A Comprehensive Analysis on Enhancing Multi-Objective Evolutionary Algorithms Using Chaotic Dynamics and Dominant Relationship-Based Search Strategies

In optimization and decision-making, multi-objective optimization has emerged as a pivotal challenge. Over the past three decades, the concerted efforts of scholars and practitioners across various disciplines have significantly advanced the study and implementation of Multi-Objective Evolutionary A...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Access Ročník 13; s. 33455 - 33470
Hlavní autoři: Wang, Zitong, Pei, Yan, Li, Jianqiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.01.2025
Institute of Electrical and Electronics Engineers (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In optimization and decision-making, multi-objective optimization has emerged as a pivotal challenge. Over the past three decades, the concerted efforts of scholars and practitioners across various disciplines have significantly advanced the study and implementation of Multi-Objective Evolutionary Algorithms (MOEAs). MOEAs stand at the forefront of multi-objective decision-making methodologies, marking a vibrant area of inquiry within evolutionary computation. This body of work categorizes MOEAs into three distinct streams: Decomposition-based MOEA algorithms, Dominant relationship-based MOEA algorithms, and Evaluation index-based MOEA algorithms. Focusing specifically on dominance-based MOEAs, this study integrates them with chaotic evolution (CE) strategies to enhance the efficacy of multi-objective optimization processes. Through comparative analysis against traditional algorithms, the newly proposed chaotic MOEA demonstrates superior optimization performance, thereby setting a robust groundwork for the continuous evolution and application of MOEAs.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2024.3430970