A three-dimensional enriched finite element method for nonlinear transient heat transfer in functionally graded materials

•Development of an efficient partition of unity finite element method for the 3D nonlinear transient heat transfer in functionally graded materials.•Implementation of a class of 3D time-independent enrichment functions using multiple Gaussian approximations in unstructured meshes.•Derivation of a nu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of heat and mass transfer Ročník 155; s. 119804
Hlavní autori: Malek, Mustapha, Izem, Nouh, Mohamed M, Shadi, Seaid, Mohammed
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 01.07.2020
Elsevier BV
Predmet:
ISSN:0017-9310, 1879-2189
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Development of an efficient partition of unity finite element method for the 3D nonlinear transient heat transfer in functionally graded materials.•Implementation of a class of 3D time-independent enrichment functions using multiple Gaussian approximations in unstructured meshes.•Derivation of a numerical method with the potential to accurately resolve sharp gradients in the solution without requiring very fine meshes.•Numerical assessment of the partition of unity finite element method for 3D nonlinear transient heat transfer subject to steep gradients.•Simulation of a problem of heat transfer in a 3D pump part using the partition of unity finite element method. Nonlinear transient heat transfer in functionally graded materials is being studied more popular in present. In preliminary design, this problem can be simplified as a composite, and a three-dimensional transient heat transfer analysis is used to adjust dimensions of the considered materials. This paper is concerned with the numerical modeling of transient heat transfer in composite materials where the thermal conductivity is also dependent on the temperature; hence the problem is nonlinear. We are interested in solutions with steep boundary layers where highly refined meshes are commonly needed. Such problems can be challenging to solve with the conventional finite element method. To deal with this challenge we propose an enriched finite element formulation where the basis functions are augmented with a summation of exponential functions. First, the initial-value problem is integrated in time using a semi-implicit scheme and the semi-discrete problem is then integrated in space using the enriched finite elements. We demonstrate through several numerical examples that the proposed approach can recover the heat transfer on coarse meshes and with much fewer degrees of freedom compared to the standard finite element method. Thus, a significant reduction in the computational requirements is achieved without compromising on the solution accuracy. The results also show the stability of the scheme when using tetrahedral unstructured grids.
AbstractList •Development of an efficient partition of unity finite element method for the 3D nonlinear transient heat transfer in functionally graded materials.•Implementation of a class of 3D time-independent enrichment functions using multiple Gaussian approximations in unstructured meshes.•Derivation of a numerical method with the potential to accurately resolve sharp gradients in the solution without requiring very fine meshes.•Numerical assessment of the partition of unity finite element method for 3D nonlinear transient heat transfer subject to steep gradients.•Simulation of a problem of heat transfer in a 3D pump part using the partition of unity finite element method. Nonlinear transient heat transfer in functionally graded materials is being studied more popular in present. In preliminary design, this problem can be simplified as a composite, and a three-dimensional transient heat transfer analysis is used to adjust dimensions of the considered materials. This paper is concerned with the numerical modeling of transient heat transfer in composite materials where the thermal conductivity is also dependent on the temperature; hence the problem is nonlinear. We are interested in solutions with steep boundary layers where highly refined meshes are commonly needed. Such problems can be challenging to solve with the conventional finite element method. To deal with this challenge we propose an enriched finite element formulation where the basis functions are augmented with a summation of exponential functions. First, the initial-value problem is integrated in time using a semi-implicit scheme and the semi-discrete problem is then integrated in space using the enriched finite elements. We demonstrate through several numerical examples that the proposed approach can recover the heat transfer on coarse meshes and with much fewer degrees of freedom compared to the standard finite element method. Thus, a significant reduction in the computational requirements is achieved without compromising on the solution accuracy. The results also show the stability of the scheme when using tetrahedral unstructured grids.
Nonlinear transient heat transfer in functionally graded materials is being studied more popular in present. In preliminary design, this problem can be simplified as a composite, and a three-dimensional transient heat transfer analysis is used to adjust dimensions of the considered materials. This paper is concerned with the numerical modeling of transient heat transfer in composite materials where the thermal conductivity is also dependent on the temperature; hence the problem is nonlinear. We are interested in solutions with steep boundary layers where highly refined meshes are commonly needed. Such problems can be challenging to solve with the conventional finite element method. To deal with this challenge we propose an enriched finite element formulation where the basis functions are augmented with a summation of exponential functions. First, the initial-value problem is integrated in time using a semi-implicit scheme and the semi-discrete problem is then integrated in space using the enriched finite elements. We demonstrate through several numerical examples that the proposed approach can recover the heat transfer on coarse meshes and with much fewer degrees of freedom compared to the standard finite element method. Thus, a significant reduction in the computational requirements is achieved without compromising on the solution accuracy. The results also show the stability of the scheme when using tetrahedral unstructured grids.
ArticleNumber 119804
Author Izem, Nouh
Seaid, Mohammed
Malek, Mustapha
Mohamed M, Shadi
Author_xml – sequence: 1
  givenname: Mustapha
  surname: Malek
  fullname: Malek, Mustapha
  organization: Laboratory of Engineering Sciences, Faculty of Science, Ibn Zohr University Agadir, Morocco
– sequence: 2
  givenname: Nouh
  surname: Izem
  fullname: Izem, Nouh
  organization: Laboratory of Engineering Sciences, Faculty of Science, Ibn Zohr University Agadir, Morocco
– sequence: 3
  givenname: Shadi
  surname: Mohamed M
  fullname: Mohamed M, Shadi
  organization: School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK
– sequence: 4
  givenname: Mohammed
  surname: Seaid
  fullname: Seaid, Mohammed
  email: m.seaid@durham.ac.uk
  organization: Department of Engineering, Durham University, Durham DH1 3LE, UK
BookMark eNqVkEtPBCEQhInRxPXxH0i8eJkVGHYeN43xGRMveia90LhMZhgF1mT_vYyrF73ogXSgKl8XdUB2_eiRkFPO5pzx6qybu26FkAaIMQXw0WKYCyayzNuGyR0y403dFoI37S6ZMcbroi052ycHMXbTlclqRjYXNK0CYmHcgD660UNP0QenV2iodd4lpNhjFhMdMK3G_DoGmtP0ziME-rncTfIUh35noc5Tu_Y6fSL7DX0JYDJygITBQR-PyJ7NA4-_5iF5vr56urwtHh5v7i4vHgotRZMKY63kQti2NIKDLRs0oBdQ1fVSNoumXWJlsGJVaZt8WgADS5ndi1JaCcyUh-Rky30N49saY1LduA45U1RCSlGWTNaL7LreunQYYwxolXYJpvD5Q65XnKmpdtWp37WrqXa1rT2Dzn-AXoMbIGz-g7jfIjDX8u6yGnUuWKNxAXVSZnR_h30AtNi0HQ
CitedBy_id crossref_primary_10_1002_zamm_202300725
crossref_primary_10_1016_j_matpr_2020_07_687
crossref_primary_10_1016_j_coco_2021_100664
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122893
crossref_primary_10_3390_met11010175
crossref_primary_10_1016_j_enganabound_2025_106191
crossref_primary_10_1016_j_enganabound_2025_106170
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126310
crossref_primary_10_1142_S0219876225500082
crossref_primary_10_1007_s42243_022_00866_5
crossref_primary_10_1007_s00366_025_02183_3
crossref_primary_10_1016_j_neunet_2024_106756
crossref_primary_10_1134_S0025654425601764
crossref_primary_10_1016_j_matcom_2020_08_024
crossref_primary_10_1007_s00419_020_01844_7
crossref_primary_10_1080_10407790_2024_2367064
crossref_primary_10_2478_mjpaa_2021_0021
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123627
crossref_primary_10_1088_1361_6501_ac41a8
crossref_primary_10_1007_s10483_024_3072_8
crossref_primary_10_1007_s00366_021_01328_4
crossref_primary_10_1016_j_camwa_2022_08_026
crossref_primary_10_1002_ls_1716
crossref_primary_10_1016_j_applthermaleng_2025_126888
crossref_primary_10_1007_s41062_024_01598_z
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126780
crossref_primary_10_1155_2020_8886682
crossref_primary_10_1016_j_icheatmasstransfer_2025_108599
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121778
crossref_primary_10_1007_s11431_022_2389_8
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124704
Cites_doi 10.1016/j.compstruct.2018.01.086
10.1002/nme.4795
10.1007/s40314-019-0782-z
10.1016/j.jcp.2013.11.005
10.1016/j.apm.2011.02.039
10.1002/nme.6328
10.1016/j.jcp.2019.06.062
10.1016/j.cma.2007.08.017
10.1016/j.engfracmech.2019.03.027
10.1016/j.cma.2008.12.024
10.1108/02644401111141028
10.1007/s00466-015-1212-8
10.1016/j.cma.2018.03.030
10.1016/j.compstruct.2019.110992
10.1002/nla.2205
10.1002/nme.4383
10.1016/j.apm.2015.04.002
10.1016/j.compstruct.2015.08.098
10.1016/0045-7825(94)00730-B
10.1016/j.ijheatmasstransfer.2019.118969
10.1016/j.cma.2010.10.005
10.1002/nme.2414
10.1016/j.cma.2011.09.012
10.1016/j.compstruc.2010.01.012
10.1016/j.jcp.2013.05.030
10.1007/s00211-010-0323-6
10.1016/S0045-7825(96)01087-0
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jul 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2020.119804
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2020_119804
S0017931020303732
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c428t-dff4122f93d21af38edac5a677b48589be6de6063f863f9aadab4f93534f4a0d3
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545317500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Sun Oct 05 00:04:28 EDT 2025
Sat Nov 29 07:29:52 EST 2025
Tue Nov 18 22:21:28 EST 2025
Fri Feb 23 02:50:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element discretization
Heterogeneous problems
Nonlinear heat transfer
Functionally graded material
Enrichment procedures
Partition of unity method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-dff4122f93d21af38edac5a677b48589be6de6063f863f9aadab4f93534f4a0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://durham-repository.worktribe.com/output/1225166
PQID 2442330475
PQPubID 2045464
ParticipantIDs proquest_journals_2442330475
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119804
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119804
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119804
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, O’Hara, Duarte (bib0011) 2019; 213
Mohamed, El-Kacimi, Laghrouche (bib0017) 2010; 88
Karkon (bib0007) 2015; 134
Iqbal, Gimperlein, Laghrouche, Alam, Mohamed, Abid (bib0005) 2020
Mohamed, Seaid, Trevelyan, Laghrouche (bib0019) 2013; 93
Duarte, Kim (bib0003) 2008; 197
Malek, Izem, Seaid, Mohamed, Wakrim (bib0015) 2019; 38
Mohamed, Seaid, Trevelyan, Laghrouche (bib0020) 2013; 251
O’Hara, Duarte, Eason (bib0022) 2009; 198
Qin (bib0024) 1995; 122
O’Hara, Duarte, Eason (bib0023) 2011; 200
Khosravifard, Hematiyan, Marin (bib0008) 2011; 35
Li, Duarte (bib0010) 2018; 337
Diwan, Mohamed, Seaid, Trevelyan, Laghrouche (bib0002) 2015; 101
van der Meer, Al-Khoury, Sluys (bib0029) 2009; 77
Melenk, Babuška (bib0016) 1996; 139
Smoller (bib0028) 1982
Malek, Izem, Mohamed, Seaid, Laghrouche (bib0014) 2019; 396
Iqbal, Masood, Aljuhni, Ahmad (bib0006) 2020; 149
Qin (bib0025) 2000
Fu, Qin, Chen (bib0004) 2011; 28
Kim, Hong, Duarte (bib0009) 2015; 39
Xiao, Xu, Zhang (bib0030) 2018; 189
Lins, Ferreira, Proença, Duarte (bib0012) 2015; 56
She, Wang, Li (bib0027) 2019; 224
Liu, Han (bib0013) 2003
Mohamed, Seaid, Trevelyan, Laghrouche (bib0021) 2014; 258
Mohamed, Seaid, Bouhamidi (bib0018) 2018; 25
Schweitzer (bib0026) 2011; 118
Babuška, Banerjee (bib0001) 2012; 201
Mohamed (10.1016/j.ijheatmasstransfer.2020.119804_bib0021) 2014; 258
Diwan (10.1016/j.ijheatmasstransfer.2020.119804_bib0002) 2015; 101
Li (10.1016/j.ijheatmasstransfer.2020.119804_bib0010) 2018; 337
Melenk (10.1016/j.ijheatmasstransfer.2020.119804_bib0016) 1996; 139
Qin (10.1016/j.ijheatmasstransfer.2020.119804_bib0025) 2000
Malek (10.1016/j.ijheatmasstransfer.2020.119804_bib0014) 2019; 396
Malek (10.1016/j.ijheatmasstransfer.2020.119804_bib0015) 2019; 38
van der Meer (10.1016/j.ijheatmasstransfer.2020.119804_bib0029) 2009; 77
Mohamed (10.1016/j.ijheatmasstransfer.2020.119804_bib0017) 2010; 88
Li (10.1016/j.ijheatmasstransfer.2020.119804_bib0011) 2019; 213
O’Hara (10.1016/j.ijheatmasstransfer.2020.119804_bib0023) 2011; 200
Iqbal (10.1016/j.ijheatmasstransfer.2020.119804_bib0006) 2020; 149
Iqbal (10.1016/j.ijheatmasstransfer.2020.119804_bib0005) 2020
Xiao (10.1016/j.ijheatmasstransfer.2020.119804_bib0030) 2018; 189
Duarte (10.1016/j.ijheatmasstransfer.2020.119804_bib0003) 2008; 197
O’Hara (10.1016/j.ijheatmasstransfer.2020.119804_bib0022) 2009; 198
Mohamed (10.1016/j.ijheatmasstransfer.2020.119804_bib0019) 2013; 93
Babuška (10.1016/j.ijheatmasstransfer.2020.119804_bib0001) 2012; 201
Smoller (10.1016/j.ijheatmasstransfer.2020.119804_bib0028) 1982
Karkon (10.1016/j.ijheatmasstransfer.2020.119804_bib0007) 2015; 134
Khosravifard (10.1016/j.ijheatmasstransfer.2020.119804_bib0008) 2011; 35
Lins (10.1016/j.ijheatmasstransfer.2020.119804_bib0012) 2015; 56
Mohamed (10.1016/j.ijheatmasstransfer.2020.119804_bib0020) 2013; 251
Qin (10.1016/j.ijheatmasstransfer.2020.119804_bib0024) 1995; 122
Liu (10.1016/j.ijheatmasstransfer.2020.119804_bib0013) 2003
Mohamed (10.1016/j.ijheatmasstransfer.2020.119804_bib0018) 2018; 25
She (10.1016/j.ijheatmasstransfer.2020.119804_bib0027) 2019; 224
Schweitzer (10.1016/j.ijheatmasstransfer.2020.119804_bib0026) 2011; 118
Fu (10.1016/j.ijheatmasstransfer.2020.119804_bib0004) 2011; 28
Kim (10.1016/j.ijheatmasstransfer.2020.119804_bib0009) 2015; 39
References_xml – start-page: 269
  year: 2003
  end-page: 271
  ident: bib0013
  article-title: Computational Inverse Techniques in Nondestructive Evaluation
– volume: 122
  start-page: 379
  year: 1995
  end-page: 392
  ident: bib0024
  article-title: Hybrid-Trefftz finite element method for reissner plates on an elastic foundation
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 189
  start-page: 553
  year: 2018
  end-page: 559
  ident: bib0030
  article-title: An analytical method for predicting the effective transverse thermal conductivity of nano coated fiber composites
  publication-title: Compos. Struct.
– volume: 258
  start-page: 718
  year: 2014
  end-page: 737
  ident: bib0021
  article-title: An enriched finite element model with q-refinement for radiative boundary layers in glass cooling
  publication-title: J. Comp. Phys.
– volume: 201
  start-page: 91
  year: 2012
  end-page: 111
  ident: bib0001
  article-title: Stable generalized finite element method (SGFEM)
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2020
  ident: bib0005
  article-title: A residual a-posteriori error estimate for PUFEM solutions of 3D transient heat diffusion problems using multiple global enrichment functions
  publication-title: Int. J. Numer. Methods Eng.
– volume: 35
  start-page: 4157
  year: 2011
  end-page: 4174
  ident: bib0008
  article-title: Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method
  publication-title: Appl. Math. Model.
– volume: 118
  start-page: 137
  year: 2011
  end-page: 170
  ident: bib0026
  article-title: Stable enrichment and local preconditioning in the particle-partition of unity method
  publication-title: Numer. Math.
– volume: 56
  start-page: 947
  year: 2015
  end-page: 965
  ident: bib0012
  article-title: An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method
  publication-title: Comput. Mech.
– volume: 139
  start-page: 289
  year: 1996
  end-page: 314
  ident: bib0016
  article-title: The partition of unity finite element method: basic theory and applications
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 224
  start-page: 110992
  year: 2019
  ident: bib0027
  article-title: Thermal analysis of multilayer coated fiber-reinforced composites by the hybrid Trefftz finite element method
  publication-title: Compos. Struct.
– volume: 77
  start-page: 240
  year: 2009
  end-page: 260
  ident: bib0029
  article-title: Time-dependent shape functions for modeling highly transient geothermal systems
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 251
  start-page: 81
  year: 2013
  end-page: 101
  ident: bib0020
  article-title: Time-independent hybrid enrichment for finite element solution of transient conduction-radiation in diffusive grey media
  publication-title: J. Comp. Phys.
– volume: 101
  start-page: 54
  year: 2015
  end-page: 78
  ident: bib0002
  article-title: Mixed enrichment for the finite element method in heterogeneous media
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 93
  start-page: 245
  year: 2013
  end-page: 265
  ident: bib0019
  article-title: A partition of unity FEM for time-dependent diffusion problems using multiple enrichment functions
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 213
  start-page: 21
  year: 2019
  end-page: 52
  ident: bib0011
  article-title: A two-scale generalized FEM for the evaluation of stress intensity factors at spot welds subjected to thermomechanical loads
  publication-title: Eng. Fract. Mech.
– volume: 396
  start-page: 702
  year: 2019
  end-page: 717
  ident: bib0014
  article-title: A partition of unity finite element method for three-dimensional transient diffusion problems with sharp gradients
  publication-title: J. Comp. Phys.
– volume: 39
  start-page: 5837
  year: 2015
  end-page: 5848
  ident: bib0009
  article-title: Generalized finite element analysis using the preconditioned conjugate gradient method
  publication-title: Appl. Math. Model.
– volume: 38
  start-page: 31
  year: 2019
  ident: bib0015
  article-title: A partition of unity finite element method for nonlinear transient diffusion problems in heterogeneous materials
  publication-title: Comp. Appl. Math.
– volume: 134
  start-page: 460
  year: 2015
  end-page: 474
  ident: bib0007
  article-title: Hybrid-Trefftz formulation for analysis of anisotropic and symmetric laminated plates
  publication-title: Compos. Struct.
– year: 2000
  ident: bib0025
  article-title: The Trefftz Finite and Boundary Element Method
– volume: 88
  start-page: 1484
  year: 2010
  end-page: 1491
  ident: bib0017
  article-title: Some numerical aspects of the PUFEM for efficient solution of 2D Helmholtz problems
  publication-title: Comput. Struct.
– year: 1982
  ident: bib0028
  article-title: Shock Waves and Reaction-Diffusion Equations
– volume: 25
  start-page: e2205
  year: 2018
  ident: bib0018
  article-title: Iterative solvers for generalized finite element solution of boundary-value problems
  publication-title: Numer. Linear. Algebr. Appl.
– volume: 198
  start-page: 1857
  year: 2009
  end-page: 1871
  ident: bib0022
  article-title: Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 200
  start-page: 812
  year: 2011
  end-page: 829
  ident: bib0023
  article-title: Transient analysis of sharp thermal gradients using coarse finite element meshes
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 149
  start-page: 118969
  year: 2020
  ident: bib0006
  article-title: Generalized finite element method with time-independent enrichment functions for 3D transient heat diffusion problems
  publication-title: Int. J. Heat Mass Transf.
– volume: 337
  start-page: 28
  year: 2018
  end-page: 65
  ident: bib0010
  article-title: A two-scale generalized finite element method for parallel simulations of spot welds in large structures
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 28
  start-page: 578
  year: 2011
  end-page: 599
  ident: bib0004
  article-title: Hybrid-Trefftz finite element method for heat conduction in nonlinear functionally graded materials
  publication-title: Eng. Comp.
– volume: 197
  start-page: 487
  year: 2008
  end-page: 504
  ident: bib0003
  article-title: Analysis and applications of a generalized finite element method with global-local enrichment functions
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 189
  start-page: 553
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0030
  article-title: An analytical method for predicting the effective transverse thermal conductivity of nano coated fiber composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.01.086
– volume: 101
  start-page: 54
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0002
  article-title: Mixed enrichment for the finite element method in heterogeneous media
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.4795
– volume: 38
  start-page: 31
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0015
  article-title: A partition of unity finite element method for nonlinear transient diffusion problems in heterogeneous materials
  publication-title: Comp. Appl. Math.
  doi: 10.1007/s40314-019-0782-z
– volume: 258
  start-page: 718
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0021
  article-title: An enriched finite element model with q-refinement for radiative boundary layers in glass cooling
  publication-title: J. Comp. Phys.
  doi: 10.1016/j.jcp.2013.11.005
– volume: 35
  start-page: 4157
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0008
  article-title: Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.02.039
– year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0005
  article-title: A residual a-posteriori error estimate for PUFEM solutions of 3D transient heat diffusion problems using multiple global enrichment functions
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6328
– volume: 396
  start-page: 702
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0014
  article-title: A partition of unity finite element method for three-dimensional transient diffusion problems with sharp gradients
  publication-title: J. Comp. Phys.
  doi: 10.1016/j.jcp.2019.06.062
– volume: 197
  start-page: 487
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0003
  article-title: Analysis and applications of a generalized finite element method with global-local enrichment functions
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2007.08.017
– volume: 213
  start-page: 21
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0011
  article-title: A two-scale generalized FEM for the evaluation of stress intensity factors at spot welds subjected to thermomechanical loads
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2019.03.027
– volume: 198
  start-page: 1857
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0022
  article-title: Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.12.024
– volume: 28
  start-page: 578
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0004
  article-title: Hybrid-Trefftz finite element method for heat conduction in nonlinear functionally graded materials
  publication-title: Eng. Comp.
  doi: 10.1108/02644401111141028
– volume: 56
  start-page: 947
  issue: 6
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0012
  article-title: An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-015-1212-8
– volume: 337
  start-page: 28
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0010
  article-title: A two-scale generalized finite element method for parallel simulations of spot welds in large structures
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.03.030
– volume: 224
  start-page: 110992
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0027
  article-title: Thermal analysis of multilayer coated fiber-reinforced composites by the hybrid Trefftz finite element method
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.110992
– volume: 25
  start-page: e2205
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0018
  article-title: Iterative solvers for generalized finite element solution of boundary-value problems
  publication-title: Numer. Linear. Algebr. Appl.
  doi: 10.1002/nla.2205
– volume: 93
  start-page: 245
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0019
  article-title: A partition of unity FEM for time-dependent diffusion problems using multiple enrichment functions
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.4383
– volume: 39
  start-page: 5837
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0009
  article-title: Generalized finite element analysis using the preconditioned conjugate gradient method
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.04.002
– volume: 134
  start-page: 460
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0007
  article-title: Hybrid-Trefftz formulation for analysis of anisotropic and symmetric laminated plates
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.08.098
– volume: 122
  start-page: 379
  year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0024
  article-title: Hybrid-Trefftz finite element method for reissner plates on an elastic foundation
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(94)00730-B
– start-page: 269
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0013
– year: 1982
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0028
– volume: 149
  start-page: 118969
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0006
  article-title: Generalized finite element method with time-independent enrichment functions for 3D transient heat diffusion problems
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.118969
– year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0025
– volume: 200
  start-page: 812
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0023
  article-title: Transient analysis of sharp thermal gradients using coarse finite element meshes
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.10.005
– volume: 77
  start-page: 240
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0029
  article-title: Time-dependent shape functions for modeling highly transient geothermal systems
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.2414
– volume: 201
  start-page: 91
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0001
  article-title: Stable generalized finite element method (SGFEM)
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2011.09.012
– volume: 88
  start-page: 1484
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0017
  article-title: Some numerical aspects of the PUFEM for efficient solution of 2D Helmholtz problems
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2010.01.012
– volume: 251
  start-page: 81
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0020
  article-title: Time-independent hybrid enrichment for finite element solution of transient conduction-radiation in diffusive grey media
  publication-title: J. Comp. Phys.
  doi: 10.1016/j.jcp.2013.05.030
– volume: 118
  start-page: 137
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0026
  article-title: Stable enrichment and local preconditioning in the particle-partition of unity method
  publication-title: Numer. Math.
  doi: 10.1007/s00211-010-0323-6
– volume: 139
  start-page: 289
  year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0016
  article-title: The partition of unity finite element method: basic theory and applications
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01087-0
SSID ssj0017046
Score 2.4930322
Snippet •Development of an efficient partition of unity finite element method for the 3D nonlinear transient heat transfer in functionally graded...
Nonlinear transient heat transfer in functionally graded materials is being studied more popular in present. In preliminary design, this problem can be...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119804
SubjectTerms Basis functions
Boundary layers
Composite materials
Enrichment
Enrichment procedures
Exponential functions
Finite element analysis
Finite element discretization
Finite element method
Functionally graded material
Functionally gradient materials
Heat transfer
Heterogeneous problems
Nonlinear heat transfer
Partition of unity method
Preliminary designs
Temperature dependence
Thermal conductivity
Three dimensional analysis
Three dimensional composites
Transient heat transfer
Unstructured grids (mathematics)
Title A three-dimensional enriched finite element method for nonlinear transient heat transfer in functionally graded materials
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119804
https://www.proquest.com/docview/2442330475
Volume 155
WOSCitedRecordID wos000545317500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9swEBch3cZexv7Sbt3Qwx4GxsWx7Fh6GqF0rGMpg3WQNyNb0uKQuiFJS9sP1s-3O0ty0oaNBbaHiNixz1Lu57vT6e5EyHuZmpQpYUIT4zKjhIYX_RIazWUc64SnTaLw1-zkhI9G4lunc-tzYS6nWV3zqysx-6-shnPAbEyd3YLdLVE4Ad-B6dAC26H9K8ZjnMZc61Bh3X5bcyOAazHkUwWmQhsz0DZo3O0f3YQa1rZmhpzjrhFwH_6MgtoeGo1h6wFqQes8nF4HP-dSAUkwee2w1u3cu47GtfIUDUl01p-B1d7SXvnFp7oRz0PM65qNW51xfKMtcM8vWv_18HwsQZcHw8aDO5aqat1FWlZ2s2S85MzlbznfBkxkfRysc7j5pJtVhFMjxEGxCuaiYbWV2zwTIVgr4o5gtwWAN5SE9VdMDqoJjhmH60d7gJ0ALSK43RP5Xinu71Ejz3q4ehuxjIHq34mzVPAu2RkcH42-tOtXWWRTxHxXH5EPq8jCPz_3dwbSPVOhsX9On5InbuJCBxZwz0hH18_JwyaAuFy8INcDugE76mFHLeyogx21sKMAO9rCjrawo9hv6jtNq5quw45a2NEWdi_Jj09Hp4efQ7etR1jCXHcZKmOSXhwbwVTck4ZxrWSZyn6WFSAZuCh0X2mYVzPD4SOkVLJI4OqUJSaRkWKvSBc6p3cJlUIqUUSxBpWdREWM1ioTSVSqUnCYaeyRj_6_zEtX8x63XpnmPrhxkm9yI0du5JYbe0S0FGa2_ssW9x569uXOnrV2ag5I3ILKvud87l7XRQ5GeYyeyCx9_U8e8oY8Xr1_-6S7nF_ot-RBebmsFvN3Dt2_AHBt5l4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+three-dimensional+enriched+finite+element+method+for+nonlinear+transient+heat+transfer+in+functionally+graded+materials&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Malek%2C+Mustapha&rft.au=Izem%2C+Nouh&rft.au=Mohamed+M%2C+Shadi&rft.au=Seaid%2C+Mohammed&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=155&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119804&rft.externalDocID=S0017931020303732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon