Development and evaluation of a predictive algorithm and telehealth intervention to reduce suicidal behavior among university students

Suicidal behaviors are prevalent among college students; however, students remain reluctant to seek support. We developed a predictive algorithm to identify students at risk of suicidal behavior and used telehealth to reduce subsequent risk. Data come from everal waves of a prospective cohort study...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Psychological medicine Ročník 54; číslo 5; s. 971 - 979
Hlavní autoři: Hasking, Penelope A., Robinson, Kealagh, McEvoy, Peter, Melvin, Glenn, Bruffaerts, Ronny, Boyes, Mark E., Auerbach, Randy P., Hendrie, Delia, Nock, Matthew K., Preece, David A., Rees, Clare, Kessler, Ronald C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Cambridge University Press 01.04.2024
Témata:
ISSN:0033-2917, 1469-8978, 1469-8978
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Suicidal behaviors are prevalent among college students; however, students remain reluctant to seek support. We developed a predictive algorithm to identify students at risk of suicidal behavior and used telehealth to reduce subsequent risk. Data come from everal waves of a prospective cohort study (2016-2022) of college students ( = 5454). All first-year students were invited to participate as volunteers. (Response rates range: 16.00-19.93%). A stepped-care approach was implemented: (i) all students received a comprehensive list of services; (ii) those reporting past 12-month suicidal ideation were directed to a safety planning application; (iii) those identified as high risk of suicidal behavior by the algorithm or reporting 12-month suicide attempt were contacted via telephone within 24-h of survey completion. Intervention focused on support/safety-planning, and referral to services for this high-risk group. 5454 students ranging in age from 17-36 (s.d. = 5.346) participated; 65% female. The algorithm identified 77% of students reporting subsequent suicidal behavior in the top 15% of predicted probabilities (Sensitivity = 26.26 [95% CI 17.93-36.07]; Specificity = 97.46 [95% CI 96.21-98.38], PPV = 53.06 [95% CI 40.16-65.56]; AUC range: 0.895 [95% CIs 0.872-0.917] to 0.966 [95% CIs 0.939-0.994]). High-risk students in the Intervention Cohort showed a 41.7% reduction in probability of suicidal behavior at 12-month follow-up compared to high-risk students in the Control Cohort. Predictive risk algorithms embedded into universal screening, coupled with telehealth intervention, offer significant potential as a suicide prevention approach for students.
AbstractList Suicidal behaviors are prevalent among college students; however, students remain reluctant to seek support. We developed a predictive algorithm to identify students at risk of suicidal behavior and used telehealth to reduce subsequent risk.BACKGROUNDSuicidal behaviors are prevalent among college students; however, students remain reluctant to seek support. We developed a predictive algorithm to identify students at risk of suicidal behavior and used telehealth to reduce subsequent risk.Data come from several waves of a prospective cohort study (2016-2022) of college students (n = 5454). All first-year students were invited to participate as volunteers. (Response rates range: 16.00-19.93%). A stepped-care approach was implemented: (i) all students received a comprehensive list of services; (ii) those reporting past 12-month suicidal ideation were directed to a safety planning application; (iii) those identified as high risk of suicidal behavior by the algorithm or reporting 12-month suicide attempt were contacted via telephone within 24-h of survey completion. Intervention focused on support/safety-planning, and referral to services for this high-risk group.METHODSData come from several waves of a prospective cohort study (2016-2022) of college students (n = 5454). All first-year students were invited to participate as volunteers. (Response rates range: 16.00-19.93%). A stepped-care approach was implemented: (i) all students received a comprehensive list of services; (ii) those reporting past 12-month suicidal ideation were directed to a safety planning application; (iii) those identified as high risk of suicidal behavior by the algorithm or reporting 12-month suicide attempt were contacted via telephone within 24-h of survey completion. Intervention focused on support/safety-planning, and referral to services for this high-risk group.5454 students ranging in age from 17-36 (s.d. = 5.346) participated; 65% female. The algorithm identified 77% of students reporting subsequent suicidal behavior in the top 15% of predicted probabilities (Sensitivity = 26.26 [95% CI 17.93-36.07]; Specificity = 97.46 [95% CI 96.21-98.38], PPV = 53.06 [95% CI 40.16-65.56]; AUC range: 0.895 [95% CIs 0.872-0.917] to 0.966 [95% CIs 0.939-0.994]). High-risk students in the Intervention Cohort showed a 41.7% reduction in probability of suicidal behavior at 12-month follow-up compared to high-risk students in the Control Cohort.RESULTS5454 students ranging in age from 17-36 (s.d. = 5.346) participated; 65% female. The algorithm identified 77% of students reporting subsequent suicidal behavior in the top 15% of predicted probabilities (Sensitivity = 26.26 [95% CI 17.93-36.07]; Specificity = 97.46 [95% CI 96.21-98.38], PPV = 53.06 [95% CI 40.16-65.56]; AUC range: 0.895 [95% CIs 0.872-0.917] to 0.966 [95% CIs 0.939-0.994]). High-risk students in the Intervention Cohort showed a 41.7% reduction in probability of suicidal behavior at 12-month follow-up compared to high-risk students in the Control Cohort.Predictive risk algorithms embedded into universal screening, coupled with telehealth intervention, offer significant potential as a suicide prevention approach for students.CONCLUSIONSPredictive risk algorithms embedded into universal screening, coupled with telehealth intervention, offer significant potential as a suicide prevention approach for students.
BackgroundSuicidal behaviors are prevalent among college students; however, students remain reluctant to seek support. We developed a predictive algorithm to identify students at risk of suicidal behavior and used telehealth to reduce subsequent risk.MethodsData come from several waves of a prospective cohort study (2016–2022) of college students (n = 5454). All first-year students were invited to participate as volunteers. (Response rates range: 16.00–19.93%). A stepped-care approach was implemented: (i) all students received a comprehensive list of services; (ii) those reporting past 12-month suicidal ideation were directed to a safety planning application; (iii) those identified as high risk of suicidal behavior by the algorithm or reporting 12-month suicide attempt were contacted via telephone within 24-h of survey completion. Intervention focused on support/safety-planning, and referral to services for this high-risk group.Results5454 students ranging in age from 17–36 (s.d. = 5.346) participated; 65% female. The algorithm identified 77% of students reporting subsequent suicidal behavior in the top 15% of predicted probabilities (Sensitivity = 26.26 [95% CI 17.93–36.07]; Specificity = 97.46 [95% CI 96.21–98.38], PPV = 53.06 [95% CI 40.16–65.56]; AUC range: 0.895 [95% CIs 0.872–0.917] to 0.966 [95% CIs 0.939–0.994]). High-risk students in the Intervention Cohort showed a 41.7% reduction in probability of suicidal behavior at 12-month follow-up compared to high-risk students in the Control Cohort.ConclusionsPredictive risk algorithms embedded into universal screening, coupled with telehealth intervention, offer significant potential as a suicide prevention approach for students.
Suicidal behaviors are prevalent among college students; however, students remain reluctant to seek support. We developed a predictive algorithm to identify students at risk of suicidal behavior and used telehealth to reduce subsequent risk. Data come from everal waves of a prospective cohort study (2016-2022) of college students ( = 5454). All first-year students were invited to participate as volunteers. (Response rates range: 16.00-19.93%). A stepped-care approach was implemented: (i) all students received a comprehensive list of services; (ii) those reporting past 12-month suicidal ideation were directed to a safety planning application; (iii) those identified as high risk of suicidal behavior by the algorithm or reporting 12-month suicide attempt were contacted via telephone within 24-h of survey completion. Intervention focused on support/safety-planning, and referral to services for this high-risk group. 5454 students ranging in age from 17-36 (s.d. = 5.346) participated; 65% female. The algorithm identified 77% of students reporting subsequent suicidal behavior in the top 15% of predicted probabilities (Sensitivity = 26.26 [95% CI 17.93-36.07]; Specificity = 97.46 [95% CI 96.21-98.38], PPV = 53.06 [95% CI 40.16-65.56]; AUC range: 0.895 [95% CIs 0.872-0.917] to 0.966 [95% CIs 0.939-0.994]). High-risk students in the Intervention Cohort showed a 41.7% reduction in probability of suicidal behavior at 12-month follow-up compared to high-risk students in the Control Cohort. Predictive risk algorithms embedded into universal screening, coupled with telehealth intervention, offer significant potential as a suicide prevention approach for students.
Author Hendrie, Delia
Nock, Matthew K.
Hasking, Penelope A.
Preece, David A.
Kessler, Ronald C.
Bruffaerts, Ronny
Rees, Clare
Melvin, Glenn
Boyes, Mark E.
Auerbach, Randy P.
Robinson, Kealagh
McEvoy, Peter
AuthorAffiliation 6 Department of Psychiatry, Columbia University, United States of America
2 enAble Institute, Faculty of Health Sciences, Curtin University, Australia
5 University Psychiatric Center, KU Leuven, Belgium
9 Department of Health Care Policy, Harvard Medical School, United States of America
8 Department of Psychology, Harvard University, United States of America
4 Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Deakin University, Australia
7 Division of Clinical Developmental Neuroscience, Sackler Institute, United States of America
1 School of Population Health, Faculty of Health Sciences, Curtin University, Australia
3 Centre for Clinical Interventions, Perth, Australia
AuthorAffiliation_xml – name: 6 Department of Psychiatry, Columbia University, United States of America
– name: 2 enAble Institute, Faculty of Health Sciences, Curtin University, Australia
– name: 9 Department of Health Care Policy, Harvard Medical School, United States of America
– name: 5 University Psychiatric Center, KU Leuven, Belgium
– name: 1 School of Population Health, Faculty of Health Sciences, Curtin University, Australia
– name: 8 Department of Psychology, Harvard University, United States of America
– name: 3 Centre for Clinical Interventions, Perth, Australia
– name: 4 Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Deakin University, Australia
– name: 7 Division of Clinical Developmental Neuroscience, Sackler Institute, United States of America
Author_xml – sequence: 1
  givenname: Penelope A.
  orcidid: 0000-0002-0172-9288
  surname: Hasking
  fullname: Hasking, Penelope A.
– sequence: 2
  givenname: Kealagh
  orcidid: 0000-0002-9367-7445
  surname: Robinson
  fullname: Robinson, Kealagh
– sequence: 3
  givenname: Peter
  orcidid: 0000-0003-2924-6760
  surname: McEvoy
  fullname: McEvoy, Peter
– sequence: 4
  givenname: Glenn
  orcidid: 0000-0002-6958-3908
  surname: Melvin
  fullname: Melvin, Glenn
– sequence: 5
  givenname: Ronny
  orcidid: 0000-0002-0330-3694
  surname: Bruffaerts
  fullname: Bruffaerts, Ronny
– sequence: 6
  givenname: Mark E.
  orcidid: 0000-0001-5420-8606
  surname: Boyes
  fullname: Boyes, Mark E.
– sequence: 7
  givenname: Randy P.
  orcidid: 0000-0003-2319-4744
  surname: Auerbach
  fullname: Auerbach, Randy P.
– sequence: 8
  givenname: Delia
  orcidid: 0000-0001-5022-5281
  surname: Hendrie
  fullname: Hendrie, Delia
– sequence: 9
  givenname: Matthew K.
  orcidid: 0000-0001-6508-1145
  surname: Nock
  fullname: Nock, Matthew K.
– sequence: 10
  givenname: David A.
  orcidid: 0000-0003-1060-2024
  surname: Preece
  fullname: Preece, David A.
– sequence: 11
  givenname: Clare
  orcidid: 0000-0002-4218-5053
  surname: Rees
  fullname: Rees, Clare
– sequence: 12
  givenname: Ronald C.
  orcidid: 0000-0003-4831-2305
  surname: Kessler
  fullname: Kessler, Ronald C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37732419$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1u1DAUhS1URKeFB2CDLLFhE_Bf4niFUKEFqRILYG05zs2MK8cebCdSX6DPjac_CIpYeXHP-Xyuzj1BRyEGQOglJW8pofLdN0I4Z4pKxglhkoonaENFp5peyf4IbQ7j5jA_Ric5XxFCORXsGTrmUnImqNqgm4-wgo_7GULBJowYVuMXU1wMOE7Y4H2C0dniVsDGb2NyZTffCgt42IHxZYddKJDWSji4SsTVsljAeXHWjcbjAXZmdTFhM8ewxUuotJRduca5LGP15efo6WR8hhf37yn6cf7p-9nn5vLrxZezD5eNFawvzTT07ciGtu7BRmCMDaAsI1aMnRJy6oGOE6UTo3bopRhbmCghHVF8kkzxlvNT9P6Ou1-GGUZb_07G631ys0nXOhqn_54Et9PbuGpaIUqJrhLe3BNS_LlALnp22YL3JkBcsmZ9J2lb2xFV-vqR9CouKdT9NCecqE5ySqvq1Z-Rfmd56KgK5J3ApphzgklbV24bqgmdr9H04Rr0P9dQnfSR8wH-f88vJSO4yA
CitedBy_id crossref_primary_10_1371_journal_pone_0319473
crossref_primary_10_1080_07448481_2024_2362329
crossref_primary_10_1016_j_psychres_2025_116555
Cites_doi 10.1177/0146167207309197
10.1016/j.jad.2019.11.093
10.1017/S0033291715001804
10.1371/journal.pone.0156322
10.1016/j.jaac.2018.01.018
10.1016/j.jad.2016.09.033
10.1192/bjp.bp.110.084129
10.1037/1040-3590.19.3.309
10.1192/bjp.bp.116.182717
10.1016/j.jad.2015.07.042
10.1016/j.amepre.2014.06.004
10.1136/bmjopen-2015-009297
10.1001/jamapsychiatry.2014.1754
10.1016/j.jad.2017.07.044
10.1016/j.amepre.2019.04.001
10.1037/bul0000084
10.1016/j.annemergmed.2006.07.944
10.1111/j.1360-0443.2007.01841.x
10.4088/JCP.17m11485
10.1017/S0033291712000347
10.1002/mpr.169
10.1111/sltb.12490
10.1002/mpr.1764
10.1017/S0033291722003178
ContentType Journal Article
Copyright Copyright © The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7QJ
7QP
7QR
7RV
7TK
7X7
7XB
88E
88G
8FD
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HEHIP
K9.
KB0
M0S
M1P
M2M
M2O
M2S
MBDVC
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
POGQB
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
7X8
5PM
DOI 10.1017/S0033291723002714
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Applied Social Sciences Index & Abstracts (ASSIA)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central (subscription)
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
Sociology Collection (OCUL)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Database
Research Library
Sociology Database (OCUL)
Research Library (Corporate)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest Sociology & Social Sciences Collection
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Sociology & Social Sciences Collection
ProQuest Central China
Health Research Premium Collection
Health & Medical Research Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Sociology
ProQuest Medical Library (Alumni)
Social Science Premium Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Sociology Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Sociology & Social Sciences Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
Applied Social Sciences Index and Abstracts (ASSIA)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Sociology Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest One Psychology
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1469-8978
EndPage 979
ExternalDocumentID PMC10939946
37732419
10_1017_S0033291723002714
Genre Journal Article
GroupedDBID ---
-1D
-1F
-2P
-2V
-E.
-~6
-~N
.FH
.GJ
.XZ
0-V
08P
09C
09E
0E1
0R~
123
29P
4.4
41~
53G
5RE
5VS
6~7
74X
74Y
7RV
7X7
7~V
88E
8FI
8FJ
8G5
8R4
8R5
9M5
AAAZR
AABES
AABWE
AACJH
AAFWJ
AAGFV
AAKNA
AAKTX
AAMNQ
AARAB
AASVR
AATMM
AAUIS
AAUKB
AAWTL
AAXMD
AAYEP
AAYXX
ABBXD
ABBZL
ABGDZ
ABITZ
ABIVO
ABJNI
ABKKG
ABLJU
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVFV
ABVKB
ABVZP
ABWCF
ABXAU
ABXHF
ABZCX
ABZUI
ACBMC
ACDLN
ACEJA
ACETC
ACGFO
ACGFS
ACHQT
ACIMK
ACIWK
ACPRK
ACRPL
ACUIJ
ACYZP
ACZBM
ACZUX
ADAZD
ADBBV
ADDNB
ADFEC
ADFRT
ADKIL
ADNMO
ADOVH
ADOVT
ADVJH
AEBAK
AEBPU
AEHGV
AEMFK
AEMTJ
AEMTW
AENCP
AENEX
AENGE
AEPLO
AEYHU
AFFHD
AFFNX
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGJUD
AGLWM
AGQPQ
AHIPN
AHLTW
AHMBA
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
AKZCZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALVPG
ANOYL
ANPSP
AQJOH
ARABE
ARALO
ARZZG
ASOEW
ATUCA
AUXHV
AYIQA
AZGZS
AZQEC
BBLKV
BCGOX
BENPR
BESQT
BGHMG
BJBOZ
BKEYQ
BLZWO
BMAJL
BPHCQ
BQFHP
BRIRG
BVXVI
C0O
C45
CAG
CBIIA
CCPQU
CCQAD
CCUQV
CDIZJ
CFAFE
CFBFF
CGQII
CHEAL
CITATION
CJCSC
COF
CS3
DC4
DOHLZ
DU5
DWQXO
EBS
EGQIC
EJD
EX3
F5P
FA8
FYUFA
GNUQQ
GUQSH
HEHIP
HG-
HMCUK
HST
HZ~
H~9
I.6
I.7
I.9
IH6
IOEEP
IOO
IPYYG
IS6
I~P
J36
J38
J3A
J5H
JHPGK
JQKCU
JVRFK
KAFGG
KCGVB
KFECR
L7B
L98
LHUNA
LW7
M-V
M1P
M2M
M2O
M2S
M7~
M8.
N4W
NAPCQ
NEJ
NIKVX
NMFBF
NZEOI
O9-
OMB
OMC
OMH
OVD
OYBOY
P2P
PHGZM
PHGZT
PJZUB
POGQB
PPXIY
PQQKQ
PROAC
PRQQA
PSQYO
PSYQQ
Q2X
RCA
ROL
RR0
S6-
S6U
SAAAG
SY4
T9M
TEORI
UAP
UKHRP
UT1
UU6
VVN
WFFJZ
WH7
WOW
WQ3
WXU
WYP
YOC
YZZ
ZCA
ZDLDU
ZGI
ZJOSE
ZMEZD
ZXP
ZYDXJ
~V1
ACOZI
ADPDF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
RIG
3V.
7QJ
7QP
7QR
7TK
7XB
8FD
8FK
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c428t-fb85d2b51312de222be9c20c4d6947f8e1df11f21cb874d5ef1006093f7293533
IEDL.DBID BENPR
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001068080900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0033-2917
1469-8978
IngestDate Tue Nov 04 02:05:26 EST 2025
Thu Oct 02 12:12:55 EDT 2025
Sat Nov 08 03:27:43 EST 2025
Mon Jul 21 06:05:36 EDT 2025
Sat Nov 29 06:27:19 EST 2025
Tue Nov 18 21:53:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords retrospective cohort trial
tertiary education
suicide prevention
predictive risk
treatment access
algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-fb85d2b51312de222be9c20c4d6947f8e1df11f21cb874d5ef1006093f7293533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1060-2024
0000-0003-4831-2305
0000-0002-6958-3908
0000-0002-4218-5053
0000-0001-5420-8606
0000-0002-0172-9288
0000-0003-2924-6760
0000-0003-2319-4744
0000-0002-0330-3694
0000-0001-5022-5281
0000-0002-9367-7445
0000-0001-6508-1145
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/BCDACC91A454665076D05FA2323B9C38/S0033291723002714a.pdf/div-class-title-development-and-evaluation-of-a-predictive-algorithm-and-telehealth-intervention-to-reduce-suicidal-behavior-among-university-students-div.pdf
PMID 37732419
PQID 3030967311
PQPubID 35753
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10939946
proquest_miscellaneous_2867150174
proquest_journals_3030967311
pubmed_primary_37732419
crossref_citationtrail_10_1017_S0033291723002714
crossref_primary_10_1017_S0033291723002714
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Psychological medicine
PublicationTitleAlternate Psychol Med
PublicationYear 2024
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0033291723002714_ref10
S0033291723002714_ref11
S0033291723002714_ref13
(S0033291723002714_ref29) 2021
(S0033291723002714_ref23) 2021
S0033291723002714_ref25
S0033291723002714_ref26
S0033291723002714_ref27
S0033291723002714_ref21
S0033291723002714_ref22
S0033291723002714_ref24
S0033291723002714_ref20
(S0033291723002714_ref28) 2014
S0033291723002714_ref9
S0033291723002714_ref7
S0033291723002714_ref8
S0033291723002714_ref5
S0033291723002714_ref6
S0033291723002714_ref18
Aiken (S0033291723002714_ref1) 1991
S0033291723002714_ref3
S0033291723002714_ref19
S0033291723002714_ref4
S0033291723002714_ref2
S0033291723002714_ref14
S0033291723002714_ref15
S0033291723002714_ref16
Hasking (S0033291723002714_ref12) 2023
S0033291723002714_ref17
References_xml – ident: S0033291723002714_ref27
  doi: 10.1177/0146167207309197
– ident: S0033291723002714_ref18
  doi: 10.1016/j.jad.2019.11.093
– ident: S0033291723002714_ref25
  doi: 10.1017/S0033291715001804
– year: 2023
  ident: S0033291723002714_ref12
  publication-title: COMPAS-S Checking on mental health: Providing alternatives to suicide for students: Training manual for phone assessments
– ident: S0033291723002714_ref16
  doi: 10.1371/journal.pone.0156322
– ident: S0033291723002714_ref19
  doi: 10.1016/j.jaac.2018.01.018
– ident: S0033291723002714_ref20
  doi: 10.1016/j.jad.2016.09.033
– ident: S0033291723002714_ref3
  doi: 10.1192/bjp.bp.110.084129
– ident: S0033291723002714_ref22
  doi: 10.1037/1040-3590.19.3.309
– ident: S0033291723002714_ref7
  doi: 10.1192/bjp.bp.116.182717
– volume-title: Suicide worldwide in 2019: Global health estimates
  year: 2021
  ident: S0033291723002714_ref29
– ident: S0033291723002714_ref4
  doi: 10.1016/j.jad.2015.07.042
– volume-title: Multiple regression: Testing and interpreting interactions
  year: 1991
  ident: S0033291723002714_ref1
– ident: S0033291723002714_ref11
  doi: 10.1016/j.amepre.2014.06.004
– start-page: 188
  volume-title: Education at a glance 2021: OECD indicators
  year: 2021
  ident: S0033291723002714_ref23
– ident: S0033291723002714_ref24
  doi: 10.1136/bmjopen-2015-009297
– ident: S0033291723002714_ref14
  doi: 10.1001/jamapsychiatry.2014.1754
– ident: S0033291723002714_ref6
  doi: 10.1016/j.jad.2017.07.044
– ident: S0033291723002714_ref9
  doi: 10.1016/j.amepre.2019.04.001
– ident: S0033291723002714_ref10
  doi: 10.1037/bul0000084
– ident: S0033291723002714_ref8
  doi: 10.1016/j.annemergmed.2006.07.944
– volume-title: Preventing suicide: A global imperative
  year: 2014
  ident: S0033291723002714_ref28
– ident: S0033291723002714_ref2
  doi: 10.1111/j.1360-0443.2007.01841.x
– ident: S0033291723002714_ref21
  doi: 10.4088/JCP.17m11485
– ident: S0033291723002714_ref26
  doi: 10.1017/S0033291712000347
– ident: S0033291723002714_ref13
  doi: 10.1002/mpr.169
– ident: S0033291723002714_ref17
  doi: 10.1111/sltb.12490
– ident: S0033291723002714_ref5
  doi: 10.1002/mpr.1764
– ident: S0033291723002714_ref15
  doi: 10.1017/S0033291722003178
SSID ssj0013142
Score 2.4685416
Snippet Suicidal behaviors are prevalent among college students; however, students remain reluctant to seek support. We developed a predictive algorithm to identify...
BackgroundSuicidal behaviors are prevalent among college students; however, students remain reluctant to seek support. We developed a predictive algorithm to...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 971
SubjectTerms Algorithms
At risk populations
At risk students
Behavior
Cohort analysis
College students
Colleges & universities
Female
High risk
Humans
Intervention
Male
Medical technology
Mental health
Predictions
Prevention programs
Probability
Prospective Studies
Response rates
Risk
Risk Factors
Risk groups
Risk reduction
Safety
Self destructive behavior
Sex crimes
Students
Suicidal behavior
Suicidal Ideation
Suicide
Suicide prevention
Suicides & suicide attempts
Telecommunications
Telemedicine
Telephone surveys
Universities
Volunteers
Title Development and evaluation of a predictive algorithm and telehealth intervention to reduce suicidal behavior among university students
URI https://www.ncbi.nlm.nih.gov/pubmed/37732419
https://www.proquest.com/docview/3030967311
https://www.proquest.com/docview/2867150174
https://pubmed.ncbi.nlm.nih.gov/PMC10939946
Volume 54
WOSCitedRecordID wos001068080900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1469-8978
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013142
  issn: 0033-2917
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1469-8978
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013142
  issn: 0033-2917
  databaseCode: 7RV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-8978
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013142
  issn: 0033-2917
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database (Proquest)
  customDbUrl:
  eissn: 1469-8978
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013142
  issn: 0033-2917
  databaseCode: M2M
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1469-8978
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013142
  issn: 0033-2917
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Sociology Database (OCUL)
  customDbUrl:
  eissn: 1469-8978
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013142
  issn: 0033-2917
  databaseCode: M2S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sociology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5wwEB4lm6rqpe-026aRK_VUCRWDwfhUtVGiXHYTpQ_tDYEfyUoJbBe2P6G_u2Nj2N1EyiUXS9jGA4wfnz3DNwCfEPQKbRIdFLEJcYMSJ0GmYxOkrNCMCaPCULpgE3w6zWYzce4P3BrvVtnPiW6iVrW0Z-RfYmsLSHlM6dfFn8BGjbLWVR9CYxf2LFMZG8He9-Pp-cXajkBZxxfuIpZR3ts1HWk0Zto8BOG4N6Nse2W6Azdve01uLEMnzx76As_hqQeg5FvXY17Ajq5ewuOJN7G_gn8bbkSkqBRZ84GT2pCCLJa2rp0lSXF9iRLaqxtXscUVrPutksw3PClJW5OlJYjVpFmhEIXSe3IA4mIdkdXgHUKajmuzeQ2_To5_Hp0GPlhDIHEH0wamzBIVlQl-8khpRB2lFjIKJVOpYNxkmipDqYmoLDPOVKINtVwwIjYI72MEnfswqupKvwXCEyFKoRGqovrCSIoMQY9MNWI7EyqejiHsFZVLz2RuA2pc553LGs_v6HYMn4dbFh2Nx32VD3oN5n5EN_lafWP4OBTjWLQGlqLS9arJI0sWmGCb2MSbrrMM0mLOEbtSMYZsqxsNFSzP93ZJNb9yfN-W8UsIlr67_7new5MIEVfnVnQAo3a50h_gkfzbzpvlIezyi982nXGXZod-rODVJJq49MylP_4DqlUcWw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qCgI2vCmBAoMEGyQLz8Mez6JCCKhatYmQKFJ3xp5HG6nYIXZA_ACfwzf2jl9JqNRdF2zticexj-8943t8LsArJL3KusgGGXchLlB4FCSWuyAWmRVCOROGumk2ISeT5PhYfd6Av_23MF5W2cfEJlCbUvt35G-5rwXEklP6bvYj8F2jfHW1b6HRwuLA_v6FS7ZqZ_8j3t_XjO1-OvqwF3RdBQKNVLsOXJ5EhuUR5ZQZi-kxt0qzUAsTKyFdYqlxlDpGdZ5IYSLrqDctUdwhD-WRfwGKIf-awJWQlxCO2Zdl1YKK1p286Y9GZV9FbSyqcaPfhpQfV4JUrOfBC-T2X43mStLbvfO_Xa67cLuj1-R9-zzcgw1b3Icb405A8AD-rIikSFYYsnQ7J6UjGZnN_VifA0h2doL_qD793gysMT-3H42S6YpOlNQlmXv7W0uqBU5icPbe-oA0nZzIYtC-kKp1Eq0ewtcruQqPYLMoC_sYiIyUypVFIo5wCZlWCVI6HVtkri40Mh5B2AMj1Z1Pu28Xcpa2gjyZXsDSCN4MP5m1JiWXDd7uEZN28apKl3AZwcthN0YaXz7KClsuqpR5K8QIj4mH2GrBOczGpURmTtUIkjXYDgO8i_n6nmJ62riZez8zpUT85PLzegE3947Gh-nh_uTgKdxiyC1bAdU2bNbzhX0G1_XPelrNnzfPJIFvV43qcx-7cNk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL2qCqrY8H6kFBgk2CBZ9YxnPJ4FQogSUZVEXYDUnbHn0UYqdho7IH6Aj-LruONXEip11wVbe-Jx7ON7z_genwvwCkmvsk7YIItciAuUSASJjVwQ88xyrpwJQ900m5DTaXJyoo634E__LYyXVfYxsQnUptT-Hfl-5GsBsYwo3XedLOL4YPxufhH4DlK-0tq302ghcmR__cTlW_X28ADv9WvGxh-_fPgUdB0GAo20uw5cngjDckEjyozFVJlbpVmouYkVly6x1DhKHaM6TyQ3wjrqDUxU5JCTRsK_DMXwf0NyIXz3hAmbrCoYlLdO5U2vNCr7impjV40b_Tak_7gqpHwzJ14iuv_qNdcS4PjO_3zp7sLtjnaT9-1zcg-2bHEfdiadsOAB_F4TT5GsMGTlgk5KRzIyX_ixPjeQ7PwU_1F99r0ZWGPebj8mJbM1_SipS7LwtriWVEucxODsvSUCaTo8keWgiSFV6zBaPYSv13IVHsF2URb2CRAplMqVRYKO0AmZVglSPR1bZLQuNDIeQdiDJNWdf7tvI3KetkI9mV7C1QjeDD-Zt-YlVw3e69GTdnGsSlfQGcHLYTdGIF9WygpbLquUeYtEgcfEQzxugTrMFkmJjJ2qESQbEB4GeHfzzT3F7KxxOfc-Z0rxePfq83oBOwjm9PPh9Ogp3GJIOVtd1R5s14ulfQY39Y96Vi2eN48ngW_XDeq_TAR5jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+evaluation+of+a+predictive+algorithm+and+telehealth+intervention+to+reduce+suicidal+behavior+among+university+students&rft.jtitle=Psychological+medicine&rft.au=Hasking%2C+Penelope+A.&rft.au=Robinson%2C+Kealagh&rft.au=McEvoy%2C+Peter&rft.au=Melvin%2C+Glenn&rft.date=2024-04-01&rft.issn=0033-2917&rft.eissn=1469-8978&rft.volume=54&rft.issue=5&rft.spage=971&rft.epage=979&rft_id=info:doi/10.1017%2FS0033291723002714&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0033291723002714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0033-2917&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0033-2917&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0033-2917&client=summon