Reconstruction and Recognition of Tensor-Based Objects With Concurrent Subspaces Analysis

Principal components analysis (PCA) has traditionally been utilized with data expressed in the form of 1-D vectors, but there exists much data such as gray-level images, video sequences, Gabor-filtered images and so on, that are intrinsically in the form of second or higher order tensors. For repres...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology Vol. 18; no. 1; pp. 36 - 47
Main Authors: Dong Xu, Shuicheng Yan, Lei Zhang, Lin, S., Hong-Jiang Zhang, Huang, T.S.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.01.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1051-8215, 1558-2205
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Principal components analysis (PCA) has traditionally been utilized with data expressed in the form of 1-D vectors, but there exists much data such as gray-level images, video sequences, Gabor-filtered images and so on, that are intrinsically in the form of second or higher order tensors. For representations of image objects in their intrinsic form and order rather than concatenating all the object data into a single vector, we propose in this paper a new optimal object reconstruction criterion with which the information of a high-dimensional tensor is represented as a much lower dimensional tensor computed from projections to multiple concurrent subspaces. In each of these subspaces, correlations with respect to one of the tensor dimensions are reduced, enabling better object reconstruction performance. Concurrent subspaces analysis (CSA) is presented to efficiently learn these subspaces in an iterative manner. In contrast to techniques such as PCA which vectorize tensor data, CSA's direct use of data in tensor form brings an enhanced ability to learn a representative subspace and an increased number of available projection directions. These properties enable CSA to outperform traditional algorithms in the common case of small sample sizes, where CSA can be effective even with only a single sample per class. Extensive experiments on images of faces and digital numbers encoded as second or third order tensors demonstrate that the proposed CSA outperforms PCA-based algorithms in object reconstruction and object recognition.
AbstractList Principal components analysis (PCA) has traditionally been utilized with data expressed in the form of 1-D vectors, but there exists much data such as gray-level images, video sequences, Gabor-filtered images and so on, that are intrinsically in the form of second or higher order tensors. For representations of image objects in their intrinsic form and order rather than concatenating all the object data into a single vector, we propose in this paper a new optimal object reconstruction criterion with which the information of a high-dimensional tensor is represented as a much lower dimensional tensor computed from projections to multiple concurrent subspaces. In each of these subspaces, correlations with respect to one of the tensor dimensions are reduced, enabling better object reconstruction performance. Concurrent subspaces analysis (CSA) is presented to efficiently learn these subspaces in an iterative manner. In contrast to techniques such as PCA which vectorize tensor data, CSA's direct use of data in tensor form brings an enhanced ability to learn a representative subspace and an increased number of available projection directions. These properties enable CSA to outperform traditional algorithms in the common case of small sample sizes, where CSA can be effective even with only a single sample per class. Extensive experiments on images of faces and digital numbers encoded as second or third order tensors demonstrate that the proposed CSA outperforms PCA-based algorithms in object reconstruction and object recognition.
Principal components analysis (PCA) has traditionally been utilized with data expressed in the form of 1-D vectors, but there exists much data such as gray-level images, video sequences, Gabor-filtered images and so on, that are intrinsically in the form of second or higher order tensors. For representations of image objects in their intrinsic form and order rather than concatenating all the object data into a single vector, we propose in this paper a new optimal object reconstruction criterion with which the information of a high-dimensional tensor is represented as a much lower dimensional tensor computed from projections to multiple concurrent subspaces. In each of these subspaces, correlations with respect to one of the tensor dimensions are reduced, enabling better object reconstruction performance. Concurrent subspaces analysis (CSA) is presented to efficiently learn these subspaces in an iterative manner. In contrast to techniques such as PCA which vectorize tensor data, CSAas direct use of data in tensor form brings an enhanced ability to learn a representative subspace and an increased number of available projection directions. These properties enable CSA to outperform traditional algorithms in the common case of small sample sizes, where CSA can be effective even with only a single sample per class. Extensive experiments on images of faces and digital numbers encoded as second or third order tensors demonstrate that the proposed CSA outperforms PCA- based algorithms in object reconstruction and object recognition.
For representations of image objects in their intrinsic form and order rather than concatenating all the object data into a single vector, we propose in this paper a new optimal object reconstruction criterion with which the information of a high-dimensional tensor is represented as a much lower dimensional tensor computed from projections to multiple concurrent subspaces.
Author Lin, S.
Lei Zhang
Shuicheng Yan
Huang, T.S.
Dong Xu
Hong-Jiang Zhang
Author_xml – sequence: 1
  surname: Dong Xu
  fullname: Dong Xu
  organization: Nanyang Technol. Univ., Singapore
– sequence: 2
  surname: Shuicheng Yan
  fullname: Shuicheng Yan
– sequence: 3
  surname: Lei Zhang
  fullname: Lei Zhang
– sequence: 4
  givenname: S.
  surname: Lin
  fullname: Lin, S.
– sequence: 5
  surname: Hong-Jiang Zhang
  fullname: Hong-Jiang Zhang
– sequence: 6
  givenname: T.S.
  surname: Huang
  fullname: Huang, T.S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20041254$$DView record in Pascal Francis
BookMark eNp9kU1rFTEUhoNUsK3-AHEzCNrVXPOd3GW9WBUKBXtVXIVM5ozmMk1uczKL_ntnequLLrrKyeF5XkjeE3KUcgJCXjO6YoyuP2w31z-2K06pWa2pEMw8I8dMKdtyTtXRPFPFWsuZekFOEHeUMmmlOSa_vkHICWuZQo05NT71zbL6neL9PQ_NFhLm0n70CH1z1e0gVGx-xvqn2eQUplIg1eZ66nDvA2Bznvx4hxFfkueDHxFePZyn5PvFp-3mS3t59fnr5vyyDZLb2vaD6BkfuO21YGC9kBp66qUE4Q1jhtvBd54qI7npuBIwdFqDsBA0F5pbcUrODrn7km8nwOpuIgYYR58gT-isUVQbbfVMvn-SFFJxScUS-fYRuMtTmd-Fbs04nxO1mKF3D5DH4Meh-BQiun2JN77cubkKybiSM2cOXCgZscDgQqx--dxafBwdo25p0N03uGjGHRqcTfbI_Bf-lPPm4EQA-M9LoaxWSvwF8emoPQ
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TNN_2009_2031144
crossref_primary_10_1007_s40314_024_02866_5
crossref_primary_10_1016_j_neucom_2011_03_009
crossref_primary_10_1109_TCSVT_2009_2020337
crossref_primary_10_1016_j_ins_2014_12_020
crossref_primary_10_1016_j_sigpro_2014_08_005
crossref_primary_10_4304_jmm_6_1_39_47
crossref_primary_10_1016_j_compeleceng_2022_108180
crossref_primary_10_1109_TIP_2009_2018015
crossref_primary_10_1016_j_eswa_2012_02_139
crossref_primary_10_1109_ACCESS_2020_3030086
crossref_primary_10_1016_j_patcog_2011_01_004
crossref_primary_10_1109_JSTARS_2020_3000284
crossref_primary_10_1109_TNNLS_2015_2469100
crossref_primary_10_1016_j_neucom_2010_01_008
crossref_primary_10_1109_TCYB_2019_2914316
crossref_primary_10_1016_j_neucom_2009_08_014
crossref_primary_10_1109_TCSVT_2014_2305495
crossref_primary_10_1109_TMM_2016_2608780
crossref_primary_10_1109_TIP_2020_2984849
crossref_primary_10_1016_j_neucom_2017_08_070
crossref_primary_10_1016_j_neucom_2013_09_062
crossref_primary_10_1049_iet_cvi_2013_0144
crossref_primary_10_1016_j_neucom_2010_07_014
crossref_primary_10_1109_TCSI_2010_2052485
crossref_primary_10_1007_s10044_013_0317_y
crossref_primary_10_1016_j_neucom_2010_10_015
crossref_primary_10_1109_JPROC_2018_2848209
crossref_primary_10_1109_ACCESS_2020_2981794
crossref_primary_10_1109_ACCESS_2020_3044954
crossref_primary_10_1016_j_jvcir_2016_10_006
crossref_primary_10_1109_MSMC_2020_3012304
crossref_primary_10_1109_TCSVT_2008_2002825
crossref_primary_10_1109_TCYB_2021_3055238
crossref_primary_10_1186_s13634_015_0224_z
crossref_primary_10_1109_TIP_2010_2049235
crossref_primary_10_1109_TCSVT_2014_2351092
crossref_primary_10_1109_TIP_2013_2264678
crossref_primary_10_1109_TNNLS_2013_2297381
crossref_primary_10_1155_2014_597245
crossref_primary_10_1109_TCSVT_2012_2202079
crossref_primary_10_1049_iet_ipr_2014_0885
crossref_primary_10_1016_j_neucom_2010_04_017
crossref_primary_10_1016_j_neucom_2018_02_014
crossref_primary_10_3390_s120607938
crossref_primary_10_1109_TSMC_2013_2258010
crossref_primary_10_1088_1741_2552_ab5247
crossref_primary_10_1109_TCYB_2015_2501385
crossref_primary_10_1016_j_neucom_2013_12_019
crossref_primary_10_1007_s11460_011_0129_z
crossref_primary_10_1109_TPAMI_2015_2392756
crossref_primary_10_1016_j_cviu_2017_10_004
crossref_primary_10_1007_s00521_013_1435_6
crossref_primary_10_1109_TGRS_2012_2197860
Cites_doi 10.1007/BF02289464
10.1109/CVPR.2005.290
10.1109/34.598235
10.1109/34.879790
10.1109/34.598228
10.1109/ICME.2006.262468
10.1007/s10115-006-0050-6
10.1162/jocn.1991.3.1.71
10.1007/BF02293599
10.1109/MMMC.2005.57
10.1109/5.726791
10.1109/CVPR.2005.107
10.1109/MMUL.2002.1022858
10.1137/S0895479896305696
10.1109/TPAMI.2003.1251154
10.1109/CVPR.2003.1211457
10.1109/ICPR.1996.546948
10.1137/S0895479800368354
10.1109/ICPR.2002.1048350
10.1109/TPAMI.2004.1261097
10.1145/1015330.1015347
10.1137/S0895479898346995
10.1109/CVPR.2001.990454
10.1109/TPAMI.2004.57
10.1109/TCSVT.2002.803231
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TCSVT.2007.903317
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1558-2205
EndPage 47
ExternalDocumentID 2545201581
20041254
10_1109_TCSVT_2007_903317
4358655
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c428t-df3d12f28d631e8a346ed0a44e3a711728faba057427b253efb66e38ec6236283
IEDL.DBID RIE
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000252813100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Wed Oct 01 13:22:36 EDT 2025
Mon Sep 29 06:27:19 EDT 2025
Sun Oct 05 00:00:27 EDT 2025
Mon Jul 21 09:17:50 EDT 2025
Sat Nov 29 01:43:57 EST 2025
Tue Nov 18 21:55:22 EST 2025
Tue Aug 26 16:47:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Object Reconstruction
Dimensionality Reduction
Concurrent Subspaces Analysis
Object Representation
Principal Components Analysis
Performance evaluation
Gabor filter
Second order
Concurrent subspaces analysis (CSA)
Grey level image
Image processing
Third order
Video signal
Subspace method
Iterative method
Pattern recognition
Object recognition
Algorithm
Image reconstruction
Statistical method
object reconstruction
dimensionality reduction
Image sequence
object representation
Object detection
Object oriented
principal components analysis (PCA)
Target detection
Principal component analysis
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-df3d12f28d631e8a346ed0a44e3a711728faba057427b253efb66e38ec6236283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://scholarbank.nus.edu.sg/handle/10635/57214
PQID 912287563
PQPubID 23500
PageCount 12
ParticipantIDs proquest_journals_912287563
ieee_primary_4358655
proquest_miscellaneous_875067686
proquest_miscellaneous_34524038
crossref_citationtrail_10_1109_TCSVT_2007_903317
crossref_primary_10_1109_TCSVT_2007_903317
pascalfrancis_primary_20041254
PublicationCentury 2000
PublicationDate 2008-Jan.
2008-01-00
2008
20080101
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-Jan.
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2008
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref31
ref30
ref11
ref10
xu (ref27) 0
ref1
ref17
ref16
ref18
dai (ref2) 2006
vasilescu (ref19) 2002
ref24
ref23
ref26
ref25
ref20
ref22
ref21
he (ref6) 2005
ref28
ref29
ref8
ref7
ref9
ref3
ref5
olivetti (ref13) 0
fukunaga (ref4) 1991
References_xml – ident: ref22
  doi: 10.1007/BF02289464
– ident: ref23
  doi: 10.1109/CVPR.2005.290
– ident: ref25
  doi: 10.1109/34.598235
– ident: ref14
  doi: 10.1109/34.879790
– ident: ref1
  doi: 10.1109/34.598228
– ident: ref12
  doi: 10.1109/ICME.2006.262468
– ident: ref17
  doi: 10.1007/s10115-006-0050-6
– ident: ref18
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref8
  doi: 10.1007/BF02293599
– ident: ref26
  doi: 10.1109/MMMC.2005.57
– ident: ref11
  doi: 10.1109/5.726791
– ident: ref28
  doi: 10.1109/CVPR.2005.107
– start-page: 330
  year: 2006
  ident: ref2
  article-title: tensor embedding methods
  publication-title: Proc Nat Conf Artif Intell
– ident: ref3
  doi: 10.1109/MMUL.2002.1022858
– year: 0
  ident: ref27
  publication-title: Coupled Subspaces Analysis
– ident: ref9
  doi: 10.1137/S0895479896305696
– year: 1991
  ident: ref4
  publication-title: Introduction to statistical pattern recognition
– ident: ref16
  doi: 10.1109/TPAMI.2003.1251154
– ident: ref21
  doi: 10.1109/CVPR.2003.1211457
– start-page: 447
  year: 2002
  ident: ref19
  article-title: multilinear analysis of image ensembles: tensorfaces
  publication-title: Proc Eur Conf Comp Vis
– ident: ref5
  doi: 10.1109/ICPR.1996.546948
– ident: ref7
  doi: 10.1137/S0895479800368354
– ident: ref20
  doi: 10.1109/ICPR.2002.1048350
– year: 2005
  ident: ref6
  article-title: tensor subspace analysis
  publication-title: Adv Neural Inf Process Syst
– ident: ref30
  doi: 10.1109/TPAMI.2004.1261097
– ident: ref31
  doi: 10.1145/1015330.1015347
– ident: ref10
  doi: 10.1137/S0895479898346995
– year: 0
  ident: ref13
  publication-title: Oracle Research Laboratory Face Database of Faces (2007)
– ident: ref15
  doi: 10.1109/CVPR.2001.990454
– ident: ref24
  doi: 10.1109/TPAMI.2004.57
– ident: ref29
  doi: 10.1109/TCSVT.2002.803231
SSID ssj0014847
Score 2.211112
Snippet Principal components analysis (PCA) has traditionally been utilized with data expressed in the form of 1-D vectors, but there exists much data such as...
For representations of image objects in their intrinsic form and order rather than concatenating all the object data into a single vector, we propose in this...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36
SubjectTerms Algorithms
Applied sciences
Asia
Concurrent subspaces analysis (CSA)
Detection, estimation, filtering, equalization, prediction
dimensionality reduction
Exact sciences and technology
Face recognition
Image analysis
Image processing
Image reconstruction
Image sequence analysis
Information, signal and communications theory
Mathematical analysis
Matrix decomposition
Object recognition
object reconstruction
object representation
Pattern recognition
Principal component analysis
Principal components analysis
principal components analysis (PCA)
Projection
Reconstruction
Signal and communications theory
Signal processing
Signal, noise
Studies
Subspaces
Telecommunications and information theory
Tensile stress
Tensors
Video sequences
Title Reconstruction and Recognition of Tensor-Based Objects With Concurrent Subspaces Analysis
URI https://ieeexplore.ieee.org/document/4358655
https://www.proquest.com/docview/912287563
https://www.proquest.com/docview/34524038
https://www.proquest.com/docview/875067686
Volume 18
WOSCitedRecordID wos000252813100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB51Kw5w4LUg0i2LDz0hTOPYcexjWVFxKoiGspwiJ3bUlaqkanb7-xk7j1LxkLglshNZM7ZnxjP-PoCjUuiSJ8ZQY9OSCmdqqtHNoFZppo23mNIEsons7Eyt1_rLHryb7sI450LxmXvvH0Mu37bVzh-VHaNp9_coZzDLMtnf1ZoyBkIFMjF0FxhVaMeGDCaL9XG-Or_Ie7RCHXMeuMnubFAgVfElkaZDqdQ9ncVvO3MwN6dP_m-gT-Hx4FaSk34ePIM91zyHR7-ADc7hh4807_BiiWks-TqWD-F7W5McY9r2hn5Ay2bJ59If0XTk-2Z7SVZtU_VITsRvNde-kIuMgCYv4Nvpx3z1iQ7ECrTCaGNLbc0tS-pEWcmZU4YL6WxshHDcZMwzVtWmNOjJiSQrk5S7upTSceUqdJYkOiQvYb9pG_cKiHbCWo7rvsLARLDMiJpVqAolNAq8zCKIR1EX1YA67skvrooQfcS6CNrxbJhZ0WsngrfTJ9c95Ma_Os-9-KeOg-QjWN7T59SeBICxVESwGBVcDKu2KzRLMIBMJY_gzdSKy83nUEzj2l1XcJF6BEMVAflLD_wBegBSyYM_D20BD_uaE3-Mcwj7qHb3Gh5Ut9tNd7MMk_onHOb00A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3RT9YwEL8AkqAPioBhotAHnwyFde269lG_SCDAp8GJ-LR0axdIyEbYh3-_127f0KAkvm1ptzR3be-ud_39AN6VQpc8MYYam5ZUOFNTjW4GtUozbbzFlCaQTWTTqbq40F8WYHe8C-OcC8Vnbs8_hly-bas7f1S2j6bd36NchCepEEnc39YacwZCBToxdBgYVWjJhhwmi_V-Pvl6nvd4hTrmPLCT3VuhQKviiyJNh3Kpe0KLB3tzMDgHL_5vqKvwfHAsyYd-JryEBdeswbPf4AbX4YePNe8RY4lpLDmbFxDhe1uTHKPa9pZ-RNtmyefSH9J05PvV7JJM2qbqsZyI32xufCkXmUOabMC3g0_55JAO1Aq0wnhjRm3NLUvqRFnJmVOGC-lsbIRw3GTMc1bVpjToy4kkK5OUu7qU0nHlKnSXJLokr2CpaRu3CUQ7YS3HlV9haCJYZkTNKlSFEhoFXmYRxHNRF9WAO-7pL66LEH_Eugja8XyYWdFrJ4L34yc3PejGY53XvfjHjoPkI9j-Q59jexIgxlIRwdZcwcWwbrtCswRDyFTyCHbGVlxwPotiGtfedQUXqccwVBGQf_TAH6APIJV8_feh7cDKYX56UpwcTY-34GlfgeIPdd7AEk4B9xaWq5-zq-52O0zwX_mF-Bc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+and+Recognition+of+Tensor-Based+Objects+With+Concurrent+Subspaces+Analysis&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=DONG+XU&rft.au=SHUICHENG+YAN&rft.au=LEI+ZHANG&rft.au=STEPHEN+LIN&rft.date=2008&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1051-8215&rft.volume=18&rft.issue=1&rft.spage=36&rft.epage=47&rft_id=info:doi/10.1109%2FTCSVT.2007.903317&rft.externalDBID=n%2Fa&rft.externalDocID=20041254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon