Reconstruction and Recognition of Tensor-Based Objects With Concurrent Subspaces Analysis
Principal components analysis (PCA) has traditionally been utilized with data expressed in the form of 1-D vectors, but there exists much data such as gray-level images, video sequences, Gabor-filtered images and so on, that are intrinsically in the form of second or higher order tensors. For repres...
Saved in:
| Published in: | IEEE transactions on circuits and systems for video technology Vol. 18; no. 1; pp. 36 - 47 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York, NY
IEEE
01.01.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1051-8215, 1558-2205 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Principal components analysis (PCA) has traditionally been utilized with data expressed in the form of 1-D vectors, but there exists much data such as gray-level images, video sequences, Gabor-filtered images and so on, that are intrinsically in the form of second or higher order tensors. For representations of image objects in their intrinsic form and order rather than concatenating all the object data into a single vector, we propose in this paper a new optimal object reconstruction criterion with which the information of a high-dimensional tensor is represented as a much lower dimensional tensor computed from projections to multiple concurrent subspaces. In each of these subspaces, correlations with respect to one of the tensor dimensions are reduced, enabling better object reconstruction performance. Concurrent subspaces analysis (CSA) is presented to efficiently learn these subspaces in an iterative manner. In contrast to techniques such as PCA which vectorize tensor data, CSA's direct use of data in tensor form brings an enhanced ability to learn a representative subspace and an increased number of available projection directions. These properties enable CSA to outperform traditional algorithms in the common case of small sample sizes, where CSA can be effective even with only a single sample per class. Extensive experiments on images of faces and digital numbers encoded as second or third order tensors demonstrate that the proposed CSA outperforms PCA-based algorithms in object reconstruction and object recognition. |
|---|---|
| AbstractList | Principal components analysis (PCA) has traditionally been utilized with data expressed in the form of 1-D vectors, but there exists much data such as gray-level images, video sequences, Gabor-filtered images and so on, that are intrinsically in the form of second or higher order tensors. For representations of image objects in their intrinsic form and order rather than concatenating all the object data into a single vector, we propose in this paper a new optimal object reconstruction criterion with which the information of a high-dimensional tensor is represented as a much lower dimensional tensor computed from projections to multiple concurrent subspaces. In each of these subspaces, correlations with respect to one of the tensor dimensions are reduced, enabling better object reconstruction performance. Concurrent subspaces analysis (CSA) is presented to efficiently learn these subspaces in an iterative manner. In contrast to techniques such as PCA which vectorize tensor data, CSA's direct use of data in tensor form brings an enhanced ability to learn a representative subspace and an increased number of available projection directions. These properties enable CSA to outperform traditional algorithms in the common case of small sample sizes, where CSA can be effective even with only a single sample per class. Extensive experiments on images of faces and digital numbers encoded as second or third order tensors demonstrate that the proposed CSA outperforms PCA-based algorithms in object reconstruction and object recognition. Principal components analysis (PCA) has traditionally been utilized with data expressed in the form of 1-D vectors, but there exists much data such as gray-level images, video sequences, Gabor-filtered images and so on, that are intrinsically in the form of second or higher order tensors. For representations of image objects in their intrinsic form and order rather than concatenating all the object data into a single vector, we propose in this paper a new optimal object reconstruction criterion with which the information of a high-dimensional tensor is represented as a much lower dimensional tensor computed from projections to multiple concurrent subspaces. In each of these subspaces, correlations with respect to one of the tensor dimensions are reduced, enabling better object reconstruction performance. Concurrent subspaces analysis (CSA) is presented to efficiently learn these subspaces in an iterative manner. In contrast to techniques such as PCA which vectorize tensor data, CSAas direct use of data in tensor form brings an enhanced ability to learn a representative subspace and an increased number of available projection directions. These properties enable CSA to outperform traditional algorithms in the common case of small sample sizes, where CSA can be effective even with only a single sample per class. Extensive experiments on images of faces and digital numbers encoded as second or third order tensors demonstrate that the proposed CSA outperforms PCA- based algorithms in object reconstruction and object recognition. For representations of image objects in their intrinsic form and order rather than concatenating all the object data into a single vector, we propose in this paper a new optimal object reconstruction criterion with which the information of a high-dimensional tensor is represented as a much lower dimensional tensor computed from projections to multiple concurrent subspaces. |
| Author | Lin, S. Lei Zhang Shuicheng Yan Huang, T.S. Dong Xu Hong-Jiang Zhang |
| Author_xml | – sequence: 1 surname: Dong Xu fullname: Dong Xu organization: Nanyang Technol. Univ., Singapore – sequence: 2 surname: Shuicheng Yan fullname: Shuicheng Yan – sequence: 3 surname: Lei Zhang fullname: Lei Zhang – sequence: 4 givenname: S. surname: Lin fullname: Lin, S. – sequence: 5 surname: Hong-Jiang Zhang fullname: Hong-Jiang Zhang – sequence: 6 givenname: T.S. surname: Huang fullname: Huang, T.S. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20041254$$DView record in Pascal Francis |
| BookMark | eNp9kU1rFTEUhoNUsK3-AHEzCNrVXPOd3GW9WBUKBXtVXIVM5ozmMk1uczKL_ntnequLLrrKyeF5XkjeE3KUcgJCXjO6YoyuP2w31z-2K06pWa2pEMw8I8dMKdtyTtXRPFPFWsuZekFOEHeUMmmlOSa_vkHICWuZQo05NT71zbL6neL9PQ_NFhLm0n70CH1z1e0gVGx-xvqn2eQUplIg1eZ66nDvA2Bznvx4hxFfkueDHxFePZyn5PvFp-3mS3t59fnr5vyyDZLb2vaD6BkfuO21YGC9kBp66qUE4Q1jhtvBd54qI7npuBIwdFqDsBA0F5pbcUrODrn7km8nwOpuIgYYR58gT-isUVQbbfVMvn-SFFJxScUS-fYRuMtTmd-Fbs04nxO1mKF3D5DH4Meh-BQiun2JN77cubkKybiSM2cOXCgZscDgQqx--dxafBwdo25p0N03uGjGHRqcTfbI_Bf-lPPm4EQA-M9LoaxWSvwF8emoPQ |
| CODEN | ITCTEM |
| CitedBy_id | crossref_primary_10_1109_TNN_2009_2031144 crossref_primary_10_1007_s40314_024_02866_5 crossref_primary_10_1016_j_neucom_2011_03_009 crossref_primary_10_1109_TCSVT_2009_2020337 crossref_primary_10_1016_j_ins_2014_12_020 crossref_primary_10_1016_j_sigpro_2014_08_005 crossref_primary_10_4304_jmm_6_1_39_47 crossref_primary_10_1016_j_compeleceng_2022_108180 crossref_primary_10_1109_TIP_2009_2018015 crossref_primary_10_1016_j_eswa_2012_02_139 crossref_primary_10_1109_ACCESS_2020_3030086 crossref_primary_10_1016_j_patcog_2011_01_004 crossref_primary_10_1109_JSTARS_2020_3000284 crossref_primary_10_1109_TNNLS_2015_2469100 crossref_primary_10_1016_j_neucom_2010_01_008 crossref_primary_10_1109_TCYB_2019_2914316 crossref_primary_10_1016_j_neucom_2009_08_014 crossref_primary_10_1109_TCSVT_2014_2305495 crossref_primary_10_1109_TMM_2016_2608780 crossref_primary_10_1109_TIP_2020_2984849 crossref_primary_10_1016_j_neucom_2017_08_070 crossref_primary_10_1016_j_neucom_2013_09_062 crossref_primary_10_1049_iet_cvi_2013_0144 crossref_primary_10_1016_j_neucom_2010_07_014 crossref_primary_10_1109_TCSI_2010_2052485 crossref_primary_10_1007_s10044_013_0317_y crossref_primary_10_1016_j_neucom_2010_10_015 crossref_primary_10_1109_JPROC_2018_2848209 crossref_primary_10_1109_ACCESS_2020_2981794 crossref_primary_10_1109_ACCESS_2020_3044954 crossref_primary_10_1016_j_jvcir_2016_10_006 crossref_primary_10_1109_MSMC_2020_3012304 crossref_primary_10_1109_TCSVT_2008_2002825 crossref_primary_10_1109_TCYB_2021_3055238 crossref_primary_10_1186_s13634_015_0224_z crossref_primary_10_1109_TIP_2010_2049235 crossref_primary_10_1109_TCSVT_2014_2351092 crossref_primary_10_1109_TIP_2013_2264678 crossref_primary_10_1109_TNNLS_2013_2297381 crossref_primary_10_1155_2014_597245 crossref_primary_10_1109_TCSVT_2012_2202079 crossref_primary_10_1049_iet_ipr_2014_0885 crossref_primary_10_1016_j_neucom_2010_04_017 crossref_primary_10_1016_j_neucom_2018_02_014 crossref_primary_10_3390_s120607938 crossref_primary_10_1109_TSMC_2013_2258010 crossref_primary_10_1088_1741_2552_ab5247 crossref_primary_10_1109_TCYB_2015_2501385 crossref_primary_10_1016_j_neucom_2013_12_019 crossref_primary_10_1007_s11460_011_0129_z crossref_primary_10_1109_TPAMI_2015_2392756 crossref_primary_10_1016_j_cviu_2017_10_004 crossref_primary_10_1007_s00521_013_1435_6 crossref_primary_10_1109_TGRS_2012_2197860 |
| Cites_doi | 10.1007/BF02289464 10.1109/CVPR.2005.290 10.1109/34.598235 10.1109/34.879790 10.1109/34.598228 10.1109/ICME.2006.262468 10.1007/s10115-006-0050-6 10.1162/jocn.1991.3.1.71 10.1007/BF02293599 10.1109/MMMC.2005.57 10.1109/5.726791 10.1109/CVPR.2005.107 10.1109/MMUL.2002.1022858 10.1137/S0895479896305696 10.1109/TPAMI.2003.1251154 10.1109/CVPR.2003.1211457 10.1109/ICPR.1996.546948 10.1137/S0895479800368354 10.1109/ICPR.2002.1048350 10.1109/TPAMI.2004.1261097 10.1145/1015330.1015347 10.1137/S0895479898346995 10.1109/CVPR.2001.990454 10.1109/TPAMI.2004.57 10.1109/TCSVT.2002.803231 |
| ContentType | Journal Article |
| Copyright | 2008 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TCSVT.2007.903317 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1558-2205 |
| EndPage | 47 |
| ExternalDocumentID | 2545201581 20041254 10_1109_TCSVT_2007_903317 4358655 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c428t-df3d12f28d631e8a346ed0a44e3a711728faba057427b253efb66e38ec6236283 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000252813100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-8215 |
| IngestDate | Wed Oct 01 13:22:36 EDT 2025 Mon Sep 29 06:27:19 EDT 2025 Sun Oct 05 00:00:27 EDT 2025 Mon Jul 21 09:17:50 EDT 2025 Sat Nov 29 01:43:57 EST 2025 Tue Nov 18 21:55:22 EST 2025 Tue Aug 26 16:47:32 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Object Reconstruction Dimensionality Reduction Concurrent Subspaces Analysis Object Representation Principal Components Analysis Performance evaluation Gabor filter Second order Concurrent subspaces analysis (CSA) Grey level image Image processing Third order Video signal Subspace method Iterative method Pattern recognition Object recognition Algorithm Image reconstruction Statistical method object reconstruction dimensionality reduction Image sequence object representation Object detection Object oriented principal components analysis (PCA) Target detection Principal component analysis |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c428t-df3d12f28d631e8a346ed0a44e3a711728faba057427b253efb66e38ec6236283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | http://scholarbank.nus.edu.sg/handle/10635/57214 |
| PQID | 912287563 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_912287563 ieee_primary_4358655 proquest_miscellaneous_875067686 proquest_miscellaneous_34524038 crossref_citationtrail_10_1109_TCSVT_2007_903317 crossref_primary_10_1109_TCSVT_2007_903317 pascalfrancis_primary_20041254 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-Jan. 2008-01-00 2008 20080101 |
| PublicationDateYYYYMMDD | 2008-01-01 |
| PublicationDate_xml | – month: 01 year: 2008 text: 2008-Jan. |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems for video technology |
| PublicationTitleAbbrev | TCSVT |
| PublicationYear | 2008 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref15 ref14 ref31 ref30 ref11 ref10 xu (ref27) 0 ref1 ref17 ref16 ref18 dai (ref2) 2006 vasilescu (ref19) 2002 ref24 ref23 ref26 ref25 ref20 ref22 ref21 he (ref6) 2005 ref28 ref29 ref8 ref7 ref9 ref3 ref5 olivetti (ref13) 0 fukunaga (ref4) 1991 |
| References_xml | – ident: ref22 doi: 10.1007/BF02289464 – ident: ref23 doi: 10.1109/CVPR.2005.290 – ident: ref25 doi: 10.1109/34.598235 – ident: ref14 doi: 10.1109/34.879790 – ident: ref1 doi: 10.1109/34.598228 – ident: ref12 doi: 10.1109/ICME.2006.262468 – ident: ref17 doi: 10.1007/s10115-006-0050-6 – ident: ref18 doi: 10.1162/jocn.1991.3.1.71 – ident: ref8 doi: 10.1007/BF02293599 – ident: ref26 doi: 10.1109/MMMC.2005.57 – ident: ref11 doi: 10.1109/5.726791 – ident: ref28 doi: 10.1109/CVPR.2005.107 – start-page: 330 year: 2006 ident: ref2 article-title: tensor embedding methods publication-title: Proc Nat Conf Artif Intell – ident: ref3 doi: 10.1109/MMUL.2002.1022858 – year: 0 ident: ref27 publication-title: Coupled Subspaces Analysis – ident: ref9 doi: 10.1137/S0895479896305696 – year: 1991 ident: ref4 publication-title: Introduction to statistical pattern recognition – ident: ref16 doi: 10.1109/TPAMI.2003.1251154 – ident: ref21 doi: 10.1109/CVPR.2003.1211457 – start-page: 447 year: 2002 ident: ref19 article-title: multilinear analysis of image ensembles: tensorfaces publication-title: Proc Eur Conf Comp Vis – ident: ref5 doi: 10.1109/ICPR.1996.546948 – ident: ref7 doi: 10.1137/S0895479800368354 – ident: ref20 doi: 10.1109/ICPR.2002.1048350 – year: 2005 ident: ref6 article-title: tensor subspace analysis publication-title: Adv Neural Inf Process Syst – ident: ref30 doi: 10.1109/TPAMI.2004.1261097 – ident: ref31 doi: 10.1145/1015330.1015347 – ident: ref10 doi: 10.1137/S0895479898346995 – year: 0 ident: ref13 publication-title: Oracle Research Laboratory Face Database of Faces (2007) – ident: ref15 doi: 10.1109/CVPR.2001.990454 – ident: ref24 doi: 10.1109/TPAMI.2004.57 – ident: ref29 doi: 10.1109/TCSVT.2002.803231 |
| SSID | ssj0014847 |
| Score | 2.211112 |
| Snippet | Principal components analysis (PCA) has traditionally been utilized with data expressed in the form of 1-D vectors, but there exists much data such as... For representations of image objects in their intrinsic form and order rather than concatenating all the object data into a single vector, we propose in this... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 36 |
| SubjectTerms | Algorithms Applied sciences Asia Concurrent subspaces analysis (CSA) Detection, estimation, filtering, equalization, prediction dimensionality reduction Exact sciences and technology Face recognition Image analysis Image processing Image reconstruction Image sequence analysis Information, signal and communications theory Mathematical analysis Matrix decomposition Object recognition object reconstruction object representation Pattern recognition Principal component analysis Principal components analysis principal components analysis (PCA) Projection Reconstruction Signal and communications theory Signal processing Signal, noise Studies Subspaces Telecommunications and information theory Tensile stress Tensors Video sequences |
| Title | Reconstruction and Recognition of Tensor-Based Objects With Concurrent Subspaces Analysis |
| URI | https://ieeexplore.ieee.org/document/4358655 https://www.proquest.com/docview/912287563 https://www.proquest.com/docview/34524038 https://www.proquest.com/docview/875067686 |
| Volume | 18 |
| WOSCitedRecordID | wos000252813100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014847 issn: 1051-8215 databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB51Kw5w4LUg0i2LDz0hTOPYcexjWVFxKoiGspwiJ3bUlaqkanb7-xk7j1LxkLglshNZM7ZnxjP-PoCjUuiSJ8ZQY9OSCmdqqtHNoFZppo23mNIEsons7Eyt1_rLHryb7sI450LxmXvvH0Mu37bVzh-VHaNp9_coZzDLMtnf1ZoyBkIFMjF0FxhVaMeGDCaL9XG-Or_Ie7RCHXMeuMnubFAgVfElkaZDqdQ9ncVvO3MwN6dP_m-gT-Hx4FaSk34ePIM91zyHR7-ADc7hh4807_BiiWks-TqWD-F7W5McY9r2hn5Ay2bJ59If0XTk-2Z7SVZtU_VITsRvNde-kIuMgCYv4Nvpx3z1iQ7ECrTCaGNLbc0tS-pEWcmZU4YL6WxshHDcZMwzVtWmNOjJiSQrk5S7upTSceUqdJYkOiQvYb9pG_cKiHbCWo7rvsLARLDMiJpVqAolNAq8zCKIR1EX1YA67skvrooQfcS6CNrxbJhZ0WsngrfTJ9c95Ma_Os-9-KeOg-QjWN7T59SeBICxVESwGBVcDKu2KzRLMIBMJY_gzdSKy83nUEzj2l1XcJF6BEMVAflLD_wBegBSyYM_D20BD_uaE3-Mcwj7qHb3Gh5Ut9tNd7MMk_onHOb00A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3RT9YwEL8AkqAPioBhotAHnwyFde269lG_SCDAp8GJ-LR0axdIyEbYh3-_127f0KAkvm1ptzR3be-ud_39AN6VQpc8MYYam5ZUOFNTjW4GtUozbbzFlCaQTWTTqbq40F8WYHe8C-OcC8Vnbs8_hly-bas7f1S2j6bd36NchCepEEnc39YacwZCBToxdBgYVWjJhhwmi_V-Pvl6nvd4hTrmPLCT3VuhQKviiyJNh3Kpe0KLB3tzMDgHL_5vqKvwfHAsyYd-JryEBdeswbPf4AbX4YePNe8RY4lpLDmbFxDhe1uTHKPa9pZ-RNtmyefSH9J05PvV7JJM2qbqsZyI32xufCkXmUOabMC3g0_55JAO1Aq0wnhjRm3NLUvqRFnJmVOGC-lsbIRw3GTMc1bVpjToy4kkK5OUu7qU0nHlKnSXJLokr2CpaRu3CUQ7YS3HlV9haCJYZkTNKlSFEhoFXmYRxHNRF9WAO-7pL66LEH_Eugja8XyYWdFrJ4L34yc3PejGY53XvfjHjoPkI9j-Q59jexIgxlIRwdZcwcWwbrtCswRDyFTyCHbGVlxwPotiGtfedQUXqccwVBGQf_TAH6APIJV8_feh7cDKYX56UpwcTY-34GlfgeIPdd7AEk4B9xaWq5-zq-52O0zwX_mF-Bc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+and+Recognition+of+Tensor-Based+Objects+With+Concurrent+Subspaces+Analysis&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=DONG+XU&rft.au=SHUICHENG+YAN&rft.au=LEI+ZHANG&rft.au=STEPHEN+LIN&rft.date=2008&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1051-8215&rft.volume=18&rft.issue=1&rft.spage=36&rft.epage=47&rft_id=info:doi/10.1109%2FTCSVT.2007.903317&rft.externalDBID=n%2Fa&rft.externalDocID=20041254 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |