Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring

The last decade brought a spectacular development of so‐called environmental (e)DNA studies. In general, “environmental DNA” is defined as DNA isolated from environmental samples, in contrast to genomic DNA that is extracted directly from specimens. However, the variety of different sources of eDNA...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Molecular ecology Ročník 29; číslo 22; s. 4258 - 4264
Hlavní autori: Pawlowski, Jan, Apothéloz‐Perret‐Gentil, Laure, Altermatt, Florian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.11.2020
Predmet:
ISSN:0962-1083, 1365-294X, 1365-294X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The last decade brought a spectacular development of so‐called environmental (e)DNA studies. In general, “environmental DNA” is defined as DNA isolated from environmental samples, in contrast to genomic DNA that is extracted directly from specimens. However, the variety of different sources of eDNA and the range of taxonomic groups that are targeted by eDNA studies is large, which has led to some discussion about the breadth of the eDNA concept. In particular, there is a recent trend to restrict the use of the term “eDNA” to the DNA of macro‐organisms, which are not physically present in environmental samples. In this paper, we argue that such a distinction may not be ideal, because the eDNA signal can come from organisms across the whole tree of life. Consequently, we advocate that the term “eDNA” should be used in its generic sense, as originally defined, encompassing the DNA of all organisms present in environmental samples, including microbial, meiofaunal and macrobial taxa. We first suggest specifying the environmental origin of the DNA sample, such as water eDNA, sediment eDNA or soil eDNA. A second specification would then define the taxonomic group targeted through polymerase chain reaction amplification, such as fish eDNA, invertebrate eDNA and bacterial eDNA. This terminology does also not require assumptions about the specific state of the DNA sampled (intracellular or extracellular). We hope that such terminology will help better define the scope of eDNA studies, especially for environmental managers, who use them as reference in routine biomonitoring and bioassessment.
AbstractList The last decade brought a spectacular development of so‐called environmental (e)DNA studies. In general, “environmental DNA” is defined as DNA isolated from environmental samples, in contrast to genomic DNA that is extracted directly from specimens. However, the variety of different sources of eDNA and the range of taxonomic groups that are targeted by eDNA studies is large, which has led to some discussion about the breadth of the eDNA concept. In particular, there is a recent trend to restrict the use of the term “eDNA” to the DNA of macro‐organisms, which are not physically present in environmental samples. In this paper, we argue that such a distinction may not be ideal, because the eDNA signal can come from organisms across the whole tree of life. Consequently, we advocate that the term “eDNA” should be used in its generic sense, as originally defined, encompassing the DNA of all organisms present in environmental samples, including microbial, meiofaunal and macrobial taxa. We first suggest specifying the environmental origin of the DNA sample, such as water eDNA, sediment eDNA or soil eDNA. A second specification would then define the taxonomic group targeted through polymerase chain reaction amplification, such as fish eDNA, invertebrate eDNA and bacterial eDNA. This terminology does also not require assumptions about the specific state of the DNA sampled (intracellular or extracellular). We hope that such terminology will help better define the scope of eDNA studies, especially for environmental managers, who use them as reference in routine biomonitoring and bioassessment.
The last decade brought a spectacular development of so-called environmental (e)DNA studies. In general, "environmental DNA" is defined as DNA isolated from environmental samples, in contrast to genomic DNA that is extracted directly from specimens. However, the variety of different sources of eDNA and the range of taxonomic groups that are targeted by eDNA studies is large, which has led to some discussion about the breadth of the eDNA concept. In particular, there is a recent trend to restrict the use of the term "eDNA" to the DNA of macro-organisms, which are not physically present in environmental samples. In this paper, we argue that such a distinction may not be ideal, because the eDNA signal can come from organisms across the whole tree of life. Consequently, we advocate that the term "eDNA" should be used in its generic sense, as originally defined, encompassing the DNA of all organisms present in environmental samples, including microbial, meiofaunal and macrobial taxa. We first suggest specifying the environmental origin of the DNA sample, such as water eDNA, sediment eDNA or soil eDNA. A second specification would then define the taxonomic group targeted through polymerase chain reaction amplification, such as fish eDNA, invertebrate eDNA and bacterial eDNA. This terminology does also not require assumptions about the specific state of the DNA sampled (intracellular or extracellular). We hope that such terminology will help better define the scope of eDNA studies, especially for environmental managers, who use them as reference in routine biomonitoring and bioassessment.The last decade brought a spectacular development of so-called environmental (e)DNA studies. In general, "environmental DNA" is defined as DNA isolated from environmental samples, in contrast to genomic DNA that is extracted directly from specimens. However, the variety of different sources of eDNA and the range of taxonomic groups that are targeted by eDNA studies is large, which has led to some discussion about the breadth of the eDNA concept. In particular, there is a recent trend to restrict the use of the term "eDNA" to the DNA of macro-organisms, which are not physically present in environmental samples. In this paper, we argue that such a distinction may not be ideal, because the eDNA signal can come from organisms across the whole tree of life. Consequently, we advocate that the term "eDNA" should be used in its generic sense, as originally defined, encompassing the DNA of all organisms present in environmental samples, including microbial, meiofaunal and macrobial taxa. We first suggest specifying the environmental origin of the DNA sample, such as water eDNA, sediment eDNA or soil eDNA. A second specification would then define the taxonomic group targeted through polymerase chain reaction amplification, such as fish eDNA, invertebrate eDNA and bacterial eDNA. This terminology does also not require assumptions about the specific state of the DNA sampled (intracellular or extracellular). We hope that such terminology will help better define the scope of eDNA studies, especially for environmental managers, who use them as reference in routine biomonitoring and bioassessment.
Author Pawlowski, Jan
Altermatt, Florian
Apothéloz‐Perret‐Gentil, Laure
Author_xml – sequence: 1
  givenname: Jan
  orcidid: 0000-0003-2421-388X
  surname: Pawlowski
  fullname: Pawlowski, Jan
  email: jan.pawlowski@unige.ch, janpawlowski@iopan.pl
  organization: Polish Academy of Sciences
– sequence: 2
  givenname: Laure
  orcidid: 0000-0002-8592-3079
  surname: Apothéloz‐Perret‐Gentil
  fullname: Apothéloz‐Perret‐Gentil, Laure
  organization: ID‐Gene ecodiagnostics, Campus Biotech Innovation Park
– sequence: 3
  givenname: Florian
  orcidid: 0000-0002-4831-6958
  surname: Altermatt
  fullname: Altermatt, Florian
  organization: University of Zurich
BookMark eNqF0U1rFDEYB_BQKnRbPfQbBHqoHqbN-0y8SFnXF2jrRbG3IZN90k2ZSWqSUfbgdzftioeCmssD4ff8Ifkfov0QAyB0TMkZred8AntGpRJ8Dy0oV7JhWtzsowXRijWUdPwAHeZ8RwjlTMoF-rkK332KYYJQzIjfXl-8xl83ppxmPMDGhzUuG8AF0vQGL0eTvNv6cPvn0oc4xtstNhUmsHGqOWtTfAwZu5iwL3XOZU6A5wzYBzz4OMXgS0w15zl65syY4cXveYS-vFt9Xn5oLj-9_7i8uGysYJo3ijBiBwEd19JqQQkdyKBoB4JbawfL15a0yjreSeEGsjbMKQWulaCIY2D5EXq5y71P8dsMufSTzxbG0QSIc-6Z7hQXmvD2_1QIqVuh2wd68oTexTmF-pCqZMcZbRWv6tVO2RRzTuD6--Qnk7Y9Jf1DZ33trH_srNrzJ9b68vidJRk__mvjhx9h-_fo_mq13G38AuJBqvY
CitedBy_id crossref_primary_10_1002_edn3_228
crossref_primary_10_3897_neobiota_101_153314
crossref_primary_10_1016_j_marpolbul_2025_117609
crossref_primary_10_1111_1755_0998_70037
crossref_primary_10_1111_mec_15759
crossref_primary_10_7717_peerj_16969
crossref_primary_10_1016_j_jenvman_2024_121412
crossref_primary_10_1002_edn3_70016
crossref_primary_10_1038_s44358_025_00044_x
crossref_primary_10_1111_eea_13546
crossref_primary_10_18307_2025_0402
crossref_primary_10_1002_edn3_70136
crossref_primary_10_1002_edn3_70134
crossref_primary_10_1111_1755_0998_13401
crossref_primary_10_3389_fenvs_2024_1415338
crossref_primary_10_1002_edn3_507
crossref_primary_10_1016_j_pecon_2024_01_006
crossref_primary_10_1371_journal_pone_0298905
crossref_primary_10_5897_JENE2024_0972
crossref_primary_10_1111_jfb_70056
crossref_primary_10_1007_s11355_023_00549_7
crossref_primary_10_1111_ddi_70053
crossref_primary_10_3390_f16030437
crossref_primary_10_1016_j_quascirev_2022_107703
crossref_primary_10_1016_j_scitotenv_2025_179057
crossref_primary_10_1016_j_marenvres_2025_107094
crossref_primary_10_1038_s41467_024_50873_1
crossref_primary_10_1016_j_ecolind_2024_112538
crossref_primary_10_3390_biology13110951
crossref_primary_10_1007_s12686_022_01279_y
crossref_primary_10_1016_j_ecolind_2025_113469
crossref_primary_10_1016_j_ecolind_2024_111577
crossref_primary_10_1111_mec_16955
crossref_primary_10_1002_lno_12323
crossref_primary_10_1002_edn3_334
crossref_primary_10_1002_edn3_335
crossref_primary_10_1111_brv_70059
crossref_primary_10_1007_s11104_021_05261_9
crossref_primary_10_1080_20421338_2025_2490357
crossref_primary_10_1111_mec_15742
crossref_primary_10_1002_ece3_9810
crossref_primary_10_1038_s41598_023_44908_8
crossref_primary_10_1007_s10661_025_13998_4
crossref_primary_10_1111_1755_0998_13658
crossref_primary_10_3390_agronomy15061332
crossref_primary_10_3389_fevo_2022_913279
crossref_primary_10_1016_j_scitotenv_2023_162322
crossref_primary_10_1093_etojnl_vgaf031
crossref_primary_10_1002_edn3_342
crossref_primary_10_1007_s10641_022_01350_5
crossref_primary_10_1111_gcb_17066
crossref_primary_10_1002_edn3_405
crossref_primary_10_1371_journal_pone_0296305
crossref_primary_10_1002_edn3_528
crossref_primary_10_1002_lom3_10459
crossref_primary_10_1111_mec_16023
crossref_primary_10_1111_mec_16144
crossref_primary_10_1111_mec_17355
crossref_primary_10_1002_ece3_8972
crossref_primary_10_1016_j_ecolind_2022_108732
crossref_primary_10_7717_peerj_15210
crossref_primary_10_1007_s10201_024_00751_y
crossref_primary_10_1016_j_pocean_2024_103230
crossref_primary_10_2981_wlb_00808
crossref_primary_10_1111_1755_0998_13746
crossref_primary_10_3390_biology12071038
crossref_primary_10_1016_j_marpolbul_2025_118036
crossref_primary_10_1007_s44211_023_00280_1
crossref_primary_10_1016_j_hal_2021_102124
crossref_primary_10_1111_mec_17073
crossref_primary_10_1002_ajb2_16120
crossref_primary_10_3389_fmicb_2022_1026596
crossref_primary_10_1002_edn3_253
crossref_primary_10_1139_cjfas_2023_0053
crossref_primary_10_1007_s00338_024_02597_3
crossref_primary_10_1016_j_jenvman_2025_126054
crossref_primary_10_1007_s10661_024_12788_8
crossref_primary_10_1016_j_fawpar_2022_e00183
crossref_primary_10_3389_fenvs_2021_669582
crossref_primary_10_1007_s00248_025_02580_7
crossref_primary_10_1111_mec_15725
crossref_primary_10_1002_edn3_477
crossref_primary_10_1002_edn3_512
crossref_primary_10_1002_edn3_70168
crossref_primary_10_1038_s41598_021_97619_3
crossref_primary_10_1002_edn3_70043
crossref_primary_10_1111_ele_70212
crossref_primary_10_1007_s12686_024_01362_6
crossref_primary_10_1002_ece3_7139
crossref_primary_10_1111_1755_0998_13998
crossref_primary_10_1111_1462_2920_70086
crossref_primary_10_1038_s41598_021_89942_6
crossref_primary_10_3390_d14010043
crossref_primary_10_3390_d14060463
crossref_primary_10_1111_2041_210X_14317
crossref_primary_10_3897_neobiota_66_60751
crossref_primary_10_1002_edn3_480
crossref_primary_10_1016_j_cub_2023_04_075
crossref_primary_10_1002_edn3_429
crossref_primary_10_1007_s00300_023_03187_9
crossref_primary_10_1016_j_bios_2025_117930
crossref_primary_10_1007_s00436_024_08423_7
crossref_primary_10_1111_mec_16364
crossref_primary_10_1111_mec_16881
crossref_primary_10_1002_ece3_8995
crossref_primary_10_1111_mam_70006
crossref_primary_10_1016_j_ecss_2024_108731
crossref_primary_10_3389_fevo_2023_1179158
crossref_primary_10_1002_wat2_1749
crossref_primary_10_1016_j_tree_2023_09_017
crossref_primary_10_1371_journal_pone_0274736
crossref_primary_10_1002_ece3_9206
crossref_primary_10_1038_s41598_021_03733_7
crossref_primary_10_1134_S1022795424701758
crossref_primary_10_3390_w17050661
crossref_primary_10_1111_1755_0998_13723
crossref_primary_10_1007_s10661_024_12861_2
crossref_primary_10_1016_j_jenvman_2025_126630
crossref_primary_10_1016_j_actatropica_2024_107402
crossref_primary_10_1007_s10661_025_14272_3
crossref_primary_10_3390_microorganisms9020361
crossref_primary_10_1002_edn3_430
crossref_primary_10_1111_2041_210X_70152
crossref_primary_10_3897_subtbiol_53_165710
crossref_primary_10_1007_s44211_023_00289_6
crossref_primary_10_1016_j_landurbplan_2025_105376
crossref_primary_10_3389_fmars_2025_1605996
crossref_primary_10_3390_w13030331
crossref_primary_10_1016_j_ecoinf_2025_103251
crossref_primary_10_7717_peerj_15425
crossref_primary_10_1002_edn3_499
crossref_primary_10_1007_s00248_022_02168_5
crossref_primary_10_1016_j_scitotenv_2021_149724
crossref_primary_10_1038_s41598_023_35614_6
crossref_primary_10_3389_fevo_2022_874558
crossref_primary_10_1007_s10750_022_04959_w
crossref_primary_10_1111_mec_15942
crossref_primary_10_3390_su16198335
crossref_primary_10_1002_edn3_70073
crossref_primary_10_1007_s11356_024_35025_8
crossref_primary_10_1093_tafafs_vnaf036
crossref_primary_10_1111_ecog_07267
crossref_primary_10_1111_faf_12582
crossref_primary_10_1016_j_fishres_2023_106708
crossref_primary_10_3897_mbmg_6_85652
crossref_primary_10_1002_bit_28592
crossref_primary_10_1002_edn3_267
crossref_primary_10_1002_edn3_261
crossref_primary_10_1002_edn3_382
crossref_primary_10_1002_ps_8950
crossref_primary_10_1002_edn3_448
crossref_primary_10_1002_rse2_366
crossref_primary_10_1016_j_watbs_2022_100007
crossref_primary_10_3897_BDJ_12_e116921
crossref_primary_10_1016_j_watres_2025_123257
crossref_primary_10_1002_edn3_70111
crossref_primary_10_1007_s10528_025_11200_5
crossref_primary_10_1007_s12686_023_01333_3
crossref_primary_10_1038_s41598_024_71398_z
crossref_primary_10_1038_s44185_024_00040_y
crossref_primary_10_1089_forensic_2023_0007
crossref_primary_10_1002_edn3_70075
crossref_primary_10_1111_faf_12553
crossref_primary_10_1111_2041_210X_70093
crossref_primary_10_1016_j_scitotenv_2023_166675
crossref_primary_10_1002_wat2_1681
crossref_primary_10_1002_jwmg_70102
crossref_primary_10_1016_j_marpol_2024_106151
crossref_primary_10_1002_edn3_570
crossref_primary_10_1111_1462_2920_16458
crossref_primary_10_1002_ece3_9234
crossref_primary_10_1007_s10750_022_04891_z
crossref_primary_10_1093_aobpla_plac031
crossref_primary_10_3390_biology10121223
crossref_primary_10_1016_j_scitotenv_2021_148810
crossref_primary_10_1111_1755_0998_13399
crossref_primary_10_1016_j_ecolind_2023_111171
crossref_primary_10_1016_j_scitotenv_2024_173092
crossref_primary_10_3390_ijerph19159445
crossref_primary_10_1111_1755_0998_13677
crossref_primary_10_1111_1755_0998_13710
crossref_primary_10_1111_rec_13831
crossref_primary_10_1002_edn3_70090
crossref_primary_10_1007_s12237_022_01080_y
crossref_primary_10_1007_s00338_023_02375_7
crossref_primary_10_1371_journal_pone_0257510
crossref_primary_10_1002_ajb2_70020
Cites_doi 10.1111/j.1550-7408.2003.tb00248.x
10.1007/978-1-4757-0611-6_1
10.1016/j.biocon.2014.11.019
10.1111/jfb.14177
10.1016/j.tree.2014.04.003
10.1128/aem.53.1.170-179.1987
10.1038/ncomms12544
10.1111/mec.14350
10.1128/aem.63.3.983-989.1997
10.1016/j.tim.2018.10.012
10.1128/AEM.55.3.548-554.1989
10.1002/ece3.6088
10.1016/j.scitotenv.2018.05.002
10.1128/JB.176.23.7352-7361.1994
10.1111/1755-0998.12302
10.1099/ijs.0.63229-0
10.1128/AEM.56.3.782-787.1990
10.1126/science.239.4839.487
10.1128/aem.52.4.654-659.1986
10.1038/417063a
10.1128/aem.43.6.1393-1399.1982
10.1111/1755-0998.12926
10.1016/j.jnc.2017.07.002
10.1038/s41467-020-17337-8
10.1146/annurev.mi.40.100186.002005
10.1111/brv.12480
10.1126/science.1251156
10.1128/aem.58.9.2717-2722.1992
10.1111/oik.06806
10.1038/s41467-019-14105-1
10.1016/j.margen.2015.10.008
10.1111/j.1574-695X.2010.00690.x
10.1086/655118
10.1038/345060a0
10.1186/1741-7007-2-13
10.1098/rsbl.2008.0118
10.1111/j.1365-294X.2011.05418.x
10.1016/j.envres.2011.02.001
10.1126/science.224.4647.409
10.1016/j.envint.2019.105307
10.1371/journal.pone.0139633
10.1016/0167-7012(87)90025-X
10.1128/jb.173.14.4371-4378.1991
10.1111/2041-210X.12206
10.1016/j.biocon.2014.11.018
10.1016/j.tree.2018.09.003
10.1002/edn3.16
10.1016/j.tree.2014.08.001
10.1093/oso/9780198767220.001.0001
10.1002/edn3.34
10.1038/s41598-019-48984-7
10.1016/j.biocon.2014.11.040
10.1111/j.1365-294X.2012.05505.x
10.1111/1755-0998.12940
10.1086/678128
10.1016/j.marpolbul.2017.11.065
10.1128/AEM.54.12.2908-2915.1988
10.1111/j.1365-294X.2012.05542.x
10.1016/j.cub.2019.08.002
10.1038/s41598-017-12501-5
10.1038/s41598-018-20302-7
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
Copyright © 2020 John Wiley & Sons Ltd
2020 John Wiley & Sons Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: Copyright © 2020 John Wiley & Sons Ltd
– notice: 2020 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/mec.15643
DatabaseName CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Entomology Abstracts
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 4264
ExternalDocumentID 10_1111_mec_15643
MEC15643
Genre article
News
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: 31003A_173074; 31003A_179125
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4293-6020cb4e8395c94101b0b618e43cccbc3dc076cf3854fb0da2f66ef75e60f2ec3
IEDL.DBID DRFUL
ISICitedReferencesCount 196
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000578641600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0962-1083
1365-294X
IngestDate Fri Sep 05 17:19:16 EDT 2025
Sun Nov 09 12:40:14 EST 2025
Wed Aug 13 06:37:49 EDT 2025
Sat Nov 29 05:23:47 EST 2025
Tue Nov 18 21:53:41 EST 2025
Wed Jan 22 16:59:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4293-6020cb4e8395c94101b0b618e43cccbc3dc076cf3854fb0da2f66ef75e60f2ec3
Notes SourceType-Scholarly Journals-1
ObjectType-News-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2421-388X
0000-0002-4831-6958
0000-0002-8592-3079
PQID 2458321763
PQPubID 31465
PageCount 7
ParticipantIDs proquest_miscellaneous_2986349037
proquest_miscellaneous_2445974977
proquest_journals_2458321763
crossref_primary_10_1111_mec_15643
crossref_citationtrail_10_1111_mec_15643
wiley_primary_10_1111_mec_15643_MEC15643
PublicationCentury 2000
PublicationDate November 2020
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Molecular ecology
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1994; 176
2017; 7
2015; 183
2010; 59
1990; 56
1990; 345
2019; 94
2018; 127
1987; 7
2020; 129
1992; 58
2004; 2
2014; 29
2020; 11
2008; 4
2020; 10
2003; 50
2018; 42
2011; 111
2018; 8
2014; 5
1986; 40
2019; 27
1986
2019; 29
2020; 135
2018; 33
2012; 21
2015; 15
2019; 9
1991; 173
1987; 53
2018; 637–638
1986; 52
2017; 26
1984; 224
2019; 1
1997; 63
2015; 10
1988; 54
2002; 417
2010; 85
2016; 55
2004; 54
2018; 18
2016; 7
1989; 55
2000; 39
2020
1982; 43
2019
2018
2018; 52
2014
2016; 26
1988; 239
2014; 33
2014; 344
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Picard C. (e_1_2_6_50_1) 1992; 58
e_1_2_6_19_1
Li F. (e_1_2_6_33_1) 2018; 52
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
Suzuki M. T. (e_1_2_6_60_1) 1997; 63
e_1_2_6_20_1
e_1_2_6_41_1
Gordon D. A. (e_1_2_6_23_1) 2000; 39
Nguyen B. N. (e_1_2_6_38_1) 2020; 10
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
Bass D. (e_1_2_6_4_1) 2004; 54
e_1_2_6_26_1
e_1_2_6_47_1
Stahl D. A. (e_1_2_6_56_1) 1984; 224
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Deflaun M. F. (e_1_2_6_14_1) 1986; 52
Paul J. H. (e_1_2_6_45_1) 1982; 43
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
Jackson M. C. (e_1_2_6_29_1) 2016
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
Corinaldesi C. (e_1_2_6_11_1) 2018; 8
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
Paul J. H. (e_1_2_6_44_1) 1987; 53
e_1_2_6_2_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 111
  start-page: 978
  issue: 7
  year: 2011
  end-page: 988
  article-title: From molecules to management: Adopting DNA‐based methods for monitoring biological invasions in aquatic environments
  publication-title: Environmental Research
– volume: 10
  start-page: 2588
  issue: 5
  year: 2020
  end-page: 2596
  article-title: Space invaders: Searching for invasive Smallmouth Bass ( ) in a renowned Atlantic Salmon (Salmo salar) river
  publication-title: Ecology and Evolution
– volume: 15
  start-page: 250
  issue: 2
  year: 2015
  end-page: 261
  article-title: Comparing the effectiveness of metagenomics and metabarcoding for diet analysis of a leaf‐feeding monkey ( )
  publication-title: Molecular Ecology Resources
– volume: 129
  start-page: 607
  issue: 5
  year: 2020
  end-page: 618
  article-title: Uncovering the complete biodiversity structure in spatial networks: The example of riverine systems
  publication-title: Oikos
– volume: 1
  start-page: 144
  issue: 2
  year: 2019
  end-page: 154
  article-title: A simplified DNA extraction protocol for unsorted bulk arthropod samples that maintains exoskeletal integrity
  publication-title: Environmental DNA
– volume: 40
  start-page: 337
  year: 1986
  end-page: 365
  article-title: Microbial ecology and evolution: A ribosomal RNA approach
  publication-title: Annual Review of Microbiology
– volume: 29
  start-page: 358
  issue: 6
  year: 2014
  end-page: 367
  article-title: Environmental DNA for wildlife biology and biodiversity monitoring
  publication-title: Trends in Ecology & Evolution
– volume: 58
  start-page: 2717
  issue: 9
  year: 1992
  end-page: 2722
  article-title: Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction
  publication-title: Applied and Environmental Microbiology
– volume: 59
  start-page: 253
  issue: 3
  year: 2010
  end-page: 268
  article-title: An update on biofilm formation, tolerance, and dispersal
  publication-title: FEMS Immunology and Medical Microbiology
– volume: 1
  start-page: 329
  issue: 4
  year: 2019
  end-page: 341
  article-title: Vertebrate diversity revealed by metabarcoding of bulk arthropod samples from tropical forests
  publication-title: Environmental DNA
– year: 2018
– year: 2014
– volume: 55
  start-page: 615
  year: 2016
  end-page: 636
– volume: 52
  start-page: 11708
  issue: 20
  year: 2018
  end-page: 11719
  article-title: Application of environmental DNA metabarcoding for predicting anthropogenic pollution in rivers
  publication-title: Environmental Science & Technology
– volume: 18
  start-page: 1456
  issue: 6
  year: 2018
  end-page: 1468
  article-title: Comparison of environmental DNA and bulk‐sample metabarcoding using highly degenerate cytochrome c oxidase I primers
  publication-title: Molecular Ecology Resources
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 14
  article-title: Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape
  publication-title: Scientific Reports
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 9
  article-title: Extracellular DNA as a genetic recorder of microbial diversity in benthic deep‐sea ecosystems
  publication-title: Scientific Reports
– volume: 7
  start-page: 12240
  issue: 1
  year: 2017
  article-title: Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment
  publication-title: Scientific Reports
– volume: 127
  start-page: 139
  year: 2018
  end-page: 149
  article-title: Environmental DNA metabarcoding of benthic bacterial communities indicates the benthic footprint of salmon aquaculture
  publication-title: Marine Pollution Bulletin
– volume: 27
  start-page: 387
  issue: 5
  year: 2019
  end-page: 397
  article-title: Embracing environmental genomics and machine learning for routine biomonitoring
  publication-title: Trends in Microbiology
– volume: 55
  start-page: 548
  issue: 3
  year: 1989
  end-page: 554
  article-title: Simple, rapid method for direct isolation of nucleic acids from aquatic environments
  publication-title: Applied and Environmental Microbiology
– volume: 345
  start-page: 60
  issue: 6270
  year: 1990
  end-page: 63
  article-title: Genetic diversity in Sargasso Sea bacterioplankton
  publication-title: Nature
– volume: 39
  start-page: 197
  issue: 3
  year: 2000
  end-page: 202
  article-title: Origin and phylogeny of microbes living in permanent Antarctic Lake Ice
  publication-title: Microbial Ecology
– volume: 344
  start-page: 1455
  issue: 6191
  year: 2014
  end-page: 1456
  article-title: Harnessing DNA to improve environmental management
  publication-title: Science
– volume: 224
  start-page: 409
  issue: 4647
  year: 1984
  end-page: 411
  article-title: Analysis of hydrothermal vent‐associated symbionts by ribosomal RNA sequences
  publication-title: Science
– volume: 7
  start-page: 12544
  year: 2016
  article-title: Environmental DNA reveals that rivers are conveyer belts of biodiversity information
  publication-title: Nature Communications
– volume: 2
  start-page: 13
  year: 2004
  article-title: How many novel eukaryotic “kingdoms”? Pitfalls and limitations of environmental DNA surveys
  publication-title: BMC Biology
– volume: 417
  start-page: 63
  issue: 6884
  year: 2002
  end-page: 67
  article-title: A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont
  publication-title: Nature
– volume: 42
  start-page: 67
  year: 2018
  end-page: 74
  article-title: Metabarcoding and post‐sampling strategies to discover non‐indigenous species: A case study in the estuaries of the central south Bay of Biscay
  publication-title: Journal for Nature Conservation
– volume: 637–638
  start-page: 1295
  year: 2018
  end-page: 1310
  article-title: The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems
  publication-title: The Science of the Total Environment
– volume: 239
  start-page: 487
  issue: 4839
  year: 1988
  end-page: 491
  article-title: Primer‐directed enzymatic amplification of DNA with a thermostable DNA polymerase
  publication-title: Science
– volume: 11
  start-page: 3585
  year: 2020
  article-title: Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems
  publication-title: Nature Communications
– volume: 11
  start-page: 254
  issue: 1
  year: 2020
  article-title: Environmental DNA reveals seasonal shifts and potential interactions in a marine community
  publication-title: Nature Communications
– volume: 29
  start-page: R960
  issue: 19
  year: 2019
  end-page: R967
  article-title: Multiple threats imperil freshwater biodiversity in the Anthropocene
  publication-title: Current Biology
– volume: 183
  start-page: 53
  year: 2015
  end-page: 63
  article-title: Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA
  publication-title: Biological Conservation
– volume: 173
  start-page: 4371
  issue: 14
  year: 1991
  end-page: 4378
  article-title: Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing
  publication-title: Journal of Bacteriology
– volume: 21
  start-page: 2565
  issue: 11
  year: 2012
  end-page: 2573
  article-title: Monitoring endangered freshwater biodiversity using environmental DNA
  publication-title: Molecular Ecology
– volume: 26
  start-page: 29
  year: 2016
  end-page: 39
  article-title: Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea
  publication-title: Marine Genomics
– volume: 21
  start-page: 1789
  issue: 8
  year: 2012
  end-page: 1793
  article-title: Environmental DNA
  publication-title: Molecular Ecology
– volume: 183
  start-page: 4
  year: 2015
  end-page: 18
  article-title: Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity
  publication-title: Biological Conservation
– volume: 50
  start-page: 135
  issue: 2
  year: 2003
  end-page: 139
  article-title: Freshwater foraminiferans revealed by analysis of environmental DNA samples
  publication-title: The Journal of Eukaryotic Microbiology
– volume: 54
  start-page: 2908
  issue: 12
  year: 1988
  end-page: 2915
  article-title: Recovery of DNA from soils and sediments
  publication-title: Applied and Environmental Microbiology
– volume: 5
  start-page: 676
  issue: 7
  year: 2014
  end-page: 684
  article-title: Particle size distribution and optimal capture of aqueous macrobial eDNA
  publication-title: Methods in Ecology and Evolution
– volume: 54
  start-page: 2393
  issue: Pt 6
  year: 2004
  end-page: 2404
  article-title: Phylum‐specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa)
  publication-title: International Journal of Systematic and Evolutionary Microbiology
– volume: 9
  start-page: 12500
  issue: 1
  year: 2019
  article-title: Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular
  publication-title: Scientific Reports
– volume: 29
  start-page: 566
  issue: 10
  year: 2014
  end-page: 571
  article-title: From barcoding single individuals to metabarcoding biological communities: Towards an integrative approach to the study of global biodiversity
  publication-title: Trends in Ecology & Evolution
– volume: 10
  issue: 10
  year: 2015
  article-title: Deep‐sea, deep‐sequencing: Metabarcoding extracellular DNA from sediments of Marine Canyons
  publication-title: PLoS ONE
– volume: 21
  start-page: 2031
  issue: 8
  year: 2012
  end-page: 2038
  article-title: The future of environmental DNA in ecology
  publication-title: Molecular Ecology
– volume: 135
  start-page: 105307
  year: 2020
  article-title: Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals
  publication-title: Environment International
– volume: 33
  start-page: 945
  issue: 12
  year: 2018
  end-page: 957
  article-title: Environmental DNA time series in ecology
  publication-title: Trends in Ecology & Evolution
– volume: 52
  start-page: 654
  issue: 4
  year: 1986
  end-page: 659
  article-title: Simplified method for dissolved DNA determination in aquatic environments
  publication-title: Applied and Environmental Microbiology
– volume: 176
  start-page: 7352
  issue: 23
  year: 1994
  end-page: 7361
  article-title: Inducible cell lysis system for the study of natural transformation and environmental fate of DNA released by cell death
  publication-title: Journal of Bacteriology
– volume: 33
  start-page: 1174
  issue: 4
  year: 2014
  end-page: 1183
  article-title: Utility of environmental DNA for monitoring rare and indicator macroinvertebrate species
  publication-title: Freshwater Science
– volume: 4
  start-page: 423
  issue: 4
  year: 2008
  end-page: 425
  article-title: Species detection using environmental DNA from water samples
  publication-title: Biology Letters
– volume: 26
  start-page: 5872
  issue: 21
  year: 2017
  end-page: 5895
  article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities
  publication-title: Molecular Ecology
– volume: 7
  start-page: 57
  issue: 2
  year: 1987
  end-page: 66
  article-title: The extraction and purification of microbial DNA from sediments
  publication-title: Journal of Microbiological Methods
– volume: 94
  start-page: 849
  issue: 3
  year: 2019
  end-page: 873
  article-title: Emerging threats and persistent conservation challenges for freshwater biodiversity
  publication-title: Biological Reviews
– volume: 43
  start-page: 1393
  issue: 6
  year: 1982
  end-page: 1399
  article-title: Fluorometric determination of DNA in aquatic microorganisms by use of hoechst 33258
  publication-title: Applied and Environmental Microbiology
– volume: 18
  start-page: 1381
  issue: 6
  year: 2018
  end-page: 1391
  article-title: Supervised machine learning outperforms taxonomy‐based environmental DNA metabarcoding applied to biomonitoring
  publication-title: Molecular Ecology Resources
– volume: 183
  start-page: 1
  year: 2015
  end-page: 3
  article-title: Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms
  publication-title: Biological Conservation
– volume: 53
  start-page: 170
  issue: 1
  year: 1987
  end-page: 179
  article-title: Dynamics of extracellular DNA in the marine environment
  publication-title: Applied and Environmental Microbiology
– start-page: 1
  year: 1986
  end-page: 55
– year: 2020
– volume: 56
  start-page: 782
  issue: 3
  year: 1990
  end-page: 787
  article-title: High diversity in DNA of soil bacteria
  publication-title: Applied and Environmental Microbiology
– volume: 85
  start-page: 319
  issue: 3
  year: 2010
  end-page: 340
  article-title: Assessing macroinvertebrate biodiversity in freshwater ecosystems: Advances and challenges in DNA‐based approaches
  publication-title: The Quarterly Review of Biology
– volume: 63
  start-page: 983
  issue: 3
  year: 1997
  end-page: 989
  article-title: Bacterial diversity among small‐subunit rRNA gene clones and cellular isolates from the same seawater sample
  publication-title: Applied and Environmental Microbiology
– year: 2019
  article-title: Environmental DNA is not the tool by itself
  publication-title: Journal of Fish Biology
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1550-7408.2003.tb00248.x
– ident: e_1_2_6_43_1
  doi: 10.1007/978-1-4757-0611-6_1
– ident: e_1_2_6_64_1
  doi: 10.1016/j.biocon.2014.11.019
– ident: e_1_2_6_32_1
  doi: 10.1111/jfb.14177
– ident: e_1_2_6_6_1
  doi: 10.1016/j.tree.2014.04.003
– volume: 53
  start-page: 170
  issue: 1
  year: 1987
  ident: e_1_2_6_44_1
  article-title: Dynamics of extracellular DNA in the marine environment
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/aem.53.1.170-179.1987
– ident: e_1_2_6_16_1
  doi: 10.1038/ncomms12544
– ident: e_1_2_6_15_1
  doi: 10.1111/mec.14350
– volume: 63
  start-page: 983
  issue: 3
  year: 1997
  ident: e_1_2_6_60_1
  article-title: Bacterial diversity among small‐subunit rRNA gene clones and cellular isolates from the same seawater sample
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/aem.63.3.983-989.1997
– ident: e_1_2_6_10_1
  doi: 10.1016/j.tim.2018.10.012
– ident: e_1_2_6_54_1
  doi: 10.1128/AEM.55.3.548-554.1989
– ident: e_1_2_6_40_1
  doi: 10.1002/ece3.6088
– ident: e_1_2_6_47_1
  doi: 10.1016/j.scitotenv.2018.05.002
– ident: e_1_2_6_31_1
  doi: 10.1128/JB.176.23.7352-7361.1994
– ident: e_1_2_6_55_1
  doi: 10.1111/1755-0998.12302
– volume: 54
  start-page: 2393
  issue: 6
  year: 2004
  ident: e_1_2_6_4_1
  article-title: Phylum‐specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa)
  publication-title: International Journal of Systematic and Evolutionary Microbiology
  doi: 10.1099/ijs.0.63229-0
– ident: e_1_2_6_65_1
  doi: 10.1128/AEM.56.3.782-787.1990
– ident: e_1_2_6_52_1
  doi: 10.1126/science.239.4839.487
– volume: 52
  start-page: 654
  issue: 4
  year: 1986
  ident: e_1_2_6_14_1
  article-title: Simplified method for dissolved DNA determination in aquatic environments
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/aem.52.4.654-659.1986
– volume: 39
  start-page: 197
  issue: 3
  year: 2000
  ident: e_1_2_6_23_1
  article-title: Origin and phylogeny of microbes living in permanent Antarctic Lake Ice
  publication-title: Microbial Ecology
– ident: e_1_2_6_28_1
  doi: 10.1038/417063a
– volume: 43
  start-page: 1393
  issue: 6
  year: 1982
  ident: e_1_2_6_45_1
  article-title: Fluorometric determination of DNA in aquatic microorganisms by use of hoechst 33258
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/aem.43.6.1393-1399.1982
– ident: e_1_2_6_9_1
  doi: 10.1111/1755-0998.12926
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jnc.2017.07.002
– ident: e_1_2_6_8_1
  doi: 10.1038/s41467-020-17337-8
– ident: e_1_2_6_26_1
– ident: e_1_2_6_42_1
  doi: 10.1146/annurev.mi.40.100186.002005
– ident: e_1_2_6_51_1
  doi: 10.1111/brv.12480
– ident: e_1_2_6_30_1
  doi: 10.1126/science.1251156
– volume: 58
  start-page: 2717
  issue: 9
  year: 1992
  ident: e_1_2_6_50_1
  article-title: Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/aem.58.9.2717-2722.1992
– ident: e_1_2_6_2_1
  doi: 10.1111/oik.06806
– ident: e_1_2_6_18_1
  doi: 10.1038/s41467-019-14105-1
– ident: e_1_2_6_48_1
  doi: 10.1016/j.margen.2015.10.008
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1574-695X.2010.00690.x
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: e_1_2_6_38_1
  article-title: Environmental DNA survey captures patterns of fish and invertebrate diversity across a tropical seascape
  publication-title: Scientific Reports
– ident: e_1_2_6_49_1
  doi: 10.1086/655118
– ident: e_1_2_6_21_1
  doi: 10.1038/345060a0
– ident: e_1_2_6_5_1
  doi: 10.1186/1741-7007-2-13
– ident: e_1_2_6_20_1
  doi: 10.1098/rsbl.2008.0118
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1365-294X.2011.05418.x
– ident: e_1_2_6_13_1
  doi: 10.1016/j.envres.2011.02.001
– volume: 224
  start-page: 409
  issue: 4647
  year: 1984
  ident: e_1_2_6_56_1
  article-title: Analysis of hydrothermal vent‐associated symbionts by ribosomal RNA sequences
  publication-title: Science
  doi: 10.1126/science.224.4647.409
– ident: e_1_2_6_68_1
  doi: 10.1016/j.envint.2019.105307
– ident: e_1_2_6_24_1
  doi: 10.1371/journal.pone.0139633
– ident: e_1_2_6_41_1
  doi: 10.1016/0167-7012(87)90025-X
– ident: e_1_2_6_53_1
  doi: 10.1128/jb.173.14.4371-4378.1991
– ident: e_1_2_6_66_1
  doi: 10.1111/2041-210X.12206
– ident: e_1_2_6_17_1
  doi: 10.1016/j.biocon.2014.11.018
– ident: e_1_2_6_3_1
  doi: 10.1016/j.tree.2018.09.003
– ident: e_1_2_6_39_1
  doi: 10.1002/edn3.16
– ident: e_1_2_6_12_1
  doi: 10.1016/j.tree.2014.08.001
– start-page: 615
  volume-title: Advances in ecological research
  year: 2016
  ident: e_1_2_6_29_1
– ident: e_1_2_6_61_1
  doi: 10.1093/oso/9780198767220.001.0001
– ident: e_1_2_6_34_1
  doi: 10.1002/edn3.34
– ident: e_1_2_6_37_1
  doi: 10.1038/s41598-019-48984-7
– ident: e_1_2_6_22_1
  doi: 10.1016/j.biocon.2014.11.040
– ident: e_1_2_6_67_1
  doi: 10.1111/j.1365-294X.2012.05505.x
– ident: e_1_2_6_35_1
  doi: 10.1111/1755-0998.12940
– ident: e_1_2_6_36_1
  doi: 10.1086/678128
– volume: 52
  start-page: 11708
  issue: 20
  year: 2018
  ident: e_1_2_6_33_1
  article-title: Application of environmental DNA metabarcoding for predicting anthropogenic pollution in rivers
  publication-title: Environmental Science & Technology
– ident: e_1_2_6_59_1
  doi: 10.1016/j.marpolbul.2017.11.065
– ident: e_1_2_6_58_1
  doi: 10.1128/AEM.54.12.2908-2915.1988
– ident: e_1_2_6_46_1
– ident: e_1_2_6_62_1
  doi: 10.1111/j.1365-294X.2012.05542.x
– ident: e_1_2_6_19_1
  doi: 10.1016/j.cub.2019.08.002
– ident: e_1_2_6_57_1
  doi: 10.1038/s41598-017-12501-5
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: e_1_2_6_11_1
  article-title: Extracellular DNA as a genetic recorder of microbial diversity in benthic deep‐sea ecosystems
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-20302-7
SSID ssj0013255
Score 2.6794257
Snippet The last decade brought a spectacular development of so‐called environmental (e)DNA studies. In general, “environmental DNA” is defined as DNA isolated from...
The last decade brought a spectacular development of so-called environmental (e)DNA studies. In general, "environmental DNA" is defined as DNA isolated from...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4258
SubjectTerms bioassessment
biological assessment
Biomonitoring
Deoxyribonucleic acid
DNA
ecology
eDNA
Environmental DNA
environmental genomics
Environmental management
environmental monitoring
fish
Genetic testing
Invertebrates
macrobial
metabarcoding
microbial
Microorganisms
Organisms
Polymerase chain reaction
sediments
soil
species detection
Taxonomy
Terminology
Title Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.15643
https://www.proquest.com/docview/2458321763
https://www.proquest.com/docview/2445974977
https://www.proquest.com/docview/2986349037
Volume 29
WOSCitedRecordID wos000578641600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-294X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013255
  issn: 0962-1083
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEB7aq4Iv_hartUQR7MvKbrKbTfRBSnuHD3qIWLi3ZTNJ6ILdlu5doQ_-706ye9sTVASfNmxml5DMJN8kmW8AXqd1VtciF4nnViaEb3WiXaYSh87b1FjHMxuTTZTzuVos9JcteL-Ohen5IcYNt2AZcb4OBl6bbsPIzxy-DUwnYht2OOltMYGd46-zk08bhwgx6SmBdE6zjRIDsVC4yDN-_OtydIMxN5FqXGpm9_6rkffh7oAw2WGvEg9gy7UP4Xafc_KaStPIU339CH5Mb4Lc6IPj-eE7Fpi833TMuFPy1RmBQxam7g8sXONpYkjU-LLpd-RZTYLBrT6j__QJmjpGSJg1S3pGxhK26hxrWhZC_eMUEvYSH8PJbPrt6GMyZGNIkNYskUgClmhyR4iqQJ2TKZvUyEy5XCCiQWExLSV6oYrcm9TW3EvpfFk4mXruUDyBSXveuqfAuPLKYmGR8yy3yteaUKXWqErLjbHpLhysB6XCgao8ZMz4Xq1dFurXKvbrLrwaRS96fo7fCe2tR7YaTLSreDgxJodMUvXLsZqMK5yY1K07XwWZPDhchJH_IqOVFLlOBckcRF34c0Oqz9OjWHj276LP4Q4PPn6Mf9yDyfJy5V7ALbxaNt3lPmyXC7U_aP5PDZ4HTQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA9WW9oX-41Wa9Mi1JeV3SSXS0QQ0TssPY9SFHxbNl90Qdfi3gk--L93Jru3nlBLwacNm9klJDOT30wyM4RspkVWFFzwJDAnE8C3OtE-U4m3PrjUOM8yF4tN9MdjdXamfyyQ3VksTJMfonO4oWREfY0Cjg7pOSm_8HYbU53wJ2RJABsBfy8d_hyejuZOEWLVU0DpDNSN4m1mIbzJ0318fz-6A5nzUDXuNcOXjxvlK7LcYky63zDFa7LgqzfkWVN18gZag5ip-uYtuR3chbnBB4fj_R2Kuby_1tT4X2CtU4CHFJX3HsWLPGUMiupelo1PnhZAiIb1BfynKdFUU8DCtJzAM-YsodPa07KiGOwflQh6E9-R0-Hg5OAoaesxJBZ2LZ5IgJbWCA-Yqme1AGE2qZGZ8oJba43lzqZ9aQNXPRFM6goWpPSh3_MyDcxb_p4sVpeVXyGUqaCc7TnLWCacCoUGXKm1VX3HjHHpKtmarUpu22TlWDPjPJ8ZLTCveZzXVfKlI_3dZOj4G9H6bGnzVkjrnOGZMZhkEro_d90gXnhmUlT-coo0Ak0uQMn_oNFKcqFTDjRbkRkeHkh-PDiIjQ__T_qJPD86OR7lo2_j72vkBUOLP0ZDrpPFydXUfyRP7fWkrK82WgH4A5S3ClU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_s2Yov9lO0apuWQn3ZspvkcokIIt4dLbWHlAq-LZsvXNBV3LuCD_3fO8nurSfYUujThs3sEpLM5DdJ5jcAH9IiKwrGWeKpFQniW5Uol8nEGedtqq2jmY3JJgaTiTw7UydLsD-PhWn4IboNt6AZ0V4HBXfX1i9o-aUznwLVCXsEyzwkkenB8vD7-PR44RQhZj1FlE7R3EjWMguFmzzdx_fXozuQuQhV41ozfvp_rXwGay3GJIfNpHgOS656AU-arJO3WBpFpurbl_BrdBfmhh8MJ4d7JHB5f6yJduforROEhyQY7wMSLvKUMSiqe1k2e_KkQMHgWF_if5oUTTVBLEzKKT4jZwmZ1Y6UFQnB_tGIhN3EV3A6Hv04-py0-RgSg6sWSwRCS6O5Q0zVN4qjMutUi0w6zowx2jBr0oEwnsk-9zq1BfVCOD_oO5F66gxbh151VbkNIFR6aU3fGkozbqUvFOJKpYwcWKq1TTdhdz4quWnJykPOjIt87rRgv-axXzfhfSd63TB0PCS0PR_avFXSOqfhzBhdMoHV77pqVK9wZlJU7moWZHhwuRAl_0VGScG4ShnK7MbJ8OeG5N9GR7Hw-t9F38LKyXCcH3-ZfN2CVRoc_hgMuQ296c3M7cBj83Na1jdv2vn_GxEMCdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+DNA%3A+What%27s+behind+the+term%3F+Clarifying+the+terminology+and+recommendations+for+its+future+use+in+biomonitoring&rft.jtitle=Molecular+ecology&rft.au=Pawlowski%2C+Jan&rft.au=Laure+Apoth%C3%A9loz%E2%80%90Perret%E2%80%90Gentil&rft.au=Altermatt%2C+Florian&rft.date=2020-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=29&rft.issue=22&rft.spage=4258&rft.epage=4264&rft_id=info:doi/10.1111%2Fmec.15643&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon