Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence of the Interaction of the Spike S1 Receptor-Binding Domain with Heparin

Abstract The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a wide...

Full description

Saved in:
Bibliographic Details
Published in:Thrombosis and haemostasis Vol. 120; no. 12; pp. 1700 - 1715
Main Authors: Mycroft-West, Courtney J., Su, Dunhao, Pagani, Isabel, Rudd, Timothy R., Elli, Stefano, Gandhi, Neha S., Guimond, Scott E., Miller, Gavin J., Meneghetti, Maria C. Z., Nader, Helena B., Li, Yong, Nunes, Quentin M., Procter, Patricia, Mancini, Nicasio, Clementi, Massimo, Bisio, Antonella, Forsyth, Nicholas R., Ferro, Vito, Turnbull, Jeremy E., Guerrini, Marco, Fernig, David G., Vicenzi, Elisa, Yates, Edwin A., Lima, Marcelo A., Skidmore, Mark A.
Format: Journal Article
Language:English
Published: Rüdigerstraße 14, 70469 Stuttgart, Germany Georg Thieme Verlag KG 01.12.2020
Subjects:
ISSN:0340-6245, 2567-689X, 2567-689X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2- O or 6- O sulfate groups than on N -sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae .
AbstractList The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2- or 6- sulfate groups than on -sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the .
The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2-O or 6-O sulfate groups than on N-sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2-O or 6-O sulfate groups than on N-sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.
Abstract The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2- O or 6- O sulfate groups than on N -sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae .
Author Li, Yong
Mancini, Nicasio
Meneghetti, Maria C. Z.
Procter, Patricia
Elli, Stefano
Rudd, Timothy R.
Guimond, Scott E.
Nader, Helena B.
Lima, Marcelo A.
Bisio, Antonella
Ferro, Vito
Yates, Edwin A.
Turnbull, Jeremy E.
Pagani, Isabel
Clementi, Massimo
Gandhi, Neha S.
Su, Dunhao
Fernig, David G.
Vicenzi, Elisa
Miller, Gavin J.
Forsyth, Nicholas R.
Skidmore, Mark A.
Mycroft-West, Courtney J.
Nunes, Quentin M.
Guerrini, Marco
Author_xml – sequence: 1
  givenname: Courtney J.
  surname: Mycroft-West
  fullname: Mycroft-West, Courtney J.
  organization: Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
– sequence: 2
  givenname: Dunhao
  surname: Su
  fullname: Su, Dunhao
  organization: Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
– sequence: 3
  givenname: Isabel
  surname: Pagani
  fullname: Pagani, Isabel
  organization: Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
– sequence: 4
  givenname: Timothy R.
  surname: Rudd
  fullname: Rudd, Timothy R.
  organization: Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
– sequence: 5
  givenname: Stefano
  surname: Elli
  fullname: Elli, Stefano
  organization: Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
– sequence: 6
  givenname: Neha S.
  surname: Gandhi
  fullname: Gandhi, Neha S.
  organization: Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
– sequence: 7
  givenname: Scott E.
  surname: Guimond
  fullname: Guimond, Scott E.
  organization: School of Medicine, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
– sequence: 8
  givenname: Gavin J.
  surname: Miller
  fullname: Miller, Gavin J.
  organization: School of Chemical and Physical Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
– sequence: 9
  givenname: Maria C. Z.
  surname: Meneghetti
  fullname: Meneghetti, Maria C. Z.
  organization: Biochemistry Department, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
– sequence: 10
  givenname: Helena B.
  surname: Nader
  fullname: Nader, Helena B.
  organization: Biochemistry Department, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
– sequence: 11
  givenname: Yong
  surname: Li
  fullname: Li, Yong
  organization: Keele University, School of Life Sciences, Huxley Building, Newcastle-Under-Lyme
– sequence: 12
  givenname: Quentin M.
  surname: Nunes
  fullname: Nunes, Quentin M.
  organization: Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
– sequence: 13
  givenname: Patricia
  surname: Procter
  fullname: Procter, Patricia
  organization: Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
– sequence: 14
  givenname: Nicasio
  surname: Mancini
  fullname: Mancini, Nicasio
  organization: Università Vita-Salute San Raffaele, Milan, Italy
– sequence: 15
  givenname: Massimo
  surname: Clementi
  fullname: Clementi, Massimo
  organization: Università Vita-Salute San Raffaele, Milan, Italy
– sequence: 16
  givenname: Antonella
  surname: Bisio
  fullname: Bisio, Antonella
  organization: Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
– sequence: 17
  givenname: Nicholas R.
  surname: Forsyth
  fullname: Forsyth, Nicholas R.
  organization: Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Hartshill, Stoke-on-Trent, Staffordshire, United Kingdom
– sequence: 18
  givenname: Vito
  surname: Ferro
  fullname: Ferro, Vito
  organization: Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
– sequence: 19
  givenname: Jeremy E.
  surname: Turnbull
  fullname: Turnbull, Jeremy E.
  organization: Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
– sequence: 20
  givenname: Marco
  surname: Guerrini
  fullname: Guerrini, Marco
  organization: Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
– sequence: 21
  givenname: David G.
  surname: Fernig
  fullname: Fernig, David G.
  organization: Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
– sequence: 22
  givenname: Elisa
  surname: Vicenzi
  fullname: Vicenzi, Elisa
  organization: Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
– sequence: 23
  givenname: Edwin A.
  surname: Yates
  fullname: Yates, Edwin A.
  organization: Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
– sequence: 24
  givenname: Marcelo A.
  surname: Lima
  fullname: Lima, Marcelo A.
  organization: Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
– sequence: 25
  givenname: Mark A.
  orcidid: 0000-0002-0287-5594
  surname: Skidmore
  fullname: Skidmore, Mark A.
  email: m.a.skidmore@keele.ac.uk
  organization: Keele University, School of Life Sciences, Huxley Building, Newcastle-Under-Lyme
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33368089$$D View this record in MEDLINE/PubMed
BookMark eNo1kctO3DAUhq0KVAbotsvKSzamviRx3B0Mt5FGqsQU1J3lJGc6pokdbAfEU_DK9Yh0cywd_-f2_cfowHkHCH1l9JzRsvweCaUFJUxyJpj6hBa8rCSpavX7AC2oyF8VL8ojdBzjE6WsKlT5GR0JIaqa1mqB3u9gNME6vHI729gU8RL6fupNyJkXE613uHnDm4v7DVn6R8J_4E0KU5umYHp8BSO4DlwL2G9x2kEuShBMm_Z1c2oz2r85MnwPLYzJB3JpXWfdH3zlB5NHv9q0w_Mep-hwa_oIX-b3BD3cXP9a3pH1z9vV8mJN2oLXiYARbUupkpxKoUopqJSMKZFZVBUVDcvHiVKoLjMqMpiikzVvuMqiclszKk7Q2UffMfjnCWLSg41tPt048FPUvJAZHivEXvptlk7NAJ0egx1MeNP_IWYB-RCknYUB9JOfgsvLa0b13iQd9d4kPZsk_gEUZYCV
CitedBy_id crossref_primary_10_1016_j_apsb_2022_01_019
crossref_primary_10_1080_19390211_2022_2075072
crossref_primary_10_1017_cjn_2023_39
crossref_primary_10_1055_a_1815_2142
crossref_primary_10_3389_fchem_2022_871509
crossref_primary_10_1002_jhet_4349
crossref_primary_10_1007_s12551_022_00999_7
crossref_primary_10_3390_v15010237
crossref_primary_10_1080_07391102_2023_2167114
crossref_primary_10_1016_j_procbio_2022_02_012
crossref_primary_10_3389_fphar_2025_1585762
crossref_primary_10_3390_antiox10060881
crossref_primary_10_1007_s10719_021_10018_8
crossref_primary_10_1134_S1068162022060152
crossref_primary_10_3389_fcimb_2025_1552116
crossref_primary_10_1002_1873_3468_14173
crossref_primary_10_1055_s_0041_1741072
crossref_primary_10_3390_biom15070931
crossref_primary_10_1016_j_sbi_2022_102402
crossref_primary_10_1111_febs_16096
crossref_primary_10_1055_a_1807_0168
crossref_primary_10_1002_pgr2_70028
crossref_primary_10_1038_s41598_024_84276_5
crossref_primary_10_3390_jcm11154464
crossref_primary_10_1016_j_cej_2025_164066
crossref_primary_10_1016_j_jinorgbio_2022_111899
crossref_primary_10_1002_rth2_12638
crossref_primary_10_3390_reactions3030031
crossref_primary_10_1007_s12032_021_01533_7
crossref_primary_10_1093_glycob_cwac042
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_1038_s41598_022_10293_x
crossref_primary_10_3389_fphar_2023_1159363
crossref_primary_10_1016_j_burns_2025_107518
crossref_primary_10_3390_v14010035
crossref_primary_10_3389_fmed_2024_1364657
crossref_primary_10_1002_chem_202202599
crossref_primary_10_3390_ijms23094805
crossref_primary_10_1016_j_clim_2023_109836
crossref_primary_10_1016_j_trac_2023_117243
crossref_primary_10_1038_s41392_024_01741_3
crossref_primary_10_3390_pharmaceutics13111768
crossref_primary_10_1016_j_ab_2023_115223
crossref_primary_10_1177_0310057X251322783
crossref_primary_10_1021_acschembio_5c00206
crossref_primary_10_1073_pnas_2404892121
crossref_primary_10_3390_ijms242216115
crossref_primary_10_1055_s_0042_1749395
crossref_primary_10_1038_s41392_022_00884_5
crossref_primary_10_1080_21548331_2021_2007648
crossref_primary_10_1038_s41590_021_01114_w
crossref_primary_10_1055_s_0042_1760264
crossref_primary_10_1002_tcr_202100173
crossref_primary_10_3389_fmolb_2021_637550
crossref_primary_10_7554_eLife_95708_3
crossref_primary_10_1016_j_jbc_2021_101507
crossref_primary_10_3390_ijms222011013
crossref_primary_10_3389_fpls_2023_1275228
crossref_primary_10_3389_fcvm_2023_1282637
crossref_primary_10_3390_jcm10051073
crossref_primary_10_1016_j_ijbiomac_2022_12_090
crossref_primary_10_1186_s40560_024_00723_5
crossref_primary_10_3389_fmed_2021_615333
crossref_primary_10_1016_j_ejmech_2023_115923
crossref_primary_10_1016_j_pharmthera_2023_108540
crossref_primary_10_1097_MD_0000000000028288
crossref_primary_10_1002_cpt_2504
crossref_primary_10_3390_brainsci13030415
crossref_primary_10_1038_s41598_024_70064_8
crossref_primary_10_1111_bcp_14714
crossref_primary_10_3389_fmicb_2025_1546946
crossref_primary_10_1093_glycob_cwae084
crossref_primary_10_3390_ijms221910730
crossref_primary_10_3390_ph17101362
crossref_primary_10_1186_s40659_023_00434_5
crossref_primary_10_1177_1358863X231159945
crossref_primary_10_3390_biomedicines9111544
crossref_primary_10_3390_app11083512
crossref_primary_10_3390_life12060915
crossref_primary_10_1016_j_carbpol_2022_119818
crossref_primary_10_3390_ph16101385
crossref_primary_10_1002_pgr2_70032
crossref_primary_10_1016_j_synbio_2022_10_002
crossref_primary_10_3389_fmicb_2022_789882
crossref_primary_10_1038_s41467_025_57362_z
crossref_primary_10_7554_eLife_95708
crossref_primary_10_1016_j_addr_2022_114195
crossref_primary_10_3390_microorganisms9061238
crossref_primary_10_1056_NEJMoa2105911
crossref_primary_10_1371_journal_ppat_1012203
crossref_primary_10_3390_biom15060778
crossref_primary_10_3390_molecules29235809
crossref_primary_10_3389_fimmu_2025_1460089
crossref_primary_10_1055_s_0041_1726034
crossref_primary_10_3389_fcell_2021_695970
crossref_primary_10_3390_biom11121812
crossref_primary_10_1134_S0026893325700128
crossref_primary_10_1039_D1SC04832E
crossref_primary_10_3390_ijms22126574
crossref_primary_10_1159_000519542
crossref_primary_10_1073_pnas_2203167119
crossref_primary_10_1016_j_jbc_2021_101207
crossref_primary_10_1042_EBC20230093
crossref_primary_10_3390_molecules28176413
crossref_primary_10_1021_acscentsci_1c01293
crossref_primary_10_1016_j_jmb_2025_169437
crossref_primary_10_3390_molecules27165322
crossref_primary_10_1016_j_ijbiomac_2021_04_148
crossref_primary_10_3390_ijms23031716
crossref_primary_10_1055_a_1667_7534
crossref_primary_10_1007_s11010_021_04204_3
crossref_primary_10_3390_ijms24032634
crossref_primary_10_1039_D3PY01217D
crossref_primary_10_1016_j_biopha_2023_114217
crossref_primary_10_1080_16583655_2021_1999068
crossref_primary_10_1007_s00894_023_05645_x
crossref_primary_10_1016_j_antiviral_2023_105700
crossref_primary_10_3389_fimmu_2022_826091
crossref_primary_10_1016_j_csbj_2021_05_002
crossref_primary_10_1016_j_scitotenv_2023_168619
crossref_primary_10_2147_IJN_S496050
crossref_primary_10_1042_BCJ20220016
crossref_primary_10_3390_biomedicines10010049
crossref_primary_10_1016_j_aqrep_2025_102735
crossref_primary_10_3389_fimmu_2022_984252
crossref_primary_10_1016_j_jff_2023_105532
crossref_primary_10_1016_j_sbi_2022_102439
crossref_primary_10_3389_fmed_2021_775063
crossref_primary_10_1111_bcp_15212
crossref_primary_10_3390_cells10061412
crossref_primary_10_3390_microbiolres15020035
crossref_primary_10_1007_s00408_023_00599_6
crossref_primary_10_1016_j_carbpol_2022_120167
crossref_primary_10_3390_cells11050855
crossref_primary_10_1021_acsinfecdis_5c00250
crossref_primary_10_3389_fphar_2022_987816
crossref_primary_10_3390_v14040737
crossref_primary_10_1042_BSR20210290
crossref_primary_10_3389_fmicb_2023_1169547
crossref_primary_10_3390_ph16020271
crossref_primary_10_1128_jvi_01122_22
crossref_primary_10_3389_fnut_2025_1561119
crossref_primary_10_3389_fmicb_2022_721103
crossref_primary_10_3390_biom14080911
crossref_primary_10_3390_biom11111550
crossref_primary_10_3390_ijms23126400
crossref_primary_10_3390_ijms24065844
crossref_primary_10_1007_s10557_022_07406_z
crossref_primary_10_1038_s41467_024_45419_4
crossref_primary_10_12688_f1000research_110593_2
crossref_primary_10_3390_cells10061419
crossref_primary_10_12688_f1000research_110593_3
crossref_primary_10_3389_fcvm_2022_957006
crossref_primary_10_3390_v17060741
crossref_primary_10_12688_f1000research_110593_1
crossref_primary_10_1016_j_ejps_2023_106489
crossref_primary_10_3390_ijms232113502
crossref_primary_10_1002_tcr_202100125
crossref_primary_10_1093_cvr_cvab298
crossref_primary_10_1182_blood_2021014527
crossref_primary_10_1155_2022_2044282
crossref_primary_10_3389_ijph_2021_1603975
crossref_primary_10_1016_j_ejmcr_2021_100003
crossref_primary_10_1186_s12917_022_03527_7
crossref_primary_10_1007_s10557_021_07288_7
crossref_primary_10_1093_nar_gkac345
crossref_primary_10_1021_acscentsci_1c01080
crossref_primary_10_1016_j_isci_2023_108095
crossref_primary_10_1124_pharmrev_122_000684
crossref_primary_10_3390_biom15091343
crossref_primary_10_1007_s11239_022_02681_x
crossref_primary_10_1128_jvi_00057_22
ContentType Journal Article
Copyright Thieme. All rights reserved.
Copyright_xml – notice: Thieme. All rights reserved.
DBID 0U6
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1055/s-0040-1721319
DatabaseName Thieme Connect Journals Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 0U6
  name: Thieme Connect Journals Open Access
  url: http://open.thieme.com
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2567-689X
EndPage 1715
ExternalDocumentID 33368089
10_1055_s_0040_1721319
Genre Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L023717/1
– fundername: BB/L023717/1
  grantid: Biotechnology and Biological Sciences Research Council
GroupedDBID ---
.55
.GJ
0R~
0U6
0VX
123
1KJ
4.4
53G
5RE
AAQQT
ABJNI
ABOCM
ACGFO
ACGFS
AENEX
AFFNX
AHRSK
ALMA_UNASSIGNED_HOLDINGS
BR6
C45
CS3
DU5
EBS
EJD
F5P
H13
J5H
OVD
P2P
RTC
RTE
SJN
TEORI
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c428t-ea3cc00972073957307711930406603b10893539d05543194d782b297115f8103
IEDL.DBID 0U6
ISICitedReferencesCount 237
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000601223000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0340-6245
2567-689X
IngestDate Fri Jul 11 13:11:56 EDT 2025
Thu Jan 02 22:56:42 EST 2025
Sun Nov 24 15:00:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords heparin
COVID-19
SARS-CoV-2
RBD
surface plasmon resonance
molecular modelling
coronavirus
circular dichroism
S1
spike
Language English
License Thieme. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-ea3cc00972073957307711930406603b10893539d05543194d782b297115f8103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0287-5594
OpenAccessLink http://dx.doi.org/10.1055/s-0040-1721319
PMID 33368089
PQID 2473401430
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2473401430
pubmed_primary_33368089
thieme_journals_10_1055_s_0040_1721319
PublicationCentury 2000
PublicationDate 20201200
2020-Dec
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Rüdigerstraße 14, 70469 Stuttgart, Germany
PublicationPlace_xml – name: Rüdigerstraße 14, 70469 Stuttgart, Germany
– name: Germany
PublicationTitle Thrombosis and haemostasis
PublicationTitleAlternate Thromb Haemost
PublicationYear 2020
Publisher Georg Thieme Verlag KG
Publisher_xml – name: Georg Thieme Verlag KG
SSID ssj0016495
Score 2.7092712
Snippet Abstract The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and...
The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular...
SourceID proquest
pubmed
thieme
SourceType Aggregation Database
Index Database
Publisher
StartPage 1700
SubjectTerms Animals
Anticoagulants - pharmacology
Anticoagulants - therapeutic use
Antiviral Agents - pharmacology
Antiviral Agents - therapeutic use
Blood Cells, Inflammation and Infection
Chlorocebus aethiops
COVID-19 - drug therapy
Enoxaparin - pharmacology
Enoxaparin - therapeutic use
Heparin - pharmacology
Heparin - therapeutic use
Humans
Molecular Dynamics Simulation
Nebulizers and Vaporizers
Protein Binding
Protein Conformation
Protein Domains - genetics
SARS-CoV-2 - physiology
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - metabolism
Structure-Activity Relationship
Vero Cells
Virus Internalization
Title Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence of the Interaction of the Spike S1 Receptor-Binding Domain with Heparin
URI http://dx.doi.org/10.1055/s-0040-1721319
https://www.ncbi.nlm.nih.gov/pubmed/33368089
https://www.proquest.com/docview/2473401430
Volume 120
WOSCitedRecordID wos000601223000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA6iIl7cl3EjgngLdpJ0iTcdFQUdxFGZW0jSlClqO9hR8Ff4l31JOyrqwUsoIaVp3kv7vSXfQ2gvcLkzWlMiotQ4Um1BlGaC0JRH1jKTcOMp8y_jbjfp98X1l7_jZwQ_DA8q4rPenKnCHL_nFAUtdVswuIs-4wUR9_VVAuaS2SkPx_SMv-7_C0jCxWiQ2yf77c9yNv__OS2guQY94qNa3ItowhZLaOaqiY8vo_dz66oKFviiGOQ6H1W4Yx8fXaYp9Lwq5xnD-g33jm56pFPeE3qIe55A1pFv4JOmIK6xuMwwIEPs_YX10YdxV2-YP0DbxgA47RAsdnKc-5Mx-KR8UvBo59nFzTxW0N3Z6W3nnDQlF4gBO2RErGLGeEqfOoIHX4C4DRgP3jaKAqbbAeCbkIkUVgGgh-ApIAxNBQwKs6QdsFU0WZSFXUc4S3WmLUtsamKuo0wJxblijLPYsoyqFtodS0KCSrs4hSps-VJJymOQIwC5oIXWahHJYc29IRljrliIaKH9Wmay2XOV9OH0MJSVdMKRjXA2_jtwE81SZ0v7VJUtNAmrb7fRtHkd5dXzjlc3aON-Am33-uoDFe7Knw
linkProvider Thieme
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLXQgIAN70d5Ggmxs5rGTlKzGzqMOqJTITqDZmfZzo0a0SYVCSPxFfwy9zouQoIFCzZRZDmK4-Mkx77H5zL2OiHtjHOp0HnpyVRbC-ukFmmpcgDpp8oHy_xFsVxOLy70x7g9uouyyn5dwxaEJ6WH70lqsRvcT7sxxB7uxut-u4l5arNxJ4IyjqYzkjxAr2aUQQJHd3Ke_4op5CrkYEkkCd5Tle0tHP-4_m9kE0-GZv329zm-_X_bfYfdiiyUHw7D5i67As09dv00xtnvsx9zoOyEDT9p1rWr-47PYLMhxSqWXFpaYePuO18dflqJWftZpG_5KhjRkokHP4qJdT3wtuLIMHlYdxy2UOyLVrv6Cx4nHIkr7HDmL97VYYcNP2q3Fm9NK8Q8tuMBOz9-fzabi5i6QXicz_QCrPQ-WAMNkUD8khQT5Ir4tHmeSDdJkCdlUpfYC0hhtCqRqbhUY6Wsmk4S-ZAdNG0DjxmvSlc5kFMofaFcXlltlbJSKlmArFI7Yq_2aBl8NSjeYRtov3UmVQVijYQwGbFHA4xmN3h4GCklJR3RI_ZmgM3sETIhLJ9lpjMEjongPPnXii_ZjfnZ6cIsTpYfnrKbKc3Pg_zlGTtAJOA5u-Yv-7r7-iIMz5_7nOin
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2Vgiou5bOwfBoJcTObjZ1kza3ssmpFWSqWot4s25moEW0SNaESv4K_zNhJEBIcOHCJosRKHL9J8sbzPAPwMvLaGWtjrtLc-aTaihsrFI9zmSIKN5cupMw_ytbr-empOt6Cj-NaGC-r7M5KvEDuvNLDdV5q0fTZT9spDiPcTpu8GMrUJtOWB2Gc92bIol7TqWtwPSFr9LUcopP0V1ghlaEMSyS85j2WyZjF8Y9r_I1v0k7fs99-QKtb_73rt2F34KJsvzeeO7CF1V3Y-TBE2-_BjwP0NQordlidlbbsWrbA83OvW6UjV8bPszH7nW32P234ov7C4zdsE9LR-lQebDmU13XI6oIRz2Rh9rFfSDEe2jTlV9rOGNFXbMj_52_LsM6GLesLQ7f288Rs6Md9OFm9-7w44EMBB-7Iq-k4GuFcSBDUxwPpe5LNiDHSE6dpJOwsIraUCJXTSBCRUTInvmJjRY2SYj6LxB5sV3WFD4EVuS0sijnmLpM2LYwyUhohpMhQFLGZwIsRME0viI96mArrb62OZUZwEy2MJvCgR1I3fSYPLYTwpUfUBF71yOkRJB2C80miW-0B0gNAj_614XPYOV6u9NHh-v1juBl7Jz1oYJ7ANgGBT-GGu-rK9vJZMNCfsPHqIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heparin+Inhibits+Cellular+Invasion+by+SARS-CoV-2%3A+Structural+Dependence+of+the+Interaction+of+the+Spike+S1+Receptor-Binding+Domain+with+Heparin&rft.jtitle=Thrombosis+and+haemostasis&rft.au=Mycroft-West%2C+Courtney+J.&rft.au=Su%2C+Dunhao&rft.au=Pagani%2C+Isabel&rft.au=Rudd%2C+Timothy+R.&rft.date=2020-12-01&rft.pub=Georg+Thieme+Verlag+KG&rft.issn=0340-6245&rft.eissn=2567-689X&rft.volume=120&rft.issue=12&rft.spage=1700&rft.epage=1715&rft_id=info:doi/10.1055%2Fs-0040-1721319&rft.externalDBID=HTML_FULL_TEXT&rft.externalDocID=10_1055_s_0040_1721319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-6245&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-6245&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-6245&client=summon