55 2000; 39 2020 1982; 43 2019 2018 2018; 52 2014 2016; 26 1988; 239 2014; 33 2014; 344 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Picard C. (e_1_2_6_50_1) 1992; 58 e_1_2_6_19_1 Li F. (e_1_2_6_33_1) 2018; 52 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 Suzuki M. T. (e_1_2_6_60_1) 1997; 63 e_1_2_6_20_1 e_1_2_6_41_1 Gordon D. A. (e_1_2_6_23_1) 2000; 39 Nguyen B. N. (e_1_2_6_38_1) 2020; 10 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 Bass D. (e_1_2_6_4_1) 2004; 54 e_1_2_6_26_1 e_1_2_6_47_1 Stahl D. A. (e_1_2_6_56_1) 1984; 224 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 Deflaun M. F. (e_1_2_6_14_1) 1986; 52 Paul J. H. (e_1_2_6_45_1) 1982; 43 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 Jackson M. C. (e_1_2_6_29_1) 2016 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 Corinaldesi C. (e_1_2_6_11_1) 2018; 8 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 Paul J. H. (e_1_2_6_44_1) 1987; 53 e_1_2_6_2_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 111 start-page: 978 issue: 7 year: 2011 end-page: 988 article-title: From molecules to management: Adopting DNA‐based methods for monitoring biological invasions in aquatic environments publication-title: Environmental Research – volume: 10 start-page: 2588 issue: 5 year: 2020 end-page: 2596 article-title: Space invaders: Searching for invasive Smallmouth Bass ( ) in a renowned Atlantic Salmon (Salmo salar) river publication-title: Ecology and Evolution – volume: 15 start-page: 250 issue: 2 year: 2015 end-page: 261 article-title: Comparing the effectiveness of metagenomics and metabarcoding for diet analysis of a leaf‐feeding monkey ( ) publication-title: Molecular Ecology Resources – volume: 129 start-page: 607 issue: 5 year: 2020 end-page: 618 article-title: Uncovering the complete biodiversity structure in spatial networks: The example of riverine systems publication-title: Oikos – volume: 1 start-page: 144 issue: 2 year: 2019 end-page: 154 article-title: A simplified DNA extraction protocol for unsorted bulk arthropod samples that maintains exoskeletal integrity publication-title: Environmental DNA – volume: 40 start-page: 337 year: 1986 end-page: 365 article-title: Microbial ecology and evolution: A ribosomal RNA approach publication-title: Annual Review of Microbiology – volume: 29 start-page: 358 issue: 6 year: 2014 end-page: 367 article-title: Environmental DNA for wildlife biology and biodiversity monitoring publication-title: Trends in Ecology & Evolution – volume: 58 start-page: 2717 issue: 9 year: 1992 end-page: 2722 article-title: Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction publication-title: Applied and Environmental Microbiology – volume: 59 start-page: 253 issue: 3 year: 2010 end-page: 268 article-title: An update on biofilm formation, tolerance, and dispersal publication-title: FEMS Immunology and Medical Microbiology – volume: 1 start-page: 329 issue: 4 year: 2019 end-page: 341 article-title: Vertebrate diversity revealed by metabarcoding of bulk arthropod samples from tropical forests publication-title: Environmental DNA – year: 2018 – year: 2014 – volume: 55 start-page: 615 year: 2016 end-page: 636 – volume: 52 start-page: 11708 issue: 20 year: 2018 end-page: 11719 article-title: Application of environmental DNA metabarcoding for predicting anthropogenic pollution in rivers publication-title: Environmental Science & Technology – volume: 18 start-page: 1456 issue: 6 year: 2018 end-page: 1468 article-title: Comparison of environmental DNA and bulk‐sample metabarcoding using highly degenerate cytochrome c oxidase I primers publication-title: Molecular Ecology Resources – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 14 article-title: Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape publication-title: Scientific Reports – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 9 article-title: Extracellular DNA as a genetic recorder of microbial diversity in benthic deep‐sea ecosystems publication-title: Scientific Reports – volume: 7 start-page: 12240 issue: 1 year: 2017 article-title: Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment publication-title: Scientific Reports – volume: 127 start-page: 139 year: 2018 end-page: 149 article-title: Environmental DNA metabarcoding of benthic bacterial communities indicates the benthic footprint of salmon aquaculture publication-title: Marine Pollution Bulletin – volume: 27 start-page: 387 issue: 5 year: 2019 end-page: 397 article-title: Embracing environmental genomics and machine learning for routine biomonitoring publication-title: Trends in Microbiology – volume: 55 start-page: 548 issue: 3 year: 1989 end-page: 554 article-title: Simple, rapid method for direct isolation of nucleic acids from aquatic environments publication-title: Applied and Environmental Microbiology – volume: 345 start-page: 60 issue: 6270 year: 1990 end-page: 63 article-title: Genetic diversity in Sargasso Sea bacterioplankton publication-title: Nature – volume: 39 start-page: 197 issue: 3 year: 2000 end-page: 202 article-title: Origin and phylogeny of microbes living in permanent Antarctic Lake Ice publication-title: Microbial Ecology – volume: 344 start-page: 1455 issue: 6191 year: 2014 end-page: 1456 article-title: Harnessing DNA to improve environmental management publication-title: Science – volume: 224 start-page: 409 issue: 4647 year: 1984 end-page: 411 article-title: Analysis of hydrothermal vent‐associated symbionts by ribosomal RNA sequences publication-title: Science – volume: 7 start-page: 12544 year: 2016 article-title: Environmental DNA reveals that rivers are conveyer belts of biodiversity information publication-title: Nature Communications – volume: 2 start-page: 13 year: 2004 article-title: How many novel eukaryotic “kingdoms”? Pitfalls and limitations of environmental DNA surveys publication-title: BMC Biology – volume: 417 start-page: 63 issue: 6884 year: 2002 end-page: 67 article-title: A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont publication-title: Nature – volume: 42 start-page: 67 year: 2018 end-page: 74 article-title: Metabarcoding and post‐sampling strategies to discover non‐indigenous species: A case study in the estuaries of the central south Bay of Biscay publication-title: Journal for Nature Conservation – volume: 637–638 start-page: 1295 year: 2018 end-page: 1310 article-title: The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems publication-title: The Science of the Total Environment – volume: 239 start-page: 487 issue: 4839 year: 1988 end-page: 491 article-title: Primer‐directed enzymatic amplification of DNA with a thermostable DNA polymerase publication-title: Science – volume: 11 start-page: 3585 year: 2020 article-title: Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems publication-title: Nature Communications – volume: 11 start-page: 254 issue: 1 year: 2020 article-title: Environmental DNA reveals seasonal shifts and potential interactions in a marine community publication-title: Nature Communications – volume: 29 start-page: R960 issue: 19 year: 2019 end-page: R967 article-title: Multiple threats imperil freshwater biodiversity in the Anthropocene publication-title: Current Biology – volume: 183 start-page: 53 year: 2015 end-page: 63 article-title: Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA publication-title: Biological Conservation – volume: 173 start-page: 4371 issue: 14 year: 1991 end-page: 4378 article-title: Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing publication-title: Journal of Bacteriology – volume: 21 start-page: 2565 issue: 11 year: 2012 end-page: 2573 article-title: Monitoring endangered freshwater biodiversity using environmental DNA publication-title: Molecular Ecology – volume: 26 start-page: 29 year: 2016 end-page: 39 article-title: Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea publication-title: Marine Genomics – volume: 21 start-page: 1789 issue: 8 year: 2012 end-page: 1793 article-title: Environmental DNA publication-title: Molecular Ecology – volume: 183 start-page: 4 year: 2015 end-page: 18 article-title: Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity publication-title: Biological Conservation – volume: 50 start-page: 135 issue: 2 year: 2003 end-page: 139 article-title: Freshwater foraminiferans revealed by analysis of environmental DNA samples publication-title: The Journal of Eukaryotic Microbiology – volume: 54 start-page: 2908 issue: 12 year: 1988 end-page: 2915 article-title: Recovery of DNA from soils and sediments publication-title: Applied and Environmental Microbiology – volume: 5 start-page: 676 issue: 7 year: 2014 end-page: 684 article-title: Particle size distribution and optimal capture of aqueous macrobial eDNA publication-title: Methods in Ecology and Evolution – volume: 54 start-page: 2393 issue: Pt 6 year: 2004 end-page: 2404 article-title: Phylum‐specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa) publication-title: International Journal of Systematic and Evolutionary Microbiology – volume: 9 start-page: 12500 issue: 1 year: 2019 article-title: Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular publication-title: Scientific Reports – volume: 29 start-page: 566 issue: 10 year: 2014 end-page: 571 article-title: From barcoding single individuals to metabarcoding biological communities: Towards an integrative approach to the study of global biodiversity publication-title: Trends in Ecology & Evolution – volume: 10 issue: 10 year: 2015 article-title: Deep‐sea, deep‐sequencing: Metabarcoding extracellular DNA from sediments of Marine Canyons publication-title: PLoS ONE – volume: 21 start-page: 2031 issue: 8 year: 2012 end-page: 2038 article-title: The future of environmental DNA in ecology publication-title: Molecular Ecology – volume: 135 start-page: 105307 year: 2020 article-title: Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals publication-title: Environment International – volume: 33 start-page: 945 issue: 12 year: 2018 end-page: 957 article-title: Environmental DNA time series in ecology publication-title: Trends in Ecology & Evolution – volume: 52 start-page: 654 issue: 4 year: 1986 end-page: 659 article-title: Simplified method for dissolved DNA determination in aquatic environments publication-title: Applied and Environmental Microbiology – volume: 176 start-page: 7352 issue: 23 year: 1994 end-page: 7361 article-title: Inducible cell lysis system for the study of natural transformation and environmental fate of DNA released by cell death publication-title: Journal of Bacteriology – volume: 33 start-page: 1174 issue: 4 year: 2014 end-page: 1183 article-title: Utility of environmental DNA for monitoring rare and indicator macroinvertebrate species publication-title: Freshwater Science – volume: 4 start-page: 423 issue: 4 year: 2008 end-page: 425 article-title: Species detection using environmental DNA from water samples publication-title: Biology Letters – volume: 26 start-page: 5872 issue: 21 year: 2017 end-page: 5895 article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities publication-title: Molecular Ecology – volume: 7 start-page: 57 issue: 2 year: 1987 end-page: 66 article-title: The extraction and purification of microbial DNA from sediments publication-title: Journal of Microbiological Methods – volume: 94 start-page: 849 issue: 3 year: 2019 end-page: 873 article-title: Emerging threats and persistent conservation challenges for freshwater biodiversity publication-title: Biological Reviews – volume: 43 start-page: 1393 issue: 6 year: 1982 end-page: 1399 article-title: Fluorometric determination of DNA in aquatic microorganisms by use of hoechst 33258 publication-title: Applied and Environmental Microbiology – volume: 18 start-page: 1381 issue: 6 year: 2018 end-page: 1391 article-title: Supervised machine learning outperforms taxonomy‐based environmental DNA metabarcoding applied to biomonitoring publication-title: Molecular Ecology Resources – volume: 183 start-page: 1 year: 2015 end-page: 3 article-title: Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms publication-title: Biological Conservation – volume: 53 start-page: 170 issue: 1 year: 1987 end-page: 179 article-title: Dynamics of extracellular DNA in the marine environment publication-title: Applied and Environmental Microbiology – start-page: 1 year: 1986 end-page: 55 – year: 2020 – volume: 56 start-page: 782 issue: 3 year: 1990 end-page: 787 article-title: High diversity in DNA of soil bacteria publication-title: Applied and Environmental Microbiology – volume: 85 start-page: 319 issue: 3 year: 2010 end-page: 340 article-title: Assessing macroinvertebrate biodiversity in freshwater ecosystems: Advances and challenges in DNA‐based approaches publication-title: The Quarterly Review of Biology – volume: 63 start-page: 983 issue: 3 year: 1997 end-page: 989 article-title: Bacterial diversity among small‐subunit rRNA gene clones and cellular isolates from the same seawater sample publication-title: Applied and Environmental Microbiology – year: 2019 article-title: Environmental DNA is not the tool by itself publication-title: Journal of Fish Biology – ident: e_1_2_6_27_1 doi: 10.1111/j.1550-7408.2003.tb00248.x – ident: e_1_2_6_43_1 doi: 10.1007/978-1-4757-0611-6_1 – ident: e_1_2_6_64_1 doi: 10.1016/j.biocon.2014.11.019 – ident: e_1_2_6_32_1 doi: 10.1111/jfb.14177 – ident: e_1_2_6_6_1 doi: 10.1016/j.tree.2014.04.003 – volume: 53 start-page: 170 issue: 1 year: 1987 ident: e_1_2_6_44_1 article-title: Dynamics of extracellular DNA in the marine environment publication-title: Applied and Environmental Microbiology doi: 10.1128/aem.53.1.170-179.1987 – ident: e_1_2_6_16_1 doi: 10.1038/ncomms12544 – ident: e_1_2_6_15_1 doi: 10.1111/mec.14350 – volume: 63 start-page: 983 issue: 3 year: 1997 ident: e_1_2_6_60_1 article-title: Bacterial diversity among small‐subunit rRNA gene clones and cellular isolates from the same seawater sample publication-title: Applied and Environmental Microbiology doi: 10.1128/aem.63.3.983-989.1997 – ident: e_1_2_6_10_1 doi: 10.1016/j.tim.2018.10.012 – ident: e_1_2_6_54_1 doi: 10.1128/AEM.55.3.548-554.1989 – ident: e_1_2_6_40_1 doi: 10.1002/ece3.6088 – ident: e_1_2_6_47_1 doi: 10.1016/j.scitotenv.2018.05.002 – ident: e_1_2_6_31_1 doi: 10.1128/JB.176.23.7352-7361.1994 – ident: e_1_2_6_55_1 doi: 10.1111/1755-0998.12302 – volume: 54 start-page: 2393 issue: 6 year: 2004 ident: e_1_2_6_4_1 article-title: Phylum‐specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa) publication-title: International Journal of Systematic and Evolutionary Microbiology doi: 10.1099/ijs.0.63229-0 – ident: e_1_2_6_65_1 doi: 10.1128/AEM.56.3.782-787.1990 – ident: e_1_2_6_52_1 doi: 10.1126/science.239.4839.487 – volume: 52 start-page: 654 issue: 4 year: 1986 ident: e_1_2_6_14_1 article-title: Simplified method for dissolved DNA determination in aquatic environments publication-title: Applied and Environmental Microbiology doi: 10.1128/aem.52.4.654-659.1986 – volume: 39 start-page: 197 issue: 3 year: 2000 ident: e_1_2_6_23_1 article-title: Origin and phylogeny of microbes living in permanent Antarctic Lake Ice publication-title: Microbial Ecology – ident: e_1_2_6_28_1 doi: 10.1038/417063a – volume: 43 start-page: 1393 issue: 6 year: 1982 ident: e_1_2_6_45_1 article-title: Fluorometric determination of DNA in aquatic microorganisms by use of hoechst 33258 publication-title: Applied and Environmental Microbiology doi: 10.1128/aem.43.6.1393-1399.1982 – ident: e_1_2_6_9_1 doi: 10.1111/1755-0998.12926 – ident: e_1_2_6_7_1 doi: 10.1016/j.jnc.2017.07.002 – ident: e_1_2_6_8_1 doi: 10.1038/s41467-020-17337-8 – ident: e_1_2_6_26_1 – ident: e_1_2_6_42_1 doi: 10.1146/annurev.mi.40.100186.002005 – ident: e_1_2_6_51_1 doi: 10.1111/brv.12480 – ident: e_1_2_6_30_1 doi: 10.1126/science.1251156 – volume: 58 start-page: 2717 issue: 9 year: 1992 ident: e_1_2_6_50_1 article-title: Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction publication-title: Applied and Environmental Microbiology doi: 10.1128/aem.58.9.2717-2722.1992 – ident: e_1_2_6_2_1 doi: 10.1111/oik.06806 – ident: e_1_2_6_18_1 doi: 10.1038/s41467-019-14105-1 – ident: e_1_2_6_48_1 doi: 10.1016/j.margen.2015.10.008 – ident: e_1_2_6_25_1 doi: 10.1111/j.1574-695X.2010.00690.x – volume: 10 start-page: 1 issue: 1 year: 2020 ident: e_1_2_6_38_1 article-title: Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape publication-title: Scientific Reports – ident: e_1_2_6_49_1 doi: 10.1086/655118 – ident: e_1_2_6_21_1 doi: 10.1038/345060a0 – ident: e_1_2_6_5_1 doi: 10.1186/1741-7007-2-13 – ident: e_1_2_6_20_1 doi: 10.1098/rsbl.2008.0118 – ident: e_1_2_6_63_1 doi: 10.1111/j.1365-294X.2011.05418.x – ident: e_1_2_6_13_1 doi: 10.1016/j.envres.2011.02.001 – volume: 224 start-page: 409 issue: 4647 year: 1984 ident: e_1_2_6_56_1 article-title: Analysis of hydrothermal vent‐associated symbionts by ribosomal RNA sequences publication-title: Science doi: 10.1126/science.224.4647.409 – ident: e_1_2_6_68_1 doi: 10.1016/j.envint.2019.105307 – ident: e_1_2_6_24_1 doi: 10.1371/journal.pone.0139633 – ident: e_1_2_6_41_1 doi: 10.1016/0167-7012(87)90025-X – ident: e_1_2_6_53_1 doi: 10.1128/jb.173.14.4371-4378.1991 – ident: e_1_2_6_66_1 doi: 10.1111/2041-210X.12206 – ident: e_1_2_6_17_1 doi: 10.1016/j.biocon.2014.11.018 – ident: e_1_2_6_3_1 doi: 10.1016/j.tree.2018.09.003 – ident: e_1_2_6_39_1 doi: 10.1002/edn3.16 – ident: e_1_2_6_12_1 doi: 10.1016/j.tree.2014.08.001 – start-page: 615 volume-title: Advances in ecological research year: 2016 ident: e_1_2_6_29_1 – ident: e_1_2_6_61_1 doi: 10.1093/oso/9780198767220.001.0001 – ident: e_1_2_6_34_1 doi: 10.1002/edn3.34 – ident: e_1_2_6_37_1 doi: 10.1038/s41598-019-48984-7 – ident: e_1_2_6_22_1 doi: 10.1016/j.biocon.2014.11.040 – ident: e_1_2_6_67_1 doi: 10.1111/j.1365-294X.2012.05505.x – ident: e_1_2_6_35_1 doi: 10.1111/1755-0998.12940 – ident: e_1_2_6_36_1 doi: 10.1086/678128 – volume: 52 start-page: 11708 issue: 20 year: 2018 ident: e_1_2_6_33_1 article-title: Application of environmental DNA metabarcoding for predicting anthropogenic pollution in rivers publication-title: Environmental Science & Technology – ident: e_1_2_6_59_1 doi: 10.1016/j.marpolbul.2017.11.065 – ident: e_1_2_6_58_1 doi: 10.1128/AEM.54.12.2908-2915.1988 – ident: e_1_2_6_46_1 – ident: e_1_2_6_62_1 doi: 10.1111/j.1365-294X.2012.05542.x – ident: e_1_2_6_19_1 doi: 10.1016/j.cub.2019.08.002 – ident: e_1_2_6_57_1 doi: 10.1038/s41598-017-12501-5 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: e_1_2_6_11_1 article-title: Extracellular DNA as a genetic recorder of microbial diversity in benthic deep‐sea ecosystems publication-title: Scientific Reports doi: 10.1038/s41598-018-20302-7 |
| SSID | ssj0013255 |
| Score | 2.6794257 |
| Snippet | The last decade brought a spectacular development of so‐called environmental (e)DNA studies. In general, “environmental DNA” is defined as DNA isolated from... The last decade brought a spectacular development of so-called environmental (e)DNA studies. In general, "environmental DNA" is defined as DNA isolated from... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4258 |
| SubjectTerms | bioassessment biological assessment Biomonitoring Deoxyribonucleic acid DNA ecology eDNA Environmental DNA environmental genomics Environmental management environmental monitoring fish Genetic testing Invertebrates macrobial metabarcoding microbial Microorganisms Organisms Polymerase chain reaction sediments soil species detection Taxonomy Terminology |
| Title | Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15643 https://www.proquest.com/docview/2458321763 https://www.proquest.com/docview/2445974977 https://www.proquest.com/docview/2986349037 |
| Volume | 29 |
| WOSCitedRecordID | wos000578641600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-294X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013255 issn: 0962-1083 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEB7aq4Iv_hartUQR7MvKbrKbTfRBSnuHD3qIWLi3ZTNJ6ILdlu5doQ_-706ye9sTVASfNmxml5DMJN8kmW8AXqd1VtciF4nnViaEb3WiXaYSh87b1FjHMxuTTZTzuVos9JcteL-Ohen5IcYNt2AZcb4OBl6bbsPIzxy-DUwnYht2OOltMYGd46-zk08bhwgx6SmBdE6zjRIDsVC4yDN-_OtydIMxN5FqXGpm9_6rkffh7oAw2WGvEg9gy7UP4Xafc_KaStPIU339CH5Mb4Lc6IPj-eE7Fpi833TMuFPy1RmBQxam7g8sXONpYkjU-LLpd-RZTYLBrT6j__QJmjpGSJg1S3pGxhK26hxrWhZC_eMUEvYSH8PJbPrt6GMyZGNIkNYskUgClmhyR4iqQJ2TKZvUyEy5XCCiQWExLSV6oYrcm9TW3EvpfFk4mXruUDyBSXveuqfAuPLKYmGR8yy3yteaUKXWqErLjbHpLhysB6XCgao8ZMz4Xq1dFurXKvbrLrwaRS96fo7fCe2tR7YaTLSreDgxJodMUvXLsZqMK5yY1K07XwWZPDhchJH_IqOVFLlOBckcRF34c0Oqz9OjWHj276LP4Q4PPn6Mf9yDyfJy5V7ALbxaNt3lPmyXC7U_aP5PDZ4HTQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA9WW9oX-41Wa9Mi1JeV3SSXS0QQ0TssPY9SFHxbNl90Qdfi3gk--L93Jru3nlBLwacNm9klJDOT30wyM4RspkVWFFzwJDAnE8C3OtE-U4m3PrjUOM8yF4tN9MdjdXamfyyQ3VksTJMfonO4oWREfY0Cjg7pOSm_8HYbU53wJ2RJABsBfy8d_hyejuZOEWLVU0DpDNSN4m1mIbzJ0318fz-6A5nzUDXuNcOXjxvlK7LcYky63zDFa7LgqzfkWVN18gZag5ip-uYtuR3chbnBB4fj_R2Kuby_1tT4X2CtU4CHFJX3HsWLPGUMiupelo1PnhZAiIb1BfynKdFUU8DCtJzAM-YsodPa07KiGOwflQh6E9-R0-Hg5OAoaesxJBZ2LZ5IgJbWCA-Yqme1AGE2qZGZ8oJba43lzqZ9aQNXPRFM6goWpPSh3_MyDcxb_p4sVpeVXyGUqaCc7TnLWCacCoUGXKm1VX3HjHHpKtmarUpu22TlWDPjPJ8ZLTCveZzXVfKlI_3dZOj4G9H6bGnzVkjrnOGZMZhkEro_d90gXnhmUlT-coo0Ak0uQMn_oNFKcqFTDjRbkRkeHkh-PDiIjQ__T_qJPD86OR7lo2_j72vkBUOLP0ZDrpPFydXUfyRP7fWkrK82WgH4A5S3ClU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_s2Yov9lO0apuWQn3ZspvkcokIIt4dLbWHlAq-LZsvXNBV3LuCD_3fO8nurSfYUujThs3sEpLM5DdJ5jcAH9IiKwrGWeKpFQniW5Uol8nEGedtqq2jmY3JJgaTiTw7UydLsD-PhWn4IboNt6AZ0V4HBXfX1i9o-aUznwLVCXsEyzwkkenB8vD7-PR44RQhZj1FlE7R3EjWMguFmzzdx_fXozuQuQhV41ozfvp_rXwGay3GJIfNpHgOS656AU-arJO3WBpFpurbl_BrdBfmhh8MJ4d7JHB5f6yJduforROEhyQY7wMSLvKUMSiqe1k2e_KkQMHgWF_if5oUTTVBLEzKKT4jZwmZ1Y6UFQnB_tGIhN3EV3A6Hv04-py0-RgSg6sWSwRCS6O5Q0zVN4qjMutUi0w6zowx2jBr0oEwnsk-9zq1BfVCOD_oO5F66gxbh151VbkNIFR6aU3fGkozbqUvFOJKpYwcWKq1TTdhdz4quWnJykPOjIt87rRgv-axXzfhfSd63TB0PCS0PR_avFXSOqfhzBhdMoHV77pqVK9wZlJU7moWZHhwuRAl_0VGScG4ShnK7MbJ8OeG5N9GR7Hw-t9F38LKyXCcH3-ZfN2CVRoc_hgMuQ296c3M7cBj83Na1jdv2vn_GxEMCdA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+DNA%3A+What%27s+behind+the+term%3F+Clarifying+the+terminology+and+recommendations+for+its+future+use+in+biomonitoring&rft.jtitle=Molecular+ecology&rft.au=Pawlowski%2C+Jan&rft.au=Laure+Apoth%C3%A9loz%E2%80%90Perret%E2%80%90Gentil&rft.au=Altermatt%2C+Florian&rft.date=2020-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=29&rft.issue=22&rft.spage=4258&rft.epage=4264&rft_id=info:doi/10.1111%2Fmec.15643&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |