A three-dimensional enriched finite element method for nonlinear transient heat transfer in functionally graded materials
•Development of an efficient partition of unity finite element method for the 3D nonlinear transient heat transfer in functionally graded materials.•Implementation of a class of 3D time-independent enrichment functions using multiple Gaussian approximations in unstructured meshes.•Derivation of a nu...
Uložené v:
| Vydané v: | International journal of heat and mass transfer Ročník 155; s. 119804 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Oxford
Elsevier Ltd
01.07.2020
Elsevier BV |
| Predmet: | |
| ISSN: | 0017-9310, 1879-2189 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Development of an efficient partition of unity finite element method for the 3D nonlinear transient heat transfer in functionally graded materials.•Implementation of a class of 3D time-independent enrichment functions using multiple Gaussian approximations in unstructured meshes.•Derivation of a numerical method with the potential to accurately resolve sharp gradients in the solution without requiring very fine meshes.•Numerical assessment of the partition of unity finite element method for 3D nonlinear transient heat transfer subject to steep gradients.•Simulation of a problem of heat transfer in a 3D pump part using the partition of unity finite element method.
Nonlinear transient heat transfer in functionally graded materials is being studied more popular in present. In preliminary design, this problem can be simplified as a composite, and a three-dimensional transient heat transfer analysis is used to adjust dimensions of the considered materials. This paper is concerned with the numerical modeling of transient heat transfer in composite materials where the thermal conductivity is also dependent on the temperature; hence the problem is nonlinear. We are interested in solutions with steep boundary layers where highly refined meshes are commonly needed. Such problems can be challenging to solve with the conventional finite element method. To deal with this challenge we propose an enriched finite element formulation where the basis functions are augmented with a summation of exponential functions. First, the initial-value problem is integrated in time using a semi-implicit scheme and the semi-discrete problem is then integrated in space using the enriched finite elements. We demonstrate through several numerical examples that the proposed approach can recover the heat transfer on coarse meshes and with much fewer degrees of freedom compared to the standard finite element method. Thus, a significant reduction in the computational requirements is achieved without compromising on the solution accuracy. The results also show the stability of the scheme when using tetrahedral unstructured grids. |
|---|---|
| AbstractList | •Development of an efficient partition of unity finite element method for the 3D nonlinear transient heat transfer in functionally graded materials.•Implementation of a class of 3D time-independent enrichment functions using multiple Gaussian approximations in unstructured meshes.•Derivation of a numerical method with the potential to accurately resolve sharp gradients in the solution without requiring very fine meshes.•Numerical assessment of the partition of unity finite element method for 3D nonlinear transient heat transfer subject to steep gradients.•Simulation of a problem of heat transfer in a 3D pump part using the partition of unity finite element method.
Nonlinear transient heat transfer in functionally graded materials is being studied more popular in present. In preliminary design, this problem can be simplified as a composite, and a three-dimensional transient heat transfer analysis is used to adjust dimensions of the considered materials. This paper is concerned with the numerical modeling of transient heat transfer in composite materials where the thermal conductivity is also dependent on the temperature; hence the problem is nonlinear. We are interested in solutions with steep boundary layers where highly refined meshes are commonly needed. Such problems can be challenging to solve with the conventional finite element method. To deal with this challenge we propose an enriched finite element formulation where the basis functions are augmented with a summation of exponential functions. First, the initial-value problem is integrated in time using a semi-implicit scheme and the semi-discrete problem is then integrated in space using the enriched finite elements. We demonstrate through several numerical examples that the proposed approach can recover the heat transfer on coarse meshes and with much fewer degrees of freedom compared to the standard finite element method. Thus, a significant reduction in the computational requirements is achieved without compromising on the solution accuracy. The results also show the stability of the scheme when using tetrahedral unstructured grids. Nonlinear transient heat transfer in functionally graded materials is being studied more popular in present. In preliminary design, this problem can be simplified as a composite, and a three-dimensional transient heat transfer analysis is used to adjust dimensions of the considered materials. This paper is concerned with the numerical modeling of transient heat transfer in composite materials where the thermal conductivity is also dependent on the temperature; hence the problem is nonlinear. We are interested in solutions with steep boundary layers where highly refined meshes are commonly needed. Such problems can be challenging to solve with the conventional finite element method. To deal with this challenge we propose an enriched finite element formulation where the basis functions are augmented with a summation of exponential functions. First, the initial-value problem is integrated in time using a semi-implicit scheme and the semi-discrete problem is then integrated in space using the enriched finite elements. We demonstrate through several numerical examples that the proposed approach can recover the heat transfer on coarse meshes and with much fewer degrees of freedom compared to the standard finite element method. Thus, a significant reduction in the computational requirements is achieved without compromising on the solution accuracy. The results also show the stability of the scheme when using tetrahedral unstructured grids. |
| ArticleNumber | 119804 |
| Author | Izem, Nouh Seaid, Mohammed Malek, Mustapha Mohamed M, Shadi |
| Author_xml | – sequence: 1 givenname: Mustapha surname: Malek fullname: Malek, Mustapha organization: Laboratory of Engineering Sciences, Faculty of Science, Ibn Zohr University Agadir, Morocco – sequence: 2 givenname: Nouh surname: Izem fullname: Izem, Nouh organization: Laboratory of Engineering Sciences, Faculty of Science, Ibn Zohr University Agadir, Morocco – sequence: 3 givenname: Shadi surname: Mohamed M fullname: Mohamed M, Shadi organization: School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, UK – sequence: 4 givenname: Mohammed surname: Seaid fullname: Seaid, Mohammed email: m.seaid@durham.ac.uk organization: Department of Engineering, Durham University, Durham DH1 3LE, UK |
| BookMark | eNqVkEtPBCEQhInRxPXxH0i8eJkVGHYeN43xGRMveia90LhMZhgF1mT_vYyrF73ogXSgKl8XdUB2_eiRkFPO5pzx6qybu26FkAaIMQXw0WKYCyayzNuGyR0y403dFoI37S6ZMcbroi052ycHMXbTlclqRjYXNK0CYmHcgD660UNP0QenV2iodd4lpNhjFhMdMK3G_DoGmtP0ziME-rncTfIUh35noc5Tu_Y6fSL7DX0JYDJygITBQR-PyJ7NA4-_5iF5vr56urwtHh5v7i4vHgotRZMKY63kQti2NIKDLRs0oBdQ1fVSNoumXWJlsGJVaZt8WgADS5ndi1JaCcyUh-Rky30N49saY1LduA45U1RCSlGWTNaL7LreunQYYwxolXYJpvD5Q65XnKmpdtWp37WrqXa1rT2Dzn-AXoMbIGz-g7jfIjDX8u6yGnUuWKNxAXVSZnR_h30AtNi0HQ |
| CitedBy_id | crossref_primary_10_1002_zamm_202300725 crossref_primary_10_1016_j_matpr_2020_07_687 crossref_primary_10_1016_j_coco_2021_100664 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122893 crossref_primary_10_3390_met11010175 crossref_primary_10_1016_j_enganabound_2025_106191 crossref_primary_10_1016_j_enganabound_2025_106170 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126310 crossref_primary_10_1142_S0219876225500082 crossref_primary_10_1007_s42243_022_00866_5 crossref_primary_10_1007_s00366_025_02183_3 crossref_primary_10_1016_j_neunet_2024_106756 crossref_primary_10_1134_S0025654425601764 crossref_primary_10_1016_j_matcom_2020_08_024 crossref_primary_10_1007_s00419_020_01844_7 crossref_primary_10_1080_10407790_2024_2367064 crossref_primary_10_2478_mjpaa_2021_0021 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123627 crossref_primary_10_1088_1361_6501_ac41a8 crossref_primary_10_1007_s10483_024_3072_8 crossref_primary_10_1007_s00366_021_01328_4 crossref_primary_10_1016_j_camwa_2022_08_026 crossref_primary_10_1002_ls_1716 crossref_primary_10_1016_j_applthermaleng_2025_126888 crossref_primary_10_1007_s41062_024_01598_z crossref_primary_10_1016_j_ijheatmasstransfer_2025_126780 crossref_primary_10_1155_2020_8886682 crossref_primary_10_1016_j_icheatmasstransfer_2025_108599 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121778 crossref_primary_10_1007_s11431_022_2389_8 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124704 |
| Cites_doi | 10.1016/j.compstruct.2018.01.086 10.1002/nme.4795 10.1007/s40314-019-0782-z 10.1016/j.jcp.2013.11.005 10.1016/j.apm.2011.02.039 10.1002/nme.6328 10.1016/j.jcp.2019.06.062 10.1016/j.cma.2007.08.017 10.1016/j.engfracmech.2019.03.027 10.1016/j.cma.2008.12.024 10.1108/02644401111141028 10.1007/s00466-015-1212-8 10.1016/j.cma.2018.03.030 10.1016/j.compstruct.2019.110992 10.1002/nla.2205 10.1002/nme.4383 10.1016/j.apm.2015.04.002 10.1016/j.compstruct.2015.08.098 10.1016/0045-7825(94)00730-B 10.1016/j.ijheatmasstransfer.2019.118969 10.1016/j.cma.2010.10.005 10.1002/nme.2414 10.1016/j.cma.2011.09.012 10.1016/j.compstruc.2010.01.012 10.1016/j.jcp.2013.05.030 10.1007/s00211-010-0323-6 10.1016/S0045-7825(96)01087-0 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jul 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jul 2020 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2020.119804 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2020_119804 S0017931020303732 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c428t-dff4122f93d21af38edac5a677b48589be6de6063f863f9aadab4f93534f4a0d3 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545317500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Sun Oct 05 00:04:28 EDT 2025 Sat Nov 29 07:29:52 EST 2025 Tue Nov 18 22:21:28 EST 2025 Fri Feb 23 02:50:24 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Finite element discretization Heterogeneous problems Nonlinear heat transfer Functionally graded material Enrichment procedures Partition of unity method |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c428t-dff4122f93d21af38edac5a677b48589be6de6063f863f9aadab4f93534f4a0d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://durham-repository.worktribe.com/output/1225166 |
| PQID | 2442330475 |
| PQPubID | 2045464 |
| ParticipantIDs | proquest_journals_2442330475 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119804 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119804 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119804 |
| PublicationCentury | 2000 |
| PublicationDate | July 2020 2020-07-00 20200701 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Li, O’Hara, Duarte (bib0011) 2019; 213 Mohamed, El-Kacimi, Laghrouche (bib0017) 2010; 88 Karkon (bib0007) 2015; 134 Iqbal, Gimperlein, Laghrouche, Alam, Mohamed, Abid (bib0005) 2020 Mohamed, Seaid, Trevelyan, Laghrouche (bib0019) 2013; 93 Duarte, Kim (bib0003) 2008; 197 Malek, Izem, Seaid, Mohamed, Wakrim (bib0015) 2019; 38 Mohamed, Seaid, Trevelyan, Laghrouche (bib0020) 2013; 251 O’Hara, Duarte, Eason (bib0022) 2009; 198 Qin (bib0024) 1995; 122 O’Hara, Duarte, Eason (bib0023) 2011; 200 Khosravifard, Hematiyan, Marin (bib0008) 2011; 35 Li, Duarte (bib0010) 2018; 337 Diwan, Mohamed, Seaid, Trevelyan, Laghrouche (bib0002) 2015; 101 van der Meer, Al-Khoury, Sluys (bib0029) 2009; 77 Melenk, Babuška (bib0016) 1996; 139 Smoller (bib0028) 1982 Malek, Izem, Mohamed, Seaid, Laghrouche (bib0014) 2019; 396 Iqbal, Masood, Aljuhni, Ahmad (bib0006) 2020; 149 Qin (bib0025) 2000 Fu, Qin, Chen (bib0004) 2011; 28 Kim, Hong, Duarte (bib0009) 2015; 39 Xiao, Xu, Zhang (bib0030) 2018; 189 Lins, Ferreira, Proença, Duarte (bib0012) 2015; 56 She, Wang, Li (bib0027) 2019; 224 Liu, Han (bib0013) 2003 Mohamed, Seaid, Trevelyan, Laghrouche (bib0021) 2014; 258 Mohamed, Seaid, Bouhamidi (bib0018) 2018; 25 Schweitzer (bib0026) 2011; 118 Babuška, Banerjee (bib0001) 2012; 201 Mohamed (10.1016/j.ijheatmasstransfer.2020.119804_bib0021) 2014; 258 Diwan (10.1016/j.ijheatmasstransfer.2020.119804_bib0002) 2015; 101 Li (10.1016/j.ijheatmasstransfer.2020.119804_bib0010) 2018; 337 Melenk (10.1016/j.ijheatmasstransfer.2020.119804_bib0016) 1996; 139 Qin (10.1016/j.ijheatmasstransfer.2020.119804_bib0025) 2000 Malek (10.1016/j.ijheatmasstransfer.2020.119804_bib0014) 2019; 396 Malek (10.1016/j.ijheatmasstransfer.2020.119804_bib0015) 2019; 38 van der Meer (10.1016/j.ijheatmasstransfer.2020.119804_bib0029) 2009; 77 Mohamed (10.1016/j.ijheatmasstransfer.2020.119804_bib0017) 2010; 88 Li (10.1016/j.ijheatmasstransfer.2020.119804_bib0011) 2019; 213 O’Hara (10.1016/j.ijheatmasstransfer.2020.119804_bib0023) 2011; 200 Iqbal (10.1016/j.ijheatmasstransfer.2020.119804_bib0006) 2020; 149 Iqbal (10.1016/j.ijheatmasstransfer.2020.119804_bib0005) 2020 Xiao (10.1016/j.ijheatmasstransfer.2020.119804_bib0030) 2018; 189 Duarte (10.1016/j.ijheatmasstransfer.2020.119804_bib0003) 2008; 197 O’Hara (10.1016/j.ijheatmasstransfer.2020.119804_bib0022) 2009; 198 Mohamed (10.1016/j.ijheatmasstransfer.2020.119804_bib0019) 2013; 93 Babuška (10.1016/j.ijheatmasstransfer.2020.119804_bib0001) 2012; 201 Smoller (10.1016/j.ijheatmasstransfer.2020.119804_bib0028) 1982 Karkon (10.1016/j.ijheatmasstransfer.2020.119804_bib0007) 2015; 134 Khosravifard (10.1016/j.ijheatmasstransfer.2020.119804_bib0008) 2011; 35 Lins (10.1016/j.ijheatmasstransfer.2020.119804_bib0012) 2015; 56 Mohamed (10.1016/j.ijheatmasstransfer.2020.119804_bib0020) 2013; 251 Qin (10.1016/j.ijheatmasstransfer.2020.119804_bib0024) 1995; 122 Liu (10.1016/j.ijheatmasstransfer.2020.119804_bib0013) 2003 Mohamed (10.1016/j.ijheatmasstransfer.2020.119804_bib0018) 2018; 25 She (10.1016/j.ijheatmasstransfer.2020.119804_bib0027) 2019; 224 Schweitzer (10.1016/j.ijheatmasstransfer.2020.119804_bib0026) 2011; 118 Fu (10.1016/j.ijheatmasstransfer.2020.119804_bib0004) 2011; 28 Kim (10.1016/j.ijheatmasstransfer.2020.119804_bib0009) 2015; 39 |
| References_xml | – start-page: 269 year: 2003 end-page: 271 ident: bib0013 article-title: Computational Inverse Techniques in Nondestructive Evaluation – volume: 122 start-page: 379 year: 1995 end-page: 392 ident: bib0024 article-title: Hybrid-Trefftz finite element method for reissner plates on an elastic foundation publication-title: Comput. Methods Appl. Mech. Eng. – volume: 189 start-page: 553 year: 2018 end-page: 559 ident: bib0030 article-title: An analytical method for predicting the effective transverse thermal conductivity of nano coated fiber composites publication-title: Compos. Struct. – volume: 258 start-page: 718 year: 2014 end-page: 737 ident: bib0021 article-title: An enriched finite element model with q-refinement for radiative boundary layers in glass cooling publication-title: J. Comp. Phys. – volume: 201 start-page: 91 year: 2012 end-page: 111 ident: bib0001 article-title: Stable generalized finite element method (SGFEM) publication-title: Comput. Methods Appl. Mech. Eng. – year: 2020 ident: bib0005 article-title: A residual a-posteriori error estimate for PUFEM solutions of 3D transient heat diffusion problems using multiple global enrichment functions publication-title: Int. J. Numer. Methods Eng. – volume: 35 start-page: 4157 year: 2011 end-page: 4174 ident: bib0008 article-title: Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method publication-title: Appl. Math. Model. – volume: 118 start-page: 137 year: 2011 end-page: 170 ident: bib0026 article-title: Stable enrichment and local preconditioning in the particle-partition of unity method publication-title: Numer. Math. – volume: 56 start-page: 947 year: 2015 end-page: 965 ident: bib0012 article-title: An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method publication-title: Comput. Mech. – volume: 139 start-page: 289 year: 1996 end-page: 314 ident: bib0016 article-title: The partition of unity finite element method: basic theory and applications publication-title: Comput. Methods Appl. Mech. Eng. – volume: 224 start-page: 110992 year: 2019 ident: bib0027 article-title: Thermal analysis of multilayer coated fiber-reinforced composites by the hybrid Trefftz finite element method publication-title: Compos. Struct. – volume: 77 start-page: 240 year: 2009 end-page: 260 ident: bib0029 article-title: Time-dependent shape functions for modeling highly transient geothermal systems publication-title: Int. J. Numer. Meth. Eng. – volume: 251 start-page: 81 year: 2013 end-page: 101 ident: bib0020 article-title: Time-independent hybrid enrichment for finite element solution of transient conduction-radiation in diffusive grey media publication-title: J. Comp. Phys. – volume: 101 start-page: 54 year: 2015 end-page: 78 ident: bib0002 article-title: Mixed enrichment for the finite element method in heterogeneous media publication-title: Int. J. Numer. Meth. Eng. – volume: 93 start-page: 245 year: 2013 end-page: 265 ident: bib0019 article-title: A partition of unity FEM for time-dependent diffusion problems using multiple enrichment functions publication-title: Int. J. Numer. Meth. Eng. – volume: 213 start-page: 21 year: 2019 end-page: 52 ident: bib0011 article-title: A two-scale generalized FEM for the evaluation of stress intensity factors at spot welds subjected to thermomechanical loads publication-title: Eng. Fract. Mech. – volume: 396 start-page: 702 year: 2019 end-page: 717 ident: bib0014 article-title: A partition of unity finite element method for three-dimensional transient diffusion problems with sharp gradients publication-title: J. Comp. Phys. – volume: 39 start-page: 5837 year: 2015 end-page: 5848 ident: bib0009 article-title: Generalized finite element analysis using the preconditioned conjugate gradient method publication-title: Appl. Math. Model. – volume: 38 start-page: 31 year: 2019 ident: bib0015 article-title: A partition of unity finite element method for nonlinear transient diffusion problems in heterogeneous materials publication-title: Comp. Appl. Math. – volume: 134 start-page: 460 year: 2015 end-page: 474 ident: bib0007 article-title: Hybrid-Trefftz formulation for analysis of anisotropic and symmetric laminated plates publication-title: Compos. Struct. – year: 2000 ident: bib0025 article-title: The Trefftz Finite and Boundary Element Method – volume: 88 start-page: 1484 year: 2010 end-page: 1491 ident: bib0017 article-title: Some numerical aspects of the PUFEM for efficient solution of 2D Helmholtz problems publication-title: Comput. Struct. – year: 1982 ident: bib0028 article-title: Shock Waves and Reaction-Diffusion Equations – volume: 25 start-page: e2205 year: 2018 ident: bib0018 article-title: Iterative solvers for generalized finite element solution of boundary-value problems publication-title: Numer. Linear. Algebr. Appl. – volume: 198 start-page: 1857 year: 2009 end-page: 1871 ident: bib0022 article-title: Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients publication-title: Comput. Methods Appl. Mech. Eng. – volume: 200 start-page: 812 year: 2011 end-page: 829 ident: bib0023 article-title: Transient analysis of sharp thermal gradients using coarse finite element meshes publication-title: Comput. Methods Appl. Mech. Eng. – volume: 149 start-page: 118969 year: 2020 ident: bib0006 article-title: Generalized finite element method with time-independent enrichment functions for 3D transient heat diffusion problems publication-title: Int. J. Heat Mass Transf. – volume: 337 start-page: 28 year: 2018 end-page: 65 ident: bib0010 article-title: A two-scale generalized finite element method for parallel simulations of spot welds in large structures publication-title: Comput. Methods Appl. Mech. Eng. – volume: 28 start-page: 578 year: 2011 end-page: 599 ident: bib0004 article-title: Hybrid-Trefftz finite element method for heat conduction in nonlinear functionally graded materials publication-title: Eng. Comp. – volume: 197 start-page: 487 year: 2008 end-page: 504 ident: bib0003 article-title: Analysis and applications of a generalized finite element method with global-local enrichment functions publication-title: Comput. Methods Appl. Mech. Eng. – volume: 189 start-page: 553 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0030 article-title: An analytical method for predicting the effective transverse thermal conductivity of nano coated fiber composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.01.086 – volume: 101 start-page: 54 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0002 article-title: Mixed enrichment for the finite element method in heterogeneous media publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.4795 – volume: 38 start-page: 31 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0015 article-title: A partition of unity finite element method for nonlinear transient diffusion problems in heterogeneous materials publication-title: Comp. Appl. Math. doi: 10.1007/s40314-019-0782-z – volume: 258 start-page: 718 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0021 article-title: An enriched finite element model with q-refinement for radiative boundary layers in glass cooling publication-title: J. Comp. Phys. doi: 10.1016/j.jcp.2013.11.005 – volume: 35 start-page: 4157 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0008 article-title: Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.02.039 – year: 2020 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0005 article-title: A residual a-posteriori error estimate for PUFEM solutions of 3D transient heat diffusion problems using multiple global enrichment functions publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.6328 – volume: 396 start-page: 702 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0014 article-title: A partition of unity finite element method for three-dimensional transient diffusion problems with sharp gradients publication-title: J. Comp. Phys. doi: 10.1016/j.jcp.2019.06.062 – volume: 197 start-page: 487 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0003 article-title: Analysis and applications of a generalized finite element method with global-local enrichment functions publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2007.08.017 – volume: 213 start-page: 21 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0011 article-title: A two-scale generalized FEM for the evaluation of stress intensity factors at spot welds subjected to thermomechanical loads publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2019.03.027 – volume: 198 start-page: 1857 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0022 article-title: Generalized finite element analysis of three-dimensional heat transfer problems exhibiting sharp thermal gradients publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.12.024 – volume: 28 start-page: 578 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0004 article-title: Hybrid-Trefftz finite element method for heat conduction in nonlinear functionally graded materials publication-title: Eng. Comp. doi: 10.1108/02644401111141028 – volume: 56 start-page: 947 issue: 6 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0012 article-title: An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method publication-title: Comput. Mech. doi: 10.1007/s00466-015-1212-8 – volume: 337 start-page: 28 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0010 article-title: A two-scale generalized finite element method for parallel simulations of spot welds in large structures publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.03.030 – volume: 224 start-page: 110992 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0027 article-title: Thermal analysis of multilayer coated fiber-reinforced composites by the hybrid Trefftz finite element method publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.110992 – volume: 25 start-page: e2205 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0018 article-title: Iterative solvers for generalized finite element solution of boundary-value problems publication-title: Numer. Linear. Algebr. Appl. doi: 10.1002/nla.2205 – volume: 93 start-page: 245 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0019 article-title: A partition of unity FEM for time-dependent diffusion problems using multiple enrichment functions publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.4383 – volume: 39 start-page: 5837 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0009 article-title: Generalized finite element analysis using the preconditioned conjugate gradient method publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2015.04.002 – volume: 134 start-page: 460 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0007 article-title: Hybrid-Trefftz formulation for analysis of anisotropic and symmetric laminated plates publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.08.098 – volume: 122 start-page: 379 year: 1995 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0024 article-title: Hybrid-Trefftz finite element method for reissner plates on an elastic foundation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(94)00730-B – start-page: 269 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0013 – year: 1982 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0028 – volume: 149 start-page: 118969 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0006 article-title: Generalized finite element method with time-independent enrichment functions for 3D transient heat diffusion problems publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.118969 – year: 2000 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0025 – volume: 200 start-page: 812 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0023 article-title: Transient analysis of sharp thermal gradients using coarse finite element meshes publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.10.005 – volume: 77 start-page: 240 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0029 article-title: Time-dependent shape functions for modeling highly transient geothermal systems publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.2414 – volume: 201 start-page: 91 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0001 article-title: Stable generalized finite element method (SGFEM) publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2011.09.012 – volume: 88 start-page: 1484 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0017 article-title: Some numerical aspects of the PUFEM for efficient solution of 2D Helmholtz problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2010.01.012 – volume: 251 start-page: 81 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0020 article-title: Time-independent hybrid enrichment for finite element solution of transient conduction-radiation in diffusive grey media publication-title: J. Comp. Phys. doi: 10.1016/j.jcp.2013.05.030 – volume: 118 start-page: 137 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0026 article-title: Stable enrichment and local preconditioning in the particle-partition of unity method publication-title: Numer. Math. doi: 10.1007/s00211-010-0323-6 – volume: 139 start-page: 289 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2020.119804_bib0016 article-title: The partition of unity finite element method: basic theory and applications publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(96)01087-0 |
| SSID | ssj0017046 |
| Score | 2.4930322 |
| Snippet | •Development of an efficient partition of unity finite element method for the 3D nonlinear transient heat transfer in functionally graded... Nonlinear transient heat transfer in functionally graded materials is being studied more popular in present. In preliminary design, this problem can be... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119804 |
| SubjectTerms | Basis functions Boundary layers Composite materials Enrichment Enrichment procedures Exponential functions Finite element analysis Finite element discretization Finite element method Functionally graded material Functionally gradient materials Heat transfer Heterogeneous problems Nonlinear heat transfer Partition of unity method Preliminary designs Temperature dependence Thermal conductivity Three dimensional analysis Three dimensional composites Transient heat transfer Unstructured grids (mathematics) |
| Title | A three-dimensional enriched finite element method for nonlinear transient heat transfer in functionally graded materials |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119804 https://www.proquest.com/docview/2442330475 |
| Volume | 155 |
| WOSCitedRecordID | wos000545317500027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9swEBch3cZexv7Sbt3Qwx4GxsWx7Fh6GqF0rGMpg3WQNyNb0uKQuiFJS9sP1s-3O0ty0oaNBbaHiNixz1Lu57vT6e5EyHuZmpQpYUIT4zKjhIYX_RIazWUc64SnTaLw1-zkhI9G4lunc-tzYS6nWV3zqysx-6-shnPAbEyd3YLdLVE4Ad-B6dAC26H9K8ZjnMZc61Bh3X5bcyOAazHkUwWmQhsz0DZo3O0f3YQa1rZmhpzjrhFwH_6MgtoeGo1h6wFqQes8nF4HP-dSAUkwee2w1u3cu47GtfIUDUl01p-B1d7SXvnFp7oRz0PM65qNW51xfKMtcM8vWv_18HwsQZcHw8aDO5aqat1FWlZ2s2S85MzlbznfBkxkfRysc7j5pJtVhFMjxEGxCuaiYbWV2zwTIVgr4o5gtwWAN5SE9VdMDqoJjhmH60d7gJ0ALSK43RP5Xinu71Ejz3q4ehuxjIHq34mzVPAu2RkcH42-tOtXWWRTxHxXH5EPq8jCPz_3dwbSPVOhsX9On5InbuJCBxZwz0hH18_JwyaAuFy8INcDugE76mFHLeyogx21sKMAO9rCjrawo9hv6jtNq5quw45a2NEWdi_Jj09Hp4efQ7etR1jCXHcZKmOSXhwbwVTck4ZxrWSZyn6WFSAZuCh0X2mYVzPD4SOkVLJI4OqUJSaRkWKvSBc6p3cJlUIqUUSxBpWdREWM1ioTSVSqUnCYaeyRj_6_zEtX8x63XpnmPrhxkm9yI0du5JYbe0S0FGa2_ssW9x569uXOnrV2ag5I3ILKvud87l7XRQ5GeYyeyCx9_U8e8oY8Xr1_-6S7nF_ot-RBebmsFvN3Dt2_AHBt5l4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+three-dimensional+enriched+finite+element+method+for+nonlinear+transient+heat+transfer+in+functionally+graded+materials&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Malek%2C+Mustapha&rft.au=Izem%2C+Nouh&rft.au=Mohamed+M%2C+Shadi&rft.au=Seaid%2C+Mohammed&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=155&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119804&rft.externalDocID=S0017931020303732 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |