Empagliflozin ameliorates endothelial dysfunction and suppresses atherogenesis in diabetic apolipoprotein E-deficient mice

Recent studies reported cardioprotective effects of sodium glucose co-transporter 2 (SGLT2) inhibitors; however, the underlying mechanisms are still obscure. Here, we investigated whether empagliflozin attenuates atherogenesis and endothelial dysfunction in diabetic apolipoprotein E-deficient (ApoE-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of pharmacology Ročník 875; s. 173040
Hlavní autoři: Ganbaatar, Byambasuren, Fukuda, Daiju, Shinohara, Masakazu, Yagi, Shusuke, Kusunose, Kenya, Yamada, Hirotsugu, Soeki, Takeshi, Hirata, Ken-ichi, Sata, Masataka
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 15.05.2020
Témata:
ISSN:0014-2999, 1879-0712, 1879-0712
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent studies reported cardioprotective effects of sodium glucose co-transporter 2 (SGLT2) inhibitors; however, the underlying mechanisms are still obscure. Here, we investigated whether empagliflozin attenuates atherogenesis and endothelial dysfunction in diabetic apolipoprotein E-deficient (ApoE-/-) mice. Male streptozotocin (STZ) - induced diabetic ApoE-/- mice were treated with empagliflozin for 12 or 8 weeks. Empagliflozin lowered blood glucose (P < 0.001) and lipid levels in diabetic ApoE-/- mice. Empagliflozin treatment for 12 weeks significantly decreased atherosclerotic lesion size in the aortic arch (P < 0.01) along with reduction of lipid deposition (P < 0.05), macrophage accumulation (P < 0.001), and inflammatory molecule expression in plaques compared with the untreated group. Empagliflozin treatment for 8 weeks significantly ameliorated diabetes-induced endothelial dysfunction as determined by the vascular response to acetylcholine (P < 0.001). Empagliflozin reduced RNA expression of a macrophage marker, CD68, and inflammatory molecules such as MCP-1 (P < 0.05) and NADPH oxidase subunits in the aorta compared with the untreated group. Empagliflozin also reduced plasma levels of vasoconstrictive eicosanoids, prostaglandin E2 and thromboxane B2 (P < 0.001), which were elevated in diabetic condition. Furthermore, empagliflozin attenuated RNA expression of inflammatory molecules in perivascular adipose tissue (PVAT), suggesting the reduction of inflammation in PVAT. In in vitro studies, methylglyoxal (MGO), a precursor of AGEs, significantly increased the expression of inflammatory molecules such as MCP-1 and TNF-α in a murine macrophage cell line, RAW264.7. Our results indicated that empagliflozin attenuated endothelial dysfunction and atherogenesis in diabetic ApoE-/- mice. Reduction of vasoconstrictive eicosanoids and inflammation in the vasculature and PVAT may have a role as underlying mechanisms at least partially.
AbstractList Recent studies reported cardioprotective effects of sodium glucose co-transporter 2 (SGLT2) inhibitors; however, the underlying mechanisms are still obscure. Here, we investigated whether empagliflozin attenuates atherogenesis and endothelial dysfunction in diabetic apolipoprotein E-deficient (ApoE ) mice. Male streptozotocin (STZ) - induced diabetic ApoE mice were treated with empagliflozin for 12 or 8 weeks. Empagliflozin lowered blood glucose (P < 0.001) and lipid levels in diabetic ApoE mice. Empagliflozin treatment for 12 weeks significantly decreased atherosclerotic lesion size in the aortic arch (P < 0.01) along with reduction of lipid deposition (P < 0.05), macrophage accumulation (P < 0.001), and inflammatory molecule expression in plaques compared with the untreated group. Empagliflozin treatment for 8 weeks significantly ameliorated diabetes-induced endothelial dysfunction as determined by the vascular response to acetylcholine (P < 0.001). Empagliflozin reduced RNA expression of a macrophage marker, CD68, and inflammatory molecules such as MCP-1 (P < 0.05) and NADPH oxidase subunits in the aorta compared with the untreated group. Empagliflozin also reduced plasma levels of vasoconstrictive eicosanoids, prostaglandin E and thromboxane B (P < 0.001), which were elevated in diabetic condition. Furthermore, empagliflozin attenuated RNA expression of inflammatory molecules in perivascular adipose tissue (PVAT), suggesting the reduction of inflammation in PVAT. In in vitro studies, methylglyoxal (MGO), a precursor of AGEs, significantly increased the expression of inflammatory molecules such as MCP-1 and TNF-α in a murine macrophage cell line, RAW264.7. Our results indicated that empagliflozin attenuated endothelial dysfunction and atherogenesis in diabetic ApoE mice. Reduction of vasoconstrictive eicosanoids and inflammation in the vasculature and PVAT may have a role as underlying mechanisms at least partially.
Recent studies reported cardioprotective effects of sodium glucose co-transporter 2 (SGLT2) inhibitors; however, the underlying mechanisms are still obscure. Here, we investigated whether empagliflozin attenuates atherogenesis and endothelial dysfunction in diabetic apolipoprotein E-deficient (ApoE-/-) mice. Male streptozotocin (STZ) - induced diabetic ApoE-/- mice were treated with empagliflozin for 12 or 8 weeks. Empagliflozin lowered blood glucose (P < 0.001) and lipid levels in diabetic ApoE-/- mice. Empagliflozin treatment for 12 weeks significantly decreased atherosclerotic lesion size in the aortic arch (P < 0.01) along with reduction of lipid deposition (P < 0.05), macrophage accumulation (P < 0.001), and inflammatory molecule expression in plaques compared with the untreated group. Empagliflozin treatment for 8 weeks significantly ameliorated diabetes-induced endothelial dysfunction as determined by the vascular response to acetylcholine (P < 0.001). Empagliflozin reduced RNA expression of a macrophage marker, CD68, and inflammatory molecules such as MCP-1 (P < 0.05) and NADPH oxidase subunits in the aorta compared with the untreated group. Empagliflozin also reduced plasma levels of vasoconstrictive eicosanoids, prostaglandin E2 and thromboxane B2 (P < 0.001), which were elevated in diabetic condition. Furthermore, empagliflozin attenuated RNA expression of inflammatory molecules in perivascular adipose tissue (PVAT), suggesting the reduction of inflammation in PVAT. In in vitro studies, methylglyoxal (MGO), a precursor of AGEs, significantly increased the expression of inflammatory molecules such as MCP-1 and TNF-α in a murine macrophage cell line, RAW264.7. Our results indicated that empagliflozin attenuated endothelial dysfunction and atherogenesis in diabetic ApoE-/- mice. Reduction of vasoconstrictive eicosanoids and inflammation in the vasculature and PVAT may have a role as underlying mechanisms at least partially.
Recent studies reported cardioprotective effects of sodium glucose co-transporter 2 (SGLT2) inhibitors; however, the underlying mechanisms are still obscure. Here, we investigated whether empagliflozin attenuates atherogenesis and endothelial dysfunction in diabetic apolipoprotein E-deficient (ApoE-/-) mice. Male streptozotocin (STZ) - induced diabetic ApoE-/- mice were treated with empagliflozin for 12 or 8 weeks. Empagliflozin lowered blood glucose (P < 0.001) and lipid levels in diabetic ApoE-/- mice. Empagliflozin treatment for 12 weeks significantly decreased atherosclerotic lesion size in the aortic arch (P < 0.01) along with reduction of lipid deposition (P < 0.05), macrophage accumulation (P < 0.001), and inflammatory molecule expression in plaques compared with the untreated group. Empagliflozin treatment for 8 weeks significantly ameliorated diabetes-induced endothelial dysfunction as determined by the vascular response to acetylcholine (P < 0.001). Empagliflozin reduced RNA expression of a macrophage marker, CD68, and inflammatory molecules such as MCP-1 (P < 0.05) and NADPH oxidase subunits in the aorta compared with the untreated group. Empagliflozin also reduced plasma levels of vasoconstrictive eicosanoids, prostaglandin E2 and thromboxane B2 (P < 0.001), which were elevated in diabetic condition. Furthermore, empagliflozin attenuated RNA expression of inflammatory molecules in perivascular adipose tissue (PVAT), suggesting the reduction of inflammation in PVAT. In in vitro studies, methylglyoxal (MGO), a precursor of AGEs, significantly increased the expression of inflammatory molecules such as MCP-1 and TNF-α in a murine macrophage cell line, RAW264.7. Our results indicated that empagliflozin attenuated endothelial dysfunction and atherogenesis in diabetic ApoE-/- mice. Reduction of vasoconstrictive eicosanoids and inflammation in the vasculature and PVAT may have a role as underlying mechanisms at least partially.Recent studies reported cardioprotective effects of sodium glucose co-transporter 2 (SGLT2) inhibitors; however, the underlying mechanisms are still obscure. Here, we investigated whether empagliflozin attenuates atherogenesis and endothelial dysfunction in diabetic apolipoprotein E-deficient (ApoE-/-) mice. Male streptozotocin (STZ) - induced diabetic ApoE-/- mice were treated with empagliflozin for 12 or 8 weeks. Empagliflozin lowered blood glucose (P < 0.001) and lipid levels in diabetic ApoE-/- mice. Empagliflozin treatment for 12 weeks significantly decreased atherosclerotic lesion size in the aortic arch (P < 0.01) along with reduction of lipid deposition (P < 0.05), macrophage accumulation (P < 0.001), and inflammatory molecule expression in plaques compared with the untreated group. Empagliflozin treatment for 8 weeks significantly ameliorated diabetes-induced endothelial dysfunction as determined by the vascular response to acetylcholine (P < 0.001). Empagliflozin reduced RNA expression of a macrophage marker, CD68, and inflammatory molecules such as MCP-1 (P < 0.05) and NADPH oxidase subunits in the aorta compared with the untreated group. Empagliflozin also reduced plasma levels of vasoconstrictive eicosanoids, prostaglandin E2 and thromboxane B2 (P < 0.001), which were elevated in diabetic condition. Furthermore, empagliflozin attenuated RNA expression of inflammatory molecules in perivascular adipose tissue (PVAT), suggesting the reduction of inflammation in PVAT. In in vitro studies, methylglyoxal (MGO), a precursor of AGEs, significantly increased the expression of inflammatory molecules such as MCP-1 and TNF-α in a murine macrophage cell line, RAW264.7. Our results indicated that empagliflozin attenuated endothelial dysfunction and atherogenesis in diabetic ApoE-/- mice. Reduction of vasoconstrictive eicosanoids and inflammation in the vasculature and PVAT may have a role as underlying mechanisms at least partially.
ArticleNumber 173040
Author Soeki, Takeshi
Yagi, Shusuke
Hirata, Ken-ichi
Ganbaatar, Byambasuren
Sata, Masataka
Kusunose, Kenya
Yamada, Hirotsugu
Fukuda, Daiju
Shinohara, Masakazu
Author_xml – sequence: 1
  givenname: Byambasuren
  surname: Ganbaatar
  fullname: Ganbaatar, Byambasuren
  organization: Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
– sequence: 2
  givenname: Daiju
  surname: Fukuda
  fullname: Fukuda, Daiju
  email: daiju.fukuda@tokushima-u.ac.jp
  organization: Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
– sequence: 3
  givenname: Masakazu
  surname: Shinohara
  fullname: Shinohara, Masakazu
  organization: The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
– sequence: 4
  givenname: Shusuke
  surname: Yagi
  fullname: Yagi, Shusuke
  organization: Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
– sequence: 5
  givenname: Kenya
  surname: Kusunose
  fullname: Kusunose, Kenya
  organization: Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
– sequence: 6
  givenname: Hirotsugu
  surname: Yamada
  fullname: Yamada, Hirotsugu
  organization: Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
– sequence: 7
  givenname: Takeshi
  surname: Soeki
  fullname: Soeki, Takeshi
  organization: Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
– sequence: 8
  givenname: Ken-ichi
  surname: Hirata
  fullname: Hirata, Ken-ichi
  organization: Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
– sequence: 9
  givenname: Masataka
  surname: Sata
  fullname: Sata, Masataka
  organization: Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32114052$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv1DAQhS1URLeFf4BQjlyy2I7jJByQULW0SJW4wNly7Ek7K8cOtoPU_vp6lcKBA5xGM_re0-i9C3LmgwdC3jK6Z5TJD8c9HJd7Hfec8nLqGiroC7JjfTfUtGP8jOwoZaLmwzCck4uUjpTSduDtK3LecMYEbfmOPB7mRd85nFx4RF_pGRyGqDOkCrwN-b7s2lX2IU2rNxlDYbyt0rosEVIqmC5MDHfgIWGqiodFPUJGU-klOFzCEkOGcj_UFiY0CD5XMxp4TV5O2iV48zwvyY8vh-9XN_Xtt-uvV59vayN4n2vLZCOYaISwZRfa9o2G3vZykh0ISu0kymCN1HYcu9EaMXRgQUrK-NiOrLkk7zff8sjPFVJWMyYDzmkPYU2KN3LoO0n7tqDvntF1nMGqJeKs44P6nVcBxAaYGFKKMP1BGFWnWtRRbbWoUy1qq6XIPv4lM5j1Kc0cNbr_iT9tYigh_UKIKp1CNGAxgsnKBvy3wRM3a61n
CitedBy_id crossref_primary_10_3390_ph13110379
crossref_primary_10_1016_j_atherosclerosis_2023_03_011
crossref_primary_10_1016_j_yjmcc_2022_03_005
crossref_primary_10_1016_j_heliyon_2020_e05798
crossref_primary_10_1007_s12272_025_01542_4
crossref_primary_10_1111_1440_1681_13638
crossref_primary_10_1113_JP283259
crossref_primary_10_1016_j_biochi_2023_03_015
crossref_primary_10_3390_biomedicines12050939
crossref_primary_10_1016_j_fct_2021_112406
crossref_primary_10_1016_j_biopha_2021_112169
crossref_primary_10_3390_ijms23042336
crossref_primary_10_1124_pharmrev_120_000096
crossref_primary_10_1161_JAHA_124_035044
crossref_primary_10_3390_jcm12041356
crossref_primary_10_1007_s10557_021_07254_3
crossref_primary_10_7759_cureus_63796
crossref_primary_10_1002_prp2_971
crossref_primary_10_1007_s12265_023_10470_x
crossref_primary_10_1016_j_ejphar_2022_175190
crossref_primary_10_1002_jbt_23419
crossref_primary_10_3389_fphar_2021_751214
crossref_primary_10_1016_j_ajpc_2025_101061
crossref_primary_10_1042_BST20200611
crossref_primary_10_1111_acel_70101
crossref_primary_10_1016_j_biopha_2025_117967
crossref_primary_10_1155_2024_3212795
crossref_primary_10_1210_clinem_dgac116
crossref_primary_10_1016_j_cdtm_2020_07_002
crossref_primary_10_1016_j_molmet_2022_101549
crossref_primary_10_1007_s40618_023_02162_9
crossref_primary_10_1111_bph_15850
crossref_primary_10_3389_fphar_2025_1558367
crossref_primary_10_3389_fendo_2021_710842
crossref_primary_10_3390_ijms21239216
crossref_primary_10_3390_ijms23105634
crossref_primary_10_1016_j_phrs_2021_105819
crossref_primary_10_1186_s12933_025_02763_z
crossref_primary_10_2147_DMSO_S446904
crossref_primary_10_1007_s13410_023_01246_9
crossref_primary_10_1016_j_amjms_2025_04_013
crossref_primary_10_3390_jcm13164600
crossref_primary_10_3389_fphys_2020_615503
crossref_primary_10_1016_j_pharmthera_2021_107832
crossref_primary_10_1186_s12944_021_01430_y
crossref_primary_10_3390_life12111829
crossref_primary_10_1002_dmrr_3607
crossref_primary_10_3390_ijms22168786
crossref_primary_10_1093_ehjcvp_pvac059
crossref_primary_10_1159_000533592
crossref_primary_10_1007_s10741_021_10157_y
crossref_primary_10_1007_s00210_023_02607_1
crossref_primary_10_1186_s12933_024_02549_9
crossref_primary_10_1007_s13300_020_00885_z
crossref_primary_10_3390_biomedicines11113006
crossref_primary_10_1177_11206721241247585
crossref_primary_10_3389_fcvm_2022_1008922
crossref_primary_10_3390_biomedicines13030728
crossref_primary_10_3390_ph16050769
crossref_primary_10_1016_j_medj_2021_10_004
crossref_primary_10_1016_j_diabres_2022_109927
crossref_primary_10_1097_MD_0000000000040536
crossref_primary_10_1016_j_hfc_2022_03_007
crossref_primary_10_1007_s10557_021_07216_9
crossref_primary_10_1080_00015385_2025_2500892
crossref_primary_10_3390_biomedicines9101356
crossref_primary_10_1016_j_atherosclerosis_2024_117560
crossref_primary_10_3390_jcm14155549
crossref_primary_10_3390_pharmaceutics15041092
crossref_primary_10_3390_cells14070507
crossref_primary_10_3390_jcm11010137
crossref_primary_10_3390_molecules27217174
crossref_primary_10_3389_fcvm_2022_882181
crossref_primary_10_1097_FJC_0000000000001395
crossref_primary_10_3390_ijms25137274
crossref_primary_10_1186_s12933_024_02255_6
crossref_primary_10_1093_ehjcvp_pvad053
crossref_primary_10_3390_ijms26052103
crossref_primary_10_22141_2224_0721_21_3_2025_1535
crossref_primary_10_3389_fnins_2025_1569347
crossref_primary_10_1016_j_tips_2022_06_009
crossref_primary_10_1186_s12933_024_02466_x
crossref_primary_10_3390_molecules26237213
crossref_primary_10_3389_fendo_2024_1359255
crossref_primary_10_1186_s12933_024_02368_y
crossref_primary_10_3389_fcvm_2022_948909
crossref_primary_10_3390_jcm10112501
crossref_primary_10_3390_medicina60111796
crossref_primary_10_1155_2021_9983477
crossref_primary_10_1007_s11033_025_10260_5
Cites_doi 10.1016/j.atherosclerosis.2018.02.028
10.1161/CIRCRESAHA.108.182998
10.1152/ajprenal.00518.2013
10.1016/j.bbrc.2016.09.106
10.1152/ajpheart.01318.2007
10.1111/bph.13705
10.1161/01.CIR.0000131515.03336.f8
10.1056/NEJMc1600827
10.1002/path.4286
10.1007/BF01907914
10.1016/j.ejphar.2008.05.044
10.1055/s-0034-1395609
10.1111/bph.13732
10.1016/j.vph.2017.03.003
10.3389/fcvm.2016.00043
10.1007/s00125-018-4644-9
10.1161/ATVBAHA.110.210070
10.1186/s12933-018-0749-1
10.1002/bjs.6811
10.1038/nrd1132
10.1016/j.mce.2019.110487
10.1371/journal.pone.0143396
10.1038/hr.2016.193
10.1038/sj.bjp.0707228
10.1056/NEJMoa1504720
10.1016/j.atherosclerosis.2015.03.023
10.1016/j.jacc.2017.11.022
10.1016/S0022-2275(20)31676-X
10.1042/CS20110151
10.1016/j.pharmthera.2010.09.004
10.1536/ihj.52.266
10.1056/NEJMoa1611925
10.1111/j.1476-5381.2011.01276.x
10.1038/nrd3403
10.2174/1573399052952631
10.1186/s12933-018-0745-5
10.1016/j.jacc.2011.01.048
10.1371/journal.pone.0112394
10.1186/s12933-017-0621-8
10.1016/j.redox.2017.06.009
10.1007/s00125-016-4158-2
10.1016/S0735-1097(99)00168-0
10.1016/j.ejphar.2011.01.023
10.4103/0019-5359.32098
10.1038/s41598-017-13154-0
10.1038/nrd3180
10.1056/NEJMoa0706245
10.3390/ijms18081704
10.1016/j.coph.2009.11.005
10.1160/TH10-03-0195
10.1161/ATVBAHA.118.311339
10.1161/01.CIR.0000037282.92395.AE
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ejphar.2020.173040
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1879-0712
ExternalDocumentID 32114052
10_1016_j_ejphar_2020_173040
S0014299920301321
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATCM
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M34
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSP
T5K
TEORI
~G-
.55
.GJ
29G
3O-
53G
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMQ
HMT
HVGLF
HZ~
R2-
SEW
SNS
SPT
SSZ
WUQ
X7M
ZGI
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c428t-d163414344d4284ad83ae8d86f67e400df4e40136adbb7bdc497ede66012b5b13
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522724900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0014-2999
1879-0712
IngestDate Thu Oct 02 05:38:34 EDT 2025
Tue Nov 11 10:47:52 EST 2025
Sat Nov 29 07:33:39 EST 2025
Tue Nov 18 21:30:45 EST 2025
Fri Feb 23 02:48:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Empagliflozin
Inflammation
Endothelial function
SGLT2 inhibitor
Atherosclerosis
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-d163414344d4284ad83ae8d86f67e400df4e40136adbb7bdc497ede66012b5b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32114052
PQID 2369876085
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2369876085
pubmed_primary_32114052
crossref_primary_10_1016_j_ejphar_2020_173040
crossref_citationtrail_10_1016_j_ejphar_2020_173040
elsevier_sciencedirect_doi_10_1016_j_ejphar_2020_173040
PublicationCentury 2000
PublicationDate 2020-05-15
PublicationDateYYYYMMDD 2020-05-15
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle European journal of pharmacology
PublicationTitleAlternate Eur J Pharmacol
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nasiri-Ansari, Dimitriadis, Agrogiannis, Perrea, Kostakis, Kaltsas, Papavassiliou, Randeva, Kassi (bib31) 2018; 17
Park, Kim, Seo, Bae, Kim, Lee, Lee, Kim (bib36) 2014; 232
Basu, Huggins, Scerbo, Obunike, Mullick, Rothenberg, Di Prospero, Eckel, Goldberg (bib3) 2018; 38
Solini, Giannini, Seghieri, Vitolo, Taddei, Ghiadoni, Bruno (bib45) 2017; 16
Zinman, Lachin, Inzucchi (bib54) 2016; 374
Fitchett, Inzucchi, Lachin, Wanner, van de Borne, Mattheus, Johansen, Woerle, Broedl, George, Zinman, Investigators (bib12) 2018; 71
Gao, Holloway, Su, Takemori, Lu, Lee (bib14) 2008; 590
Payne, Borbouse, Kumar, Neeb, Alloosh, Sturek, Tune (bib37) 2010; 30
Ojima, Matsui, Nishino, Nakamura, Yamagishi (bib35) 2015; 47
Gao, Lu, Su, Sharma, Lee (bib15) 2007; 151
Dimitriadis, Nasiri-Ansari, Agrogiannis, Kostakis, Randeva, Nikiteas, Patel, Kaltsas, Papavassiliou, Randeva, Kassi (bib8) 2019; 494
Lahnwong, Chattipakorn, Chattipakorn (bib21) 2018; 17
Verma, Mazer, Fitchett, Inzucchi, Pfarr, George, Zinman (bib51) 2018; 61
Szasz, Webb (bib48) 2012; 122
Yamagishi, Nakamura, Imaizumi (bib52) 2005; 1
Li, Liu, Ni, Wang, Wang, Shi, Liu, Liu (bib23) 2016; 480
Chao, Henry (bib5) 2010; 9
Chatterjee, Stoll, Denning, Harrelson, Blomkalns, Idelman, Rothenberg, Neltner, Romig-Martin, Dickson, Rudich, Weintraub (bib6) 2009; 104
Boa, Yudkin, van Hinsbergh, Bouskela, Eringa (bib4) 2017; 174
Gaede, Lund-Andersen, Parving, Pedersen (bib13) 2008; 358
Bagi, Erdei, Papp, Edes, Koller (bib2) 2006; 58
Neal, Perkovic, Matthews (bib32) 2017; 377
Lu, Su, Lee, Gao (bib25) 2011; 656
Mardones, Quinones, Amigo, Moreno, Miquel, Schwarz, Miettinen, Trigatti, Krieger, VanPatten, Cohen, Rigotti (bib28) 2001; 42
Kawano, Motoyama, Hirashima, Hirai, Miyao, Sakamoto, Kugiyama, Ogawa, Yasue (bib20) 1999; 34
Schror (bib43) 1985; 80
Terasaki, Hiromura, Mori, Kohashi, Nagashima, Kushima, Watanabe, Hirano (bib49) 2015; 10
Fischereder, Schonermarck (bib11) 2016; 374
Tsuda, Shinohara, Oshita, Nagao, Tanaka, Mori, Hara, Irino, Toh, Ishida, Hirata (bib50) 2017; 7
Rahman, Hitomi, Nishiyama (bib38) 2017; 40
Al-Sharea, Murphy, Huggins, Hu, Goldberg, Nagareddy (bib1) 2018; 271
Feletou, Huang, Vanhoutte (bib10) 2011; 164
Maiti, Agrawal (bib26) 2007; 61
Rieg, Masuda, Gerasimova, Mayoux, Platt, Powell, Thomson, Koepsell, Vallon (bib40) 2014; 306
Salim, Fukuda, Yagi, Soeki, Shimabukuro, Sata (bib42) 2016; 3
Steven, Oelze, Hanf, Kroller-Schon, Kashani, Roohani, Welschof, Kopp, Godtel-Armbrust, Xia, Li, Schulz, Lackner, Wojnowski, Bottari, Wenzel, Mayoux, Munzel, Daiber (bib46) 2017; 13
Han, Oh, Lee, Maeng, Lee, Kim, Choi, Jang, Lee, Park, Kim, Lim (bib17) 2017; 60
Nosalski, Guzik (bib33) 2017; 174
Rajsheker, Manka, Blomkalns, Chatterjee, Stoll, Weintraub (bib39) 2010; 10
Salim, Fukuda, Higashikuni, Tanaka, Hirata, Yagi, Soeki, Shimabukuro, Sata (bib41) 2017; 96–98
Oelze, Kroller-Schon, Welschof, Jansen, Hausding, Mikhed, Stamm, Mader, Zinssius, Agdauletova, Gottschlich, Steven, Schulz, Bottari, Mayoux, Munzel, Daiber (bib34) 2014; 9
Drummond, Selemidis, Griendling, Sobey (bib9) 2011; 10
Hara, Fukuda, Tanaka, Higashikuni, Hirata, Nishimoto, Yagi, Yamada, Soeki, Wakatsuki, Shimabukuro, Sata (bib18) 2015; 242
Hirata, Tabata, Kurobe, Motoki, Akaike, Nishio, Higashida, Mikasa, Nakaya, Takanashi, Igarashi, Kitagawa, Sata (bib19) 2011; 58
Nakatsu, Kokubo, Bumdelger, Yoshizumi, Yamamotoya, Matsunaga, Ueda, Inoue, Inoue, Fujishiro, Kushiyama, Ono, Sakoda, Asano (bib30) 2017; 18
Manning, Davis (bib27) 2003; 2
Zinman, Wanner, Lachin, Fitchett, Bluhmki, Hantel, Mattheus, Devins, Johansen, Woerle, Broedl, Inzucchi (bib55) 2015; 373
Mihaescu, Santen, Jeppsson, Thorlacius (bib29) 2010; 97
Giannarelli, Zafar, Badimon (bib16) 2010; 104
Yuhki, Kojima, Kashiwagi, Kawabe, Fujino, Narumiya, Ushikubi (bib53) 2011; 129
Davignon, Ganz (bib7) 2004; 109
Libby, Plutzky (bib24) 2002; 106
Sellers, Stallone (bib44) 2008; 294
Suzuki, Ogawa, Watanabe, Takayama, Hirata, Nagai, Isobe (bib47) 2011; 52
Leng, Ouyang, Lei, Wu, Chen, Wu, Deng, Liang (bib22) 2016
Gao (10.1016/j.ejphar.2020.173040_bib14) 2008; 590
Salim (10.1016/j.ejphar.2020.173040_bib42) 2016; 3
Bagi (10.1016/j.ejphar.2020.173040_bib2) 2006; 58
Rieg (10.1016/j.ejphar.2020.173040_bib40) 2014; 306
Nasiri-Ansari (10.1016/j.ejphar.2020.173040_bib31) 2018; 17
Lu (10.1016/j.ejphar.2020.173040_bib25) 2011; 656
Suzuki (10.1016/j.ejphar.2020.173040_bib47) 2011; 52
Rajsheker (10.1016/j.ejphar.2020.173040_bib39) 2010; 10
Chao (10.1016/j.ejphar.2020.173040_bib5) 2010; 9
Rahman (10.1016/j.ejphar.2020.173040_bib38) 2017; 40
Chatterjee (10.1016/j.ejphar.2020.173040_bib6) 2009; 104
Basu (10.1016/j.ejphar.2020.173040_bib3) 2018; 38
Terasaki (10.1016/j.ejphar.2020.173040_bib49) 2015; 10
Fitchett (10.1016/j.ejphar.2020.173040_bib12) 2018; 71
Manning (10.1016/j.ejphar.2020.173040_bib27) 2003; 2
Szasz (10.1016/j.ejphar.2020.173040_bib48) 2012; 122
Salim (10.1016/j.ejphar.2020.173040_bib41) 2017; 96–98
Zinman (10.1016/j.ejphar.2020.173040_bib55) 2015; 373
Lahnwong (10.1016/j.ejphar.2020.173040_bib21) 2018; 17
Solini (10.1016/j.ejphar.2020.173040_bib45) 2017; 16
Al-Sharea (10.1016/j.ejphar.2020.173040_bib1) 2018; 271
Davignon (10.1016/j.ejphar.2020.173040_bib7) 2004; 109
Fischereder (10.1016/j.ejphar.2020.173040_bib11) 2016; 374
Giannarelli (10.1016/j.ejphar.2020.173040_bib16) 2010; 104
Park (10.1016/j.ejphar.2020.173040_bib36) 2014; 232
Ojima (10.1016/j.ejphar.2020.173040_bib35) 2015; 47
Gaede (10.1016/j.ejphar.2020.173040_bib13) 2008; 358
Kawano (10.1016/j.ejphar.2020.173040_bib20) 1999; 34
Mardones (10.1016/j.ejphar.2020.173040_bib28) 2001; 42
Hara (10.1016/j.ejphar.2020.173040_bib18) 2015; 242
Sellers (10.1016/j.ejphar.2020.173040_bib44) 2008; 294
Tsuda (10.1016/j.ejphar.2020.173040_bib50) 2017; 7
Verma (10.1016/j.ejphar.2020.173040_bib51) 2018; 61
Gao (10.1016/j.ejphar.2020.173040_bib15) 2007; 151
Maiti (10.1016/j.ejphar.2020.173040_bib26) 2007; 61
Neal (10.1016/j.ejphar.2020.173040_bib32) 2017; 377
Nosalski (10.1016/j.ejphar.2020.173040_bib33) 2017; 174
Han (10.1016/j.ejphar.2020.173040_bib17) 2017; 60
Steven (10.1016/j.ejphar.2020.173040_bib46) 2017; 13
Nakatsu (10.1016/j.ejphar.2020.173040_bib30) 2017; 18
Mihaescu (10.1016/j.ejphar.2020.173040_bib29) 2010; 97
Payne (10.1016/j.ejphar.2020.173040_bib37) 2010; 30
Schror (10.1016/j.ejphar.2020.173040_bib43) 1985; 80
Zinman (10.1016/j.ejphar.2020.173040_bib54) 2016; 374
Drummond (10.1016/j.ejphar.2020.173040_bib9) 2011; 10
Oelze (10.1016/j.ejphar.2020.173040_bib34) 2014; 9
Feletou (10.1016/j.ejphar.2020.173040_bib10) 2011; 164
Hirata (10.1016/j.ejphar.2020.173040_bib19) 2011; 58
Yuhki (10.1016/j.ejphar.2020.173040_bib53) 2011; 129
Li (10.1016/j.ejphar.2020.173040_bib23) 2016; 480
Libby (10.1016/j.ejphar.2020.173040_bib24) 2002; 106
Leng (10.1016/j.ejphar.2020.173040_bib22) 2016
Dimitriadis (10.1016/j.ejphar.2020.173040_bib8) 2019; 494
Yamagishi (10.1016/j.ejphar.2020.173040_bib52) 2005; 1
Boa (10.1016/j.ejphar.2020.173040_bib4) 2017; 174
References_xml – volume: 377
  start-page: 2099
  year: 2017
  ident: bib32
  article-title: Canagliflozin and cardiovascular and renal events in type 2 diabetes
  publication-title: N. Engl. J. Med.
– volume: 97
  start-page: 226
  year: 2010
  end-page: 234
  ident: bib29
  article-title: p38 Mitogen-activated protein kinase signalling regulates vascular inflammation and epithelial barrier dysfunction in an experimental model of radiation-induced colitis
  publication-title: Br. J. Surg.
– volume: 174
  start-page: 3466
  year: 2017
  end-page: 3481
  ident: bib4
  article-title: Exercise effects on perivascular adipose tissue: endocrine and paracrine determinants of vascular function
  publication-title: Br. J. Pharmacol.
– volume: 294
  start-page: H1978
  year: 2008
  end-page: H1986
  ident: bib44
  article-title: Sympathy for the devil: the role of thromboxane in the regulation of vascular tone and blood pressure
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 18
  year: 2017
  ident: bib30
  article-title: The SGLT2 inhibitor luseogliflozin rapidly normalizes aortic mRNA levels of inflammation-related but not lipid-metabolism-related genes and suppresses atherosclerosis in diabetic ApoE KO mice
  publication-title: Int. J. Mol. Sci.
– volume: 104
  start-page: 949
  year: 2010
  end-page: 954
  ident: bib16
  article-title: Prostanoid and TP-receptors in atherothrombosis: is there a role for their antagonism?
  publication-title: Thromb. Haemostasis
– volume: 480
  start-page: 147
  year: 2016
  end-page: 152
  ident: bib23
  article-title: Perivascular adipose tissue alleviates inflammatory factors and stenosis in diabetic blood vessels
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 232
  start-page: 87
  year: 2014
  end-page: 97
  ident: bib36
  article-title: Resistin derived from diabetic perivascular adipose tissue up-regulates vascular expression of osteopontin via the AP-1 signalling pathway
  publication-title: J. Pathol.
– volume: 374
  start-page: 1094
  year: 2016
  ident: bib54
  article-title: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes
  publication-title: N. Engl. J. Med.
– volume: 151
  start-page: 323
  year: 2007
  end-page: 331
  ident: bib15
  article-title: Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide
  publication-title: Br. J. Pharmacol.
– volume: 106
  start-page: 2760
  year: 2002
  end-page: 2763
  ident: bib24
  article-title: Diabetic macrovascular disease: the glucose paradox?
  publication-title: Circulation
– volume: 34
  start-page: 146
  year: 1999
  end-page: 154
  ident: bib20
  article-title: Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery
  publication-title: J. Am. Coll. Cardiol.
– volume: 58
  start-page: 248
  year: 2011
  end-page: 255
  ident: bib19
  article-title: Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue
  publication-title: J. Am. Coll. Cardiol.
– volume: 10
  start-page: 453
  year: 2011
  end-page: 471
  ident: bib9
  article-title: Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets
  publication-title: Nat. Rev. Drug Discov.
– volume: 109
  year: 2004
  ident: bib7
  article-title: Role of endothelial dysfunction in atherosclerosis
  publication-title: Circulation
– volume: 129
  start-page: 195
  year: 2011
  end-page: 205
  ident: bib53
  article-title: Roles of prostanoids in the pathogenesis of cardiovascular diseases: novel insights from knockout mouse studies
  publication-title: Pharmacol. Ther.
– volume: 373
  start-page: 2117
  year: 2015
  end-page: 2128
  ident: bib55
  article-title: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes
  publication-title: N. Engl. J. Med.
– volume: 60
  start-page: 364
  year: 2017
  end-page: 376
  ident: bib17
  article-title: The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE (-/-) mice fed a western diet
  publication-title: Diabetologia
– volume: 47
  start-page: 686
  year: 2015
  end-page: 692
  ident: bib35
  article-title: Empagliflozin, an inhibitor of sodium-glucose Cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor Axis
  publication-title: Horm. Metab. Res.
– volume: 16
  start-page: 138
  year: 2017
  ident: bib45
  article-title: Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study
  publication-title: Cardiovasc. Diabetol.
– volume: 58
  start-page: 52
  year: 2006
  end-page: 56
  ident: bib2
  article-title: Up-regulation of vascular cyclooxygenase-2 in diabetes mellitus
  publication-title: Pharmacol. Rep.
– volume: 104
  start-page: 541
  year: 2009
  end-page: 549
  ident: bib6
  article-title: Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding
  publication-title: Circ. Res.
– volume: 2
  start-page: 554
  year: 2003
  end-page: 565
  ident: bib27
  article-title: Targeting JNK for therapeutic benefit: from junk to gold?
  publication-title: Nat. Rev. Drug Discov.
– start-page: 6305735
  year: 2016
  ident: bib22
  article-title: The SGLT-2 inhibitor dapagliflozin has a therapeutic effect on atherosclerosis in diabetic ApoE(-/-) mice
  publication-title: Mediat. Inflamm.
– volume: 61
  start-page: 292
  year: 2007
  end-page: 306
  ident: bib26
  article-title: Atherosclerosis in diabetes mellitus: role of inflammation
  publication-title: Indian J. Med. Sci.
– volume: 52
  start-page: 266
  year: 2011
  end-page: 269
  ident: bib47
  article-title: Roles of prostaglandin E2 in cardiovascular diseases
  publication-title: Int. Heart J.
– volume: 30
  start-page: 1711
  year: 2010
  end-page: 1717
  ident: bib37
  article-title: Epicardial perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a protein kinase C-beta pathway
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 656
  start-page: 68
  year: 2011
  end-page: 73
  ident: bib25
  article-title: Alterations in perivascular adipose tissue structure and function in hypertension
  publication-title: Eur. J. Pharmacol.
– volume: 9
  start-page: 551
  year: 2010
  end-page: 559
  ident: bib5
  article-title: SGLT2 inhibition--a novel strategy for diabetes treatment
  publication-title: Nat. Rev. Drug Discov.
– volume: 80
  start-page: 502
  year: 1985
  end-page: 514
  ident: bib43
  article-title: Prostaglandins, other eicosanoids and endothelial cells
  publication-title: Basic Res. Cardiol.
– volume: 61
  start-page: 1712
  year: 2018
  end-page: 1723
  ident: bib51
  article-title: Empagliflozin reduces cardiovascular events, mortality and renal events in participants with type 2 diabetes after coronary artery bypass graft surgery: subanalysis of the EMPA-REG OUTCOME(R) randomised trial
  publication-title: Diabetologia
– volume: 174
  start-page: 3496
  year: 2017
  end-page: 3513
  ident: bib33
  article-title: Perivascular adipose tissue inflammation in vascular disease
  publication-title: Br. J. Pharmacol.
– volume: 10
  start-page: 191
  year: 2010
  end-page: 196
  ident: bib39
  article-title: Crosstalk between perivascular adipose tissue and blood vessels
  publication-title: Curr. Opin. Pharmacol.
– volume: 10
  year: 2015
  ident: bib49
  article-title: Amelioration of hyperglycemia with a sodium-glucose Cotransporter 2 inhibitor prevents macrophage-driven atherosclerosis through macrophage foam cell formation suppression in type 1 and type 2 diabetic mice
  publication-title: PloS One
– volume: 271
  start-page: 166
  year: 2018
  end-page: 176
  ident: bib1
  article-title: SGLT2 inhibition reduces atherosclerosis by enhancing lipoprotein clearance in Ldlr(-/-) type 1 diabetic mice
  publication-title: Atherosclerosis
– volume: 71
  start-page: 364
  year: 2018
  end-page: 367
  ident: bib12
  article-title: Cardiovascular mortality reduction with empagliflozin in patients with type 2 diabetes and cardiovascular disease
  publication-title: J. Am. Coll. Cardiol.
– volume: 9
  year: 2014
  ident: bib34
  article-title: The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity
  publication-title: PloS One
– volume: 242
  start-page: 639
  year: 2015
  end-page: 646
  ident: bib18
  article-title: Rivaroxaban, a novel oral anticoagulant, attenuates atherosclerotic plaque progression and destabilization in ApoE-deficient mice
  publication-title: Atherosclerosis
– volume: 122
  start-page: 1
  year: 2012
  end-page: 12
  ident: bib48
  article-title: Perivascular adipose tissue: more than just structural support
  publication-title: Clin. Sci. (Lond.)
– volume: 17
  start-page: 106
  year: 2018
  ident: bib31
  article-title: Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice
  publication-title: Cardiovasc. Diabetol.
– volume: 494
  start-page: 110487
  year: 2019
  ident: bib8
  article-title: Empagliflozin improves primary haemodynamic parameters and attenuates the development of atherosclerosis in high fat diet fed APOE knockout mice
  publication-title: Mol. Cell. Endocrinol.
– volume: 306
  start-page: F188
  year: 2014
  end-page: F193
  ident: bib40
  article-title: Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia
  publication-title: Am. J. Physiol. Ren. Physiol.
– volume: 7
  start-page: 12989
  year: 2017
  ident: bib50
  article-title: Novel mechanism of regulation of the 5-lipoxygenase/leukotriene B4 pathway by high-density lipoprotein in macrophages
  publication-title: Sci. Rep.
– volume: 590
  start-page: 264
  year: 2008
  end-page: 268
  ident: bib14
  article-title: Effects of fetal and neonatal exposure to nicotine on blood pressure and perivascular adipose tissue function in adult life
  publication-title: Eur. J. Pharmacol.
– volume: 164
  start-page: 894
  year: 2011
  end-page: 912
  ident: bib10
  article-title: Endothelium-mediated control of vascular tone: COX-1 and COX-2 products
  publication-title: Br. J. Pharmacol.
– volume: 13
  start-page: 370
  year: 2017
  end-page: 385
  ident: bib46
  article-title: The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats
  publication-title: Redox Biol.
– volume: 3
  start-page: 43
  year: 2016
  ident: bib42
  article-title: Glycemic control with ipragliflozin, a novel selective SGLT2 inhibitor, ameliorated endothelial dysfunction in streptozotocin-induced diabetic mouse
  publication-title: Front. Cardiovasc. Med.
– volume: 17
  start-page: 101
  year: 2018
  ident: bib21
  article-title: Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors
  publication-title: Cardiovasc. Diabetol.
– volume: 1
  start-page: 93
  year: 2005
  end-page: 106
  ident: bib52
  article-title: Advanced glycation end products (AGEs) and diabetic vascular complications
  publication-title: Curr. Diabetes Rev.
– volume: 358
  start-page: 580
  year: 2008
  end-page: 591
  ident: bib13
  article-title: Effect of a multifactorial intervention on mortality in type 2 diabetes
  publication-title: N. Engl. J. Med.
– volume: 42
  start-page: 170
  year: 2001
  end-page: 180
  ident: bib28
  article-title: Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice
  publication-title: J. Lipid Res.
– volume: 374
  start-page: 1092
  year: 2016
  end-page: 1093
  ident: bib11
  article-title: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes
  publication-title: N. Engl. J. Med.
– volume: 96–98
  start-page: 19
  year: 2017
  end-page: 25
  ident: bib41
  article-title: Teneligliptin, a dipeptidyl peptidase-4 inhibitor, attenuated pro-inflammatory phenotype of perivascular adipose tissue and inhibited atherogenesis in normoglycemic apolipoprotein-E-deficient mice
  publication-title: Vasc. Pharmacol.
– volume: 40
  start-page: 535
  year: 2017
  end-page: 540
  ident: bib38
  article-title: Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure
  publication-title: Hypertens. Res.
– volume: 38
  start-page: 2207
  year: 2018
  end-page: 2216
  ident: bib3
  article-title: Mechanism of increased LDL (Low-Density Lipoprotein) and decreased triglycerides with SGLT2 (Sodium-Glucose Cotransporter 2) inhibition
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 271
  start-page: 166
  year: 2018
  ident: 10.1016/j.ejphar.2020.173040_bib1
  article-title: SGLT2 inhibition reduces atherosclerosis by enhancing lipoprotein clearance in Ldlr(-/-) type 1 diabetic mice
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2018.02.028
– volume: 104
  start-page: 541
  year: 2009
  ident: 10.1016/j.ejphar.2020.173040_bib6
  article-title: Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.108.182998
– volume: 306
  start-page: F188
  year: 2014
  ident: 10.1016/j.ejphar.2020.173040_bib40
  article-title: Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia
  publication-title: Am. J. Physiol. Ren. Physiol.
  doi: 10.1152/ajprenal.00518.2013
– volume: 480
  start-page: 147
  year: 2016
  ident: 10.1016/j.ejphar.2020.173040_bib23
  article-title: Perivascular adipose tissue alleviates inflammatory factors and stenosis in diabetic blood vessels
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.09.106
– volume: 294
  start-page: H1978
  year: 2008
  ident: 10.1016/j.ejphar.2020.173040_bib44
  article-title: Sympathy for the devil: the role of thromboxane in the regulation of vascular tone and blood pressure
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.01318.2007
– volume: 174
  start-page: 3496
  year: 2017
  ident: 10.1016/j.ejphar.2020.173040_bib33
  article-title: Perivascular adipose tissue inflammation in vascular disease
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.13705
– volume: 109
  year: 2004
  ident: 10.1016/j.ejphar.2020.173040_bib7
  article-title: Role of endothelial dysfunction in atherosclerosis
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000131515.03336.f8
– volume: 374
  start-page: 1092
  year: 2016
  ident: 10.1016/j.ejphar.2020.173040_bib11
  article-title: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc1600827
– volume: 374
  start-page: 1094
  year: 2016
  ident: 10.1016/j.ejphar.2020.173040_bib54
  article-title: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes
  publication-title: N. Engl. J. Med.
– volume: 232
  start-page: 87
  year: 2014
  ident: 10.1016/j.ejphar.2020.173040_bib36
  article-title: Resistin derived from diabetic perivascular adipose tissue up-regulates vascular expression of osteopontin via the AP-1 signalling pathway
  publication-title: J. Pathol.
  doi: 10.1002/path.4286
– volume: 80
  start-page: 502
  year: 1985
  ident: 10.1016/j.ejphar.2020.173040_bib43
  article-title: Prostaglandins, other eicosanoids and endothelial cells
  publication-title: Basic Res. Cardiol.
  doi: 10.1007/BF01907914
– volume: 590
  start-page: 264
  year: 2008
  ident: 10.1016/j.ejphar.2020.173040_bib14
  article-title: Effects of fetal and neonatal exposure to nicotine on blood pressure and perivascular adipose tissue function in adult life
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2008.05.044
– volume: 47
  start-page: 686
  year: 2015
  ident: 10.1016/j.ejphar.2020.173040_bib35
  article-title: Empagliflozin, an inhibitor of sodium-glucose Cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor Axis
  publication-title: Horm. Metab. Res.
  doi: 10.1055/s-0034-1395609
– volume: 174
  start-page: 3466
  year: 2017
  ident: 10.1016/j.ejphar.2020.173040_bib4
  article-title: Exercise effects on perivascular adipose tissue: endocrine and paracrine determinants of vascular function
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.13732
– volume: 96–98
  start-page: 19
  year: 2017
  ident: 10.1016/j.ejphar.2020.173040_bib41
  article-title: Teneligliptin, a dipeptidyl peptidase-4 inhibitor, attenuated pro-inflammatory phenotype of perivascular adipose tissue and inhibited atherogenesis in normoglycemic apolipoprotein-E-deficient mice
  publication-title: Vasc. Pharmacol.
  doi: 10.1016/j.vph.2017.03.003
– volume: 3
  start-page: 43
  year: 2016
  ident: 10.1016/j.ejphar.2020.173040_bib42
  article-title: Glycemic control with ipragliflozin, a novel selective SGLT2 inhibitor, ameliorated endothelial dysfunction in streptozotocin-induced diabetic mouse
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2016.00043
– volume: 61
  start-page: 1712
  year: 2018
  ident: 10.1016/j.ejphar.2020.173040_bib51
  article-title: Empagliflozin reduces cardiovascular events, mortality and renal events in participants with type 2 diabetes after coronary artery bypass graft surgery: subanalysis of the EMPA-REG OUTCOME(R) randomised trial
  publication-title: Diabetologia
  doi: 10.1007/s00125-018-4644-9
– volume: 30
  start-page: 1711
  year: 2010
  ident: 10.1016/j.ejphar.2020.173040_bib37
  article-title: Epicardial perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a protein kinase C-beta pathway
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.110.210070
– volume: 17
  start-page: 106
  year: 2018
  ident: 10.1016/j.ejphar.2020.173040_bib31
  article-title: Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-018-0749-1
– volume: 97
  start-page: 226
  year: 2010
  ident: 10.1016/j.ejphar.2020.173040_bib29
  article-title: p38 Mitogen-activated protein kinase signalling regulates vascular inflammation and epithelial barrier dysfunction in an experimental model of radiation-induced colitis
  publication-title: Br. J. Surg.
  doi: 10.1002/bjs.6811
– volume: 2
  start-page: 554
  year: 2003
  ident: 10.1016/j.ejphar.2020.173040_bib27
  article-title: Targeting JNK for therapeutic benefit: from junk to gold?
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1132
– volume: 494
  start-page: 110487
  year: 2019
  ident: 10.1016/j.ejphar.2020.173040_bib8
  article-title: Empagliflozin improves primary haemodynamic parameters and attenuates the development of atherosclerosis in high fat diet fed APOE knockout mice
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2019.110487
– volume: 10
  year: 2015
  ident: 10.1016/j.ejphar.2020.173040_bib49
  article-title: Amelioration of hyperglycemia with a sodium-glucose Cotransporter 2 inhibitor prevents macrophage-driven atherosclerosis through macrophage foam cell formation suppression in type 1 and type 2 diabetic mice
  publication-title: PloS One
  doi: 10.1371/journal.pone.0143396
– volume: 40
  start-page: 535
  year: 2017
  ident: 10.1016/j.ejphar.2020.173040_bib38
  article-title: Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure
  publication-title: Hypertens. Res.
  doi: 10.1038/hr.2016.193
– volume: 151
  start-page: 323
  year: 2007
  ident: 10.1016/j.ejphar.2020.173040_bib15
  article-title: Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0707228
– volume: 373
  start-page: 2117
  year: 2015
  ident: 10.1016/j.ejphar.2020.173040_bib55
  article-title: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1504720
– start-page: 6305735
  year: 2016
  ident: 10.1016/j.ejphar.2020.173040_bib22
  article-title: The SGLT-2 inhibitor dapagliflozin has a therapeutic effect on atherosclerosis in diabetic ApoE(-/-) mice
  publication-title: Mediat. Inflamm.
– volume: 242
  start-page: 639
  year: 2015
  ident: 10.1016/j.ejphar.2020.173040_bib18
  article-title: Rivaroxaban, a novel oral anticoagulant, attenuates atherosclerotic plaque progression and destabilization in ApoE-deficient mice
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2015.03.023
– volume: 71
  start-page: 364
  year: 2018
  ident: 10.1016/j.ejphar.2020.173040_bib12
  article-title: Cardiovascular mortality reduction with empagliflozin in patients with type 2 diabetes and cardiovascular disease
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.11.022
– volume: 42
  start-page: 170
  year: 2001
  ident: 10.1016/j.ejphar.2020.173040_bib28
  article-title: Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)31676-X
– volume: 122
  start-page: 1
  year: 2012
  ident: 10.1016/j.ejphar.2020.173040_bib48
  article-title: Perivascular adipose tissue: more than just structural support
  publication-title: Clin. Sci. (Lond.)
  doi: 10.1042/CS20110151
– volume: 129
  start-page: 195
  year: 2011
  ident: 10.1016/j.ejphar.2020.173040_bib53
  article-title: Roles of prostanoids in the pathogenesis of cardiovascular diseases: novel insights from knockout mouse studies
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2010.09.004
– volume: 52
  start-page: 266
  year: 2011
  ident: 10.1016/j.ejphar.2020.173040_bib47
  article-title: Roles of prostaglandin E2 in cardiovascular diseases
  publication-title: Int. Heart J.
  doi: 10.1536/ihj.52.266
– volume: 377
  start-page: 2099
  year: 2017
  ident: 10.1016/j.ejphar.2020.173040_bib32
  article-title: Canagliflozin and cardiovascular and renal events in type 2 diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1611925
– volume: 164
  start-page: 894
  year: 2011
  ident: 10.1016/j.ejphar.2020.173040_bib10
  article-title: Endothelium-mediated control of vascular tone: COX-1 and COX-2 products
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2011.01276.x
– volume: 10
  start-page: 453
  year: 2011
  ident: 10.1016/j.ejphar.2020.173040_bib9
  article-title: Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3403
– volume: 1
  start-page: 93
  year: 2005
  ident: 10.1016/j.ejphar.2020.173040_bib52
  article-title: Advanced glycation end products (AGEs) and diabetic vascular complications
  publication-title: Curr. Diabetes Rev.
  doi: 10.2174/1573399052952631
– volume: 17
  start-page: 101
  year: 2018
  ident: 10.1016/j.ejphar.2020.173040_bib21
  article-title: Potential mechanisms responsible for cardioprotective effects of sodium-glucose co-transporter 2 inhibitors
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-018-0745-5
– volume: 58
  start-page: 248
  year: 2011
  ident: 10.1016/j.ejphar.2020.173040_bib19
  article-title: Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2011.01.048
– volume: 9
  year: 2014
  ident: 10.1016/j.ejphar.2020.173040_bib34
  article-title: The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity
  publication-title: PloS One
  doi: 10.1371/journal.pone.0112394
– volume: 16
  start-page: 138
  year: 2017
  ident: 10.1016/j.ejphar.2020.173040_bib45
  article-title: Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study
  publication-title: Cardiovasc. Diabetol.
  doi: 10.1186/s12933-017-0621-8
– volume: 13
  start-page: 370
  year: 2017
  ident: 10.1016/j.ejphar.2020.173040_bib46
  article-title: The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.06.009
– volume: 60
  start-page: 364
  year: 2017
  ident: 10.1016/j.ejphar.2020.173040_bib17
  article-title: The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE (-/-) mice fed a western diet
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-4158-2
– volume: 34
  start-page: 146
  year: 1999
  ident: 10.1016/j.ejphar.2020.173040_bib20
  article-title: Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(99)00168-0
– volume: 656
  start-page: 68
  year: 2011
  ident: 10.1016/j.ejphar.2020.173040_bib25
  article-title: Alterations in perivascular adipose tissue structure and function in hypertension
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2011.01.023
– volume: 61
  start-page: 292
  year: 2007
  ident: 10.1016/j.ejphar.2020.173040_bib26
  article-title: Atherosclerosis in diabetes mellitus: role of inflammation
  publication-title: Indian J. Med. Sci.
  doi: 10.4103/0019-5359.32098
– volume: 7
  start-page: 12989
  year: 2017
  ident: 10.1016/j.ejphar.2020.173040_bib50
  article-title: Novel mechanism of regulation of the 5-lipoxygenase/leukotriene B4 pathway by high-density lipoprotein in macrophages
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13154-0
– volume: 58
  start-page: 52
  issue: Suppl. l
  year: 2006
  ident: 10.1016/j.ejphar.2020.173040_bib2
  article-title: Up-regulation of vascular cyclooxygenase-2 in diabetes mellitus
  publication-title: Pharmacol. Rep.
– volume: 9
  start-page: 551
  year: 2010
  ident: 10.1016/j.ejphar.2020.173040_bib5
  article-title: SGLT2 inhibition--a novel strategy for diabetes treatment
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3180
– volume: 358
  start-page: 580
  year: 2008
  ident: 10.1016/j.ejphar.2020.173040_bib13
  article-title: Effect of a multifactorial intervention on mortality in type 2 diabetes
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0706245
– volume: 18
  year: 2017
  ident: 10.1016/j.ejphar.2020.173040_bib30
  article-title: The SGLT2 inhibitor luseogliflozin rapidly normalizes aortic mRNA levels of inflammation-related but not lipid-metabolism-related genes and suppresses atherosclerosis in diabetic ApoE KO mice
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18081704
– volume: 10
  start-page: 191
  year: 2010
  ident: 10.1016/j.ejphar.2020.173040_bib39
  article-title: Crosstalk between perivascular adipose tissue and blood vessels
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2009.11.005
– volume: 104
  start-page: 949
  year: 2010
  ident: 10.1016/j.ejphar.2020.173040_bib16
  article-title: Prostanoid and TP-receptors in atherothrombosis: is there a role for their antagonism?
  publication-title: Thromb. Haemostasis
  doi: 10.1160/TH10-03-0195
– volume: 38
  start-page: 2207
  year: 2018
  ident: 10.1016/j.ejphar.2020.173040_bib3
  article-title: Mechanism of increased LDL (Low-Density Lipoprotein) and decreased triglycerides with SGLT2 (Sodium-Glucose Cotransporter 2) inhibition
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.118.311339
– volume: 106
  start-page: 2760
  year: 2002
  ident: 10.1016/j.ejphar.2020.173040_bib24
  article-title: Diabetic macrovascular disease: the glucose paradox?
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000037282.92395.AE
SSID ssj0005925
Score 2.5905101
Snippet Recent studies reported cardioprotective effects of sodium glucose co-transporter 2 (SGLT2) inhibitors; however, the underlying mechanisms are still obscure....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 173040
SubjectTerms Adipose Tissue - drug effects
Adipose Tissue - immunology
Adipose Tissue - metabolism
Animals
Aorta, Thoracic - drug effects
Aorta, Thoracic - immunology
Aorta, Thoracic - pathology
Atherosclerosis
Benzhydryl Compounds - administration & dosage
Blood Glucose - analysis
Blood Glucose - drug effects
Diabetes Mellitus, Experimental - blood
Diabetes Mellitus, Experimental - chemically induced
Diabetes Mellitus, Experimental - complications
Diabetes Mellitus, Experimental - drug therapy
Eicosanoids - metabolism
Empagliflozin
Endothelial function
Endothelium, Vascular - drug effects
Endothelium, Vascular - immunology
Endothelium, Vascular - pathology
Glucosides - administration & dosage
Humans
Inflammation
Male
Mice
Mice, Knockout, ApoE
Plaque, Atherosclerotic - etiology
Plaque, Atherosclerotic - pathology
Plaque, Atherosclerotic - prevention & control
SGLT2 inhibitor
Sodium-Glucose Transporter 2 Inhibitors - administration & dosage
Streptozocin - toxicity
Title Empagliflozin ameliorates endothelial dysfunction and suppresses atherogenesis in diabetic apolipoprotein E-deficient mice
URI https://dx.doi.org/10.1016/j.ejphar.2020.173040
https://www.ncbi.nlm.nih.gov/pubmed/32114052
https://www.proquest.com/docview/2369876085
Volume 875
WOSCitedRecordID wos000522724900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0712
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005925
  issn: 0014-2999
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWcpIdeiu51l4AFCl8aBdVK8ZgWNtoicA3UAdyTQIq0Iy-SGllB7K_qJ3YoajOSIOmhF8Gmtfo9DWeGsyD0ASwMQbnpGjB3fjIcHzbcC4Vh89D3XcKIJKJoNkGGQ38yoaNO50-VC3O5JHHsX13R9L9CDWMAtkqd_Qe465PCAHwG0GELsMP2XsD34QWfLaPpMtlG8Ue2kkuVha_cqzIWKt9qqZzkYpOpKW1dRSNneVqExMJuhU6YzJQQjHS0bOGfVYVdVUuHNClqO8B43xBSFaBQ4QSrMobuRi9_qfGmTZnsJoaUxZyxtQ7z_rxhK174LGvKDvJFLvSaFIvmee0QOo_iRNWa1vlGGVuwbf3jLzYrYhR-nudZvpBtx4ZVrMnr1M5SFvukyK_SwlreMFYKcJ-4LRFsgszSFaCuzQ7aUTE_lnP1wMfqosfN7rvFuIc_gsHZ6Wkw7k_GvfS3ofqUqfX8smnLHjqwiEtBjh6cfOtPvjdhRbRo9FvfaJWuWcQUXr_wberQbeZOofaMH6NHpb2CTzTPnqCOjJ-i3kgjuTnC4yZ_LzvCPTxqYfwMbXfIiFtkxC0y4hYZMZARN2TEO2TEcI6KjHiXjLhFRqzI-BydDfrjL1-NstuHEYIJvDYEWAYOaO-OI-C7w4RvM-kL35t6RMJMI6aOVM4AjwnOCRehQ4kU0vNAxeIuN-0XaD9OYvkKYcpCk4YW41OXO0RwOqWetKkj_dBl3JRdZFd_ehCWpfBVR5ZlUMU8zgMNVaCgCjRUXWTUR6W6FMwd-5MKz6BUZ7WaGgAf7zjyfQV_ANJeLeGxWCZ5Fli2R0F_ATupi15qXtT3YlumCeaX9foeR79BD5tX7i3aX1_k8h16EF6uo-ziEO2RiX9YMvsvmYffkA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empagliflozin+ameliorates+endothelial+dysfunction+and+suppresses+atherogenesis+in+diabetic+apolipoprotein+E-deficient+mice&rft.jtitle=European+journal+of+pharmacology&rft.au=Ganbaatar%2C+Byambasuren&rft.au=Fukuda%2C+Daiju&rft.au=Shinohara%2C+Masakazu&rft.au=Yagi%2C+Shusuke&rft.date=2020-05-15&rft.issn=1879-0712&rft.eissn=1879-0712&rft.volume=875&rft.spage=173040&rft_id=info:doi/10.1016%2Fj.ejphar.2020.173040&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2999&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2999&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2999&client=summon