Cell phone based colorimetric analysis for point-of-care settings

Cell phones show considerable promise for point-of-care (POC) diagnostic procedures because they are accessible, connected, and computationally powerful. Cell phone image processing methods are being developed for the detection and quantification of a wide range of targets, employing methods from mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) Jg. 144; H. 6; S. 1935
Hauptverfasser: Coleman, Benjamin, Coarsey, Chad, Asghar, Waseem
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England 21.03.2019
Schlagworte:
ISSN:1364-5528, 1364-5528
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell phones show considerable promise for point-of-care (POC) diagnostic procedures because they are accessible, connected, and computationally powerful. Cell phone image processing methods are being developed for the detection and quantification of a wide range of targets, employing methods from microscopy to fluorescence techniques. However, most of the lab-based biological and biochemical assays still lack a robust and repeatable cell phone analogue. Existing solutions require external smartphone hardware to obtain quantitative results, imposing a design tradeoff between accessibility and accuracy. Here, we develop a cell phone imaging algorithm that enables analysis of assays that would typically be evaluated via spectroscopy. The developed technique uses the saturation parameter of hue-saturation-value color space to enable POC diagnosis. Through the analysis of over 10 000 images, we show that the saturation method consistently outperforms existing algorithms under a wide range of operating field conditions. The performance improvement is also proven analytically via the mathematic relationship between the saturation method and existing techniques. The method presented here is a step forward towards the development of POC diagnostics by reducing the required equipment, improving the limit of detection (LOD), and increasing the precision of quantitative results.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1364-5528
1364-5528
DOI:10.1039/c8an02521e