Physics of humping formation in laser powder bed fusion
•Implementation of ray tracing heat source in the CFD model•Good consistency between simulations and experiments•Humping defects in samples fabricated at high laser power and scanning speed•Discussion on the roles of various force on humping formation Despite of the promising attributes of laser pow...
Saved in:
| Published in: | International journal of heat and mass transfer Vol. 149; p. 119172 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Elsevier Ltd
01.03.2020
Elsevier BV |
| Subjects: | |
| ISSN: | 0017-9310, 1879-2189 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Implementation of ray tracing heat source in the CFD model•Good consistency between simulations and experiments•Humping defects in samples fabricated at high laser power and scanning speed•Discussion on the roles of various force on humping formation
Despite of the promising attributes of laser powder bed fusion, part quality such as porosity and surface roughness remains a critical issue for industrial applications. Humping is a surface defect that may greatly deteriorate the mechanical performances of as-built components. However, current understanding of humping formation remains vague and unclear. In this respect, laser powder bed fusion of stainless steel 316 L single tracks was simulated by using computational fluid dynamics. With the same linear energy density, the simulated tracks exhibit irregular humps at high scanning velocities, which is validated against experiments. In addition, flow kinetics was analyzed to elucidate the physical origins of humping formation during printing process. The study reveals the various effects of surface tension, Marangoni shear force, viscous force and recoil pressure on the humping phenomenon in laser powder bed fusion. At relatively high scanning speed, a swelling with large contact angle is formed due to the competition between surface tension and flow inertia. Capillary instability divides the swelling into separated regions, which is responsible for the humping formation during printing process. |
|---|---|
| AbstractList | •Implementation of ray tracing heat source in the CFD model•Good consistency between simulations and experiments•Humping defects in samples fabricated at high laser power and scanning speed•Discussion on the roles of various force on humping formation
Despite of the promising attributes of laser powder bed fusion, part quality such as porosity and surface roughness remains a critical issue for industrial applications. Humping is a surface defect that may greatly deteriorate the mechanical performances of as-built components. However, current understanding of humping formation remains vague and unclear. In this respect, laser powder bed fusion of stainless steel 316 L single tracks was simulated by using computational fluid dynamics. With the same linear energy density, the simulated tracks exhibit irregular humps at high scanning velocities, which is validated against experiments. In addition, flow kinetics was analyzed to elucidate the physical origins of humping formation during printing process. The study reveals the various effects of surface tension, Marangoni shear force, viscous force and recoil pressure on the humping phenomenon in laser powder bed fusion. At relatively high scanning speed, a swelling with large contact angle is formed due to the competition between surface tension and flow inertia. Capillary instability divides the swelling into separated regions, which is responsible for the humping formation during printing process. Despite of the promising attributes of laser powder bed fusion, part quality such as porosity and surface roughness remains a critical issue for industrial applications. Humping is a surface defect that may greatly deteriorate the mechanical performances of as-built components. However, current understanding of humping formation remains vague and unclear. In this respect, laser powder bed fusion of stainless steel 316 L single tracks was simulated by using computational fluid dynamics. With the same linear energy density, the simulated tracks exhibit irregular humps at high scanning velocities, which is validated against experiments. In addition, flow kinetics was analyzed to elucidate the physical origins of humping formation during printing process. The study reveals the various effects of surface tension, Marangoni shear force, viscous force and recoil pressure on the humping phenomenon in laser powder bed fusion. At relatively high scanning speed, a swelling with large contact angle is formed due to the competition between surface tension and flow inertia. Capillary instability divides the swelling into separated regions, which is responsible for the humping formation during printing process. |
| ArticleNumber | 119172 |
| Author | Le, K.Q. Tang, C. Wong, C.H. |
| Author_xml | – sequence: 1 givenname: C. surname: Tang fullname: Tang, C. email: tangchao@ntu.edu.sg organization: Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore – sequence: 2 givenname: K.Q. surname: Le fullname: Le, K.Q. organization: Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore – sequence: 3 givenname: C.H. surname: Wong fullname: Wong, C.H. email: chwongsgsg@gmail.com organization: Independent Researcher, Singapore |
| BookMark | eNqVkMtOwzAQRS1UJNrCP0RiwybBdh62d6CK8lAlWMDail_UUWMXOwH170kIK9jAajS6V2c0ZwFmzjsNwAWCGYKoumwy22x13bV1jF2oXTQ6ZBgiliHEEMFHYI4oYSlGlM3AHEJEUpYjeAIWMTbjCotqDsjT9hCtjIk3ybZv99a9JsaHtu6sd4l1ya6OOiR7_6GGIbRKTB-H6BQcm3oX9dn3XIKX9c3z6i7dPN7er643qSww7VJhSiUqWinJmFQQEsUYJbQSuKwKJGhJNM61wtRQSYUuEcqJQKUwaowUzZfgfOLug3_rdex44_vghpMc52WRY4bJ2FpPLRl8jEEbLm339cKgxu44gnyUxhv-WxofpfFJ2gC6-gHaB9vW4fAfxMOE0IOWdzukUVrtpFY2aNlx5e3fYZ81L5oQ |
| CitedBy_id | crossref_primary_10_1016_j_addma_2020_101512 crossref_primary_10_1016_j_addma_2024_104506 crossref_primary_10_1016_j_jmapro_2022_05_042 crossref_primary_10_1016_j_procir_2024_08_078 crossref_primary_10_1016_j_tws_2023_110814 crossref_primary_10_1016_j_xcrp_2025_102674 crossref_primary_10_1088_1742_6596_1983_1_012074 crossref_primary_10_1016_j_actamat_2020_116522 crossref_primary_10_2351_7_0000330 crossref_primary_10_1016_j_actamat_2021_117331 crossref_primary_10_1080_09506608_2023_2169501 crossref_primary_10_1016_j_ijthermalsci_2024_109377 crossref_primary_10_1016_j_addma_2021_102178 crossref_primary_10_1016_j_ijmachtools_2022_103977 crossref_primary_10_1007_s00466_024_02571_4 crossref_primary_10_3390_app112411910 crossref_primary_10_7736_JKSPE_025_075 crossref_primary_10_1007_s10854_021_05720_0 crossref_primary_10_3389_fmech_2024_1325623 crossref_primary_10_1016_j_addma_2023_103821 crossref_primary_10_1016_j_optlastec_2021_107289 crossref_primary_10_3390_jmmp7030093 crossref_primary_10_1080_17452759_2024_2446619 crossref_primary_10_1016_j_msea_2025_148480 crossref_primary_10_3390_met13040741 crossref_primary_10_3390_ma15072420 crossref_primary_10_1007_s00170_022_09272_3 crossref_primary_10_1016_j_ijmachtools_2020_103686 crossref_primary_10_1002_pat_5926 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126704 crossref_primary_10_3390_met12010011 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124115 crossref_primary_10_1016_j_jmrt_2024_08_019 crossref_primary_10_1016_j_jmrt_2025_08_138 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124596 crossref_primary_10_1016_j_msea_2025_147858 crossref_primary_10_1016_j_matdes_2020_109115 crossref_primary_10_1108_RPJ_11_2020_0278 crossref_primary_10_1016_j_addma_2025_104970 crossref_primary_10_1007_s11837_023_06177_8 crossref_primary_10_1088_2515_7639_ac09fb crossref_primary_10_1016_j_ijheatmasstransfer_2025_127267 crossref_primary_10_1016_j_pmatsci_2023_101129 crossref_primary_10_3390_met13010011 crossref_primary_10_1016_j_ijthermalsci_2023_108221 crossref_primary_10_1016_j_optlastec_2021_107713 crossref_primary_10_1016_j_addma_2024_104576 crossref_primary_10_1002_adem_202401727 crossref_primary_10_1016_j_addma_2021_102278 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121602 crossref_primary_10_1016_j_msea_2022_144113 crossref_primary_10_1016_j_jmst_2024_08_046 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120284 crossref_primary_10_1016_j_optlastec_2022_108811 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123894 crossref_primary_10_1016_j_powtec_2022_117789 crossref_primary_10_1016_j_addma_2023_103449 crossref_primary_10_1080_00202967_2024_2411903 crossref_primary_10_1007_s12540_022_01168_x crossref_primary_10_1016_j_matdes_2025_114551 crossref_primary_10_1016_j_jmapro_2023_09_041 crossref_primary_10_1177_09544062221143869 crossref_primary_10_3390_met13061091 crossref_primary_10_1016_j_jallcom_2023_171778 crossref_primary_10_1016_j_jmrt_2025_03_085 crossref_primary_10_1016_j_addma_2024_104046 crossref_primary_10_1016_j_commatsci_2022_111383 crossref_primary_10_1108_RPJ_12_2020_0301 crossref_primary_10_1016_j_addma_2023_103614 crossref_primary_10_1016_j_jmatprotec_2025_119080 crossref_primary_10_1016_j_matdes_2021_109857 crossref_primary_10_1038_s41598_021_90423_z crossref_primary_10_1016_j_nxmate_2024_100202 crossref_primary_10_1016_j_optlastec_2023_109276 crossref_primary_10_1007_s00170_021_08633_8 crossref_primary_10_1016_j_jmrt_2025_04_068 crossref_primary_10_1016_j_ijmecsci_2021_106957 crossref_primary_10_1016_j_procir_2023_09_122 crossref_primary_10_1016_j_addma_2025_104833 crossref_primary_10_1016_j_ijthermalsci_2024_109611 crossref_primary_10_1016_j_jmapro_2024_12_048 crossref_primary_10_1007_s40571_025_01043_7 crossref_primary_10_3390_ma13225063 crossref_primary_10_1115_1_4065457 crossref_primary_10_3390_s21051626 crossref_primary_10_1016_j_vacuum_2024_113073 crossref_primary_10_3390_jmmp9060200 crossref_primary_10_1016_j_engfailanal_2024_108429 crossref_primary_10_1088_2053_1591_accfe8 crossref_primary_10_3390_mi15020170 crossref_primary_10_1007_s11837_022_05310_3 crossref_primary_10_1108_HFF_04_2021_0282 crossref_primary_10_1007_s10845_022_02004_0 crossref_primary_10_1016_j_cjmeam_2021_100010 crossref_primary_10_1016_j_ijmecsci_2022_107478 crossref_primary_10_1080_17452759_2023_2235324 crossref_primary_10_1016_j_addma_2024_104420 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123663 crossref_primary_10_1016_j_jmapro_2025_03_010 crossref_primary_10_1007_s40964_024_00775_x crossref_primary_10_1016_j_pmatsci_2024_101361 crossref_primary_10_1016_j_ijthermalsci_2021_106954 crossref_primary_10_1016_j_powtec_2021_11_056 crossref_primary_10_1016_j_cie_2024_110098 crossref_primary_10_1016_j_addma_2023_103481 crossref_primary_10_1016_j_addma_2022_103081 crossref_primary_10_1016_j_infrared_2024_105408 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122855 crossref_primary_10_1016_j_jmatprotec_2024_118335 crossref_primary_10_1016_j_ijmecsci_2022_107389 crossref_primary_10_1016_j_ijmachtools_2021_103797 crossref_primary_10_1016_j_ijmachtools_2023_104049 crossref_primary_10_3390_met12010087 crossref_primary_10_1038_s41467_024_53888_w crossref_primary_10_1007_s41403_021_00256_5 crossref_primary_10_1016_j_jmapro_2023_03_040 crossref_primary_10_1016_j_actamat_2025_121443 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125894 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124262 crossref_primary_10_1002_adem_202500914 crossref_primary_10_1016_j_jallcom_2022_164079 crossref_primary_10_1016_j_addma_2023_103809 crossref_primary_10_1016_j_apt_2021_09_036 crossref_primary_10_1177_13621718251347370 crossref_primary_10_1016_j_jmapro_2025_04_030 crossref_primary_10_1007_s40192_024_00382_2 crossref_primary_10_1016_j_cjmeam_2022_100017 crossref_primary_10_1016_j_matpr_2023_06_169 crossref_primary_10_1007_s00170_024_13750_1 crossref_primary_10_1016_j_addma_2024_104487 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120766 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123835 |
| Cites_doi | 10.1016/j.matdes.2016.05.070 10.2351/1.5040636 10.1016/j.actamat.2016.02.014 10.1016/j.matdes.2019.107949 10.1016/j.addma.2019.100784 10.1016/j.apmt.2017.08.006 10.1016/j.jmatprotec.2012.11.011 10.1007/BF02657748 10.1016/j.compstruc.2004.08.017 10.1016/j.compfluid.2017.11.011 10.1016/j.ijheatmasstransfer.2018.06.073 10.1016/j.cirp.2017.04.075 10.1016/j.ijheatmasstransfer.2019.05.003 10.1016/j.ijheatmasstransfer.2016.08.110 10.1016/j.actamat.2010.07.056 10.1016/j.ijheatmasstransfer.2014.09.014 10.1038/s41467-019-10009-2 10.1088/0022-3727/46/5/055501 10.1088/0022-3727/35/13/320 10.1016/j.ijheatmasstransfer.2013.07.085 10.1016/0021-9991(81)90145-5 10.1016/j.commatsci.2010.06.025 10.1016/j.jmatprotec.2011.09.011 10.1016/j.compfluid.2013.06.024 10.1016/j.actamat.2015.06.004 10.1016/j.ijheatmasstransfer.2019.06.038 10.1088/0022-3727/43/44/445501 10.1364/AO.54.002477 10.1179/174329306X120787 10.1016/j.actamat.2015.07.014 10.1006/jcph.1994.1123 10.1179/174329305X44134 10.1016/j.matdes.2016.10.037 10.1016/j.jmatprotec.2017.08.012 10.1016/j.actamat.2017.05.061 10.1007/s11663-007-9034-5 10.3390/met8070475 10.1016/j.pmatsci.2017.10.001 10.1016/j.jmatprotec.2017.11.032 10.1016/j.jmatprotec.2014.06.001 10.1016/j.jmatprotec.2014.06.005 10.1016/j.jcp.2008.01.042 10.1098/rsta.1998.0196 10.1038/s41467-018-03734-7 |
| ContentType | Journal Article |
| Copyright | 2019 Copyright Elsevier BV Mar 2020 |
| Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Mar 2020 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2019.119172 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2019_119172 S0017931019346502 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c428t-bf5db686dc99cd007d998786b25641b857e23ed28f8c8be51137b15bfd857ed83 |
| ISICitedReferencesCount | 141 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538009600075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Sun Nov 09 08:55:54 EST 2025 Sat Nov 29 07:31:09 EST 2025 Tue Nov 18 19:37:03 EST 2025 Fri Feb 23 02:48:06 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Laser powder bed fusion Ray tracing algorithm Additive manufacturing Computational fluid dynamics Surface morphology Humping |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c428t-bf5db686dc99cd007d998786b25641b857e23ed28f8c8be51137b15bfd857ed83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0017931019346502 |
| PQID | 2354329278 |
| PQPubID | 2045464 |
| ParticipantIDs | proquest_journals_2354329278 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2019_119172 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119172 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_119172 |
| PublicationCentury | 2000 |
| PublicationDate | March 2020 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Loh, Chua, Yeong, Song, Mapar, Sing, Liu, Zhang (bib0044) 2015; 80 Kasperovich, Haubrich, Gussone, Requena (bib0007) 2016; 105 Fabbro (bib0045) 2010; 43 Aboulkhair, Everitt, Ashcroft, Tuck (bib0002) 2014; 1 Sahoo, Debroy, McNallan (bib0037) 1988; 19 Hirt, Nichols (bib0030) 1981; 39 Patel, Kuipers, Peters (bib0032) 2018; 161 Soderstrom, Mendez (bib0048) 2006; 11 Hoang, van Steijn, Portela, Kreutzer, Kleijn (bib0033) 2013; 86 Zhao, Kwakernaak, Pan, Richardson, Saldi, Kenjeres, Kleijn (bib0034) 2010; 58 Tang, Tan, Wong (bib0020) 2018; 126 Saldi, Kidess, Kenjereš, Zhao, Richardson, Kleijn (bib0035) 2013; 66 Lee, Zhang (bib0018) 2015 King, Barth, Castillo, Gallegos, Gibbs, Hahn, Kamath, Rubenchik (bib0009) 2014; 214 Cummins, Francois, Kothe (bib0046) 2005; 83 Cho, Farson (bib0049) 2007; 38 Leung, Marussi, Atwood, Towrie, Withers, Lee (bib0006) 2018; 9 Lee, Zhang (bib0023) 2016; 12 Lafaurie, Nardone, Scardovelli, Zaleski, Zanetti (bib0031) 1994; 113 Soylemez (bib0015) 2018 Khairallah, Anderson, Rubenchik, King (bib0017) 2016; 108 Cho, Na, Thomy, Vollertsen (bib0039) 2012; 212 Yin, Wang, Yang, Wei, Dong, Ke, Wang, Zhu, Zeng (bib0052) 2019 Jasak, Jemcov, Tukovic (bib0027) 2007 DebRoy, Wei, Zuback, Mukherjee, Elmer, Milewski, Beese, Wilson-Heid, De, Zhang (bib0001) 2018; 92 Strano, Hao, Everson, Evans (bib0004) 2013; 213 Bayat, Mohanty, Hattel (bib0021) 2019; 139 Schlottke, Weigand (bib0029) 2008; 227 Bosio, Aversa, Lorusso, Marola, Gianoglio, Battezzati, Fino, Manfredi, Lombardi (bib0014) 2019 Matthews, Trapp, Guss, Rubenchik (bib0043) 2018; 30 Bayat, Thanki, Mohanty, Witvrouw, Yang, Thorborg, Tiedje, Hattel (bib0022) 2019 Zheng, Wei, Chen, Zhang, Zhong, Lin, Huang (bib0025) 2019; 140 Bertoli, Wolfer, Matthews, Delplanque, Schoenung (bib0011) 2017; 113 Mills, Keene, Brooks, Shirali (bib0038) 1998; 356 Zhou, Wang, Liu, Zhang, Qu, Ma, London, Shen, Liu (bib0010) 2015; 98 Yan, Ge, Qian, Lin, Zhou, Liu, Lin, Wagner (bib0019) 2017; 134 Boley, Khairallah, Rubenchik (bib0042) 2015; 54 Wu, San, Chang, Lin, Marwan, Baba, Hwang (bib0024) 2018; 254 Trapp, Rubenchik, Guss, Matthews (bib0026) 2017; 9 Mills (bib0036) 2002 Birnbaum, Steuben, Barrick, Iliopoulos, Michopoulos (bib0051) 2019; 29 Gunenthiram, Peyre, Schneider, Dal, Coste, Koutiri, Fabbro (bib0012) 2018; 251 Thompson, Senin, Giusca, Leach (bib0005) 2017; 66 Tan, Bailey, Shin (bib0028) 2013; 46 Makoana, Yadroitsava, Möller, Yadroitsev (bib0013) 2018; 8 Martin, Calta, Khairallah, Wang, Depond, Fong, Thampy, Guss, Kiss, Stone (bib0008) 2019; 10 Qiu, Panwisawas, Ward, Basoalto, Brooks, Attallah (bib0003) 2015; 96 Khairallah, Anderson (bib0016) 2014; 214 Lee, Ko, Farson, Yoo (bib0041) 2002; 35 Nguyen, Weckman, Johnson, Kerr (bib0047) 2005; 10 Wu, Hua, Ye, Li (bib0050) 2017; 104 Cho, Na, Cho, Lee (bib0040) 2010; 49 Bayat (10.1016/j.ijheatmasstransfer.2019.119172_bib0021) 2019; 139 Zhao (10.1016/j.ijheatmasstransfer.2019.119172_bib0034) 2010; 58 Khairallah (10.1016/j.ijheatmasstransfer.2019.119172_bib0016) 2014; 214 Yan (10.1016/j.ijheatmasstransfer.2019.119172_bib0019) 2017; 134 Lee (10.1016/j.ijheatmasstransfer.2019.119172_bib0023) 2016; 12 Jasak (10.1016/j.ijheatmasstransfer.2019.119172_bib0027) 2007 Patel (10.1016/j.ijheatmasstransfer.2019.119172_bib0032) 2018; 161 Gunenthiram (10.1016/j.ijheatmasstransfer.2019.119172_bib0012) 2018; 251 Lafaurie (10.1016/j.ijheatmasstransfer.2019.119172_bib0031) 1994; 113 Loh (10.1016/j.ijheatmasstransfer.2019.119172_bib0044) 2015; 80 Nguyen (10.1016/j.ijheatmasstransfer.2019.119172_bib0047) 2005; 10 Martin (10.1016/j.ijheatmasstransfer.2019.119172_bib0008) 2019; 10 Bosio (10.1016/j.ijheatmasstransfer.2019.119172_bib0014) 2019 Tang (10.1016/j.ijheatmasstransfer.2019.119172_bib0020) 2018; 126 Zhou (10.1016/j.ijheatmasstransfer.2019.119172_bib0010) 2015; 98 Matthews (10.1016/j.ijheatmasstransfer.2019.119172_bib0043) 2018; 30 Khairallah (10.1016/j.ijheatmasstransfer.2019.119172_bib0017) 2016; 108 Bayat (10.1016/j.ijheatmasstransfer.2019.119172_bib0022) 2019 Wu (10.1016/j.ijheatmasstransfer.2019.119172_bib0024) 2018; 254 Qiu (10.1016/j.ijheatmasstransfer.2019.119172_bib0003) 2015; 96 Cho (10.1016/j.ijheatmasstransfer.2019.119172_bib0040) 2010; 49 Boley (10.1016/j.ijheatmasstransfer.2019.119172_bib0042) 2015; 54 Wu (10.1016/j.ijheatmasstransfer.2019.119172_bib0050) 2017; 104 Schlottke (10.1016/j.ijheatmasstransfer.2019.119172_bib0029) 2008; 227 Tan (10.1016/j.ijheatmasstransfer.2019.119172_bib0028) 2013; 46 Aboulkhair (10.1016/j.ijheatmasstransfer.2019.119172_bib0002) 2014; 1 Thompson (10.1016/j.ijheatmasstransfer.2019.119172_bib0005) 2017; 66 Fabbro (10.1016/j.ijheatmasstransfer.2019.119172_bib0045) 2010; 43 Makoana (10.1016/j.ijheatmasstransfer.2019.119172_bib0013) 2018; 8 Cummins (10.1016/j.ijheatmasstransfer.2019.119172_bib0046) 2005; 83 Mills (10.1016/j.ijheatmasstransfer.2019.119172_bib0038) 1998; 356 Kasperovich (10.1016/j.ijheatmasstransfer.2019.119172_bib0007) 2016; 105 Saldi (10.1016/j.ijheatmasstransfer.2019.119172_bib0035) 2013; 66 DebRoy (10.1016/j.ijheatmasstransfer.2019.119172_bib0001) 2018; 92 Trapp (10.1016/j.ijheatmasstransfer.2019.119172_bib0026) 2017; 9 Zheng (10.1016/j.ijheatmasstransfer.2019.119172_bib0025) 2019; 140 Lee (10.1016/j.ijheatmasstransfer.2019.119172_bib0041) 2002; 35 Soylemez (10.1016/j.ijheatmasstransfer.2019.119172_bib0015) 2018 Hirt (10.1016/j.ijheatmasstransfer.2019.119172_bib0030) 1981; 39 Mills (10.1016/j.ijheatmasstransfer.2019.119172_bib0036) 2002 Bertoli (10.1016/j.ijheatmasstransfer.2019.119172_bib0011) 2017; 113 Lee (10.1016/j.ijheatmasstransfer.2019.119172_bib0018) 2015 Strano (10.1016/j.ijheatmasstransfer.2019.119172_bib0004) 2013; 213 King (10.1016/j.ijheatmasstransfer.2019.119172_bib0009) 2014; 214 Cho (10.1016/j.ijheatmasstransfer.2019.119172_bib0049) 2007; 38 Sahoo (10.1016/j.ijheatmasstransfer.2019.119172_bib0037) 1988; 19 Hoang (10.1016/j.ijheatmasstransfer.2019.119172_bib0033) 2013; 86 Cho (10.1016/j.ijheatmasstransfer.2019.119172_bib0039) 2012; 212 Yin (10.1016/j.ijheatmasstransfer.2019.119172_bib0052) 2019 Leung (10.1016/j.ijheatmasstransfer.2019.119172_bib0006) 2018; 9 Soderstrom (10.1016/j.ijheatmasstransfer.2019.119172_bib0048) 2006; 11 Birnbaum (10.1016/j.ijheatmasstransfer.2019.119172_bib0051) 2019; 29 |
| References_xml | – volume: 49 start-page: 792 year: 2010 end-page: 800 ident: bib0040 article-title: Numerical study of alloying element distribution in CO2 laser–GMA hybrid welding publication-title: Comput. Mater. Sci. – volume: 113 start-page: 331 year: 2017 end-page: 340 ident: bib0011 article-title: On the limitations of volumetric energy density as a design parameter for selective laser melting publication-title: Mater. Des. – volume: 1 start-page: 77 year: 2014 end-page: 86 ident: bib0002 article-title: Reducing porosity in AlSi10Mg parts processed by selective laser melting publication-title: Addit. Manuf. – volume: 86 start-page: 28 year: 2013 end-page: 36 ident: bib0033 article-title: Benchmark numerical simulations of segmented two-phase flows in microchannels using the Volume of Fluid method publication-title: Comput. Fluids – volume: 58 start-page: 6345 year: 2010 end-page: 6357 ident: bib0034 article-title: The effect of oxygen on transitional Marangoni flow in laser spot welding publication-title: Acta Mater. – volume: 11 start-page: 572 year: 2006 end-page: 579 ident: bib0048 article-title: Humping mechanisms present in high speed welding publication-title: Sci. Technol. Weld. Join. – volume: 214 start-page: 2915 year: 2014 end-page: 2925 ident: bib0009 article-title: Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing publication-title: J. Mater. Process. Technol. – volume: 66 start-page: 879 year: 2013 end-page: 888 ident: bib0035 article-title: Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel publication-title: Int. J. Heat Mass Transfer – year: 2019 ident: bib0014 article-title: A time-saving and cost-effective method to process alloys by Laser Powder Bed Fusion publication-title: Mater. Des. – volume: 212 start-page: 262 year: 2012 end-page: 275 ident: bib0039 article-title: Numerical simulation of molten pool dynamics in high power disk laser welding publication-title: J. Mater. Process. Technol. – volume: 10 start-page: 1987 year: 2019 ident: bib0008 article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing publication-title: Nat. Commun. – volume: 19 start-page: 483 year: 1988 end-page: 491 ident: bib0037 article-title: Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy publication-title: Metall. Trans. B – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: bib0030 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. – volume: 113 start-page: 134 year: 1994 end-page: 147 ident: bib0031 article-title: Modelling merging and fragmentation in multiphase flows with SURFER publication-title: J. Comput. Phys. – volume: 104 start-page: 634 year: 2017 end-page: 643 ident: bib0050 article-title: Understanding of humping formation and suppression mechanisms using the numerical simulation publication-title: Int. J. Heat Mass Transfer – volume: 10 start-page: 447 year: 2005 end-page: 459 ident: bib0047 article-title: The humping phenomenon during high speed gas metal arc welding publication-title: Sci. Technol. Weld. Join. – volume: 96 start-page: 72 year: 2015 end-page: 79 ident: bib0003 article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting publication-title: Acta Mater. – volume: 54 start-page: 2477 year: 2015 end-page: 2482 ident: bib0042 article-title: Calculation of laser absorption by metal powders in additive manufacturing publication-title: Appl. Opt. – volume: 139 start-page: 95 year: 2019 end-page: 114 ident: bib0021 article-title: Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF publication-title: Int. J. Heat Mass Transfer – volume: 66 start-page: 543 year: 2017 end-page: 546 ident: bib0005 article-title: Topography of selectively laser melted surfaces: a comparison of different measurement methods publication-title: CIRP Ann. – volume: 251 start-page: 376 year: 2018 end-page: 386 ident: bib0012 article-title: Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process publication-title: J. Mater. Process. Technol. – year: 2002 ident: bib0036 article-title: Recommended Values of Thermophysical Properties for Selected Commercial Alloys – volume: 213 start-page: 589 year: 2013 end-page: 597 ident: bib0004 article-title: Surface roughness analysis, modelling and prediction in selective laser melting publication-title: J. Mater. Process. Technol. – volume: 29 year: 2019 ident: bib0051 article-title: Intrinsic strain aging, Σ3 boundaries, and origins of cellular substructure in additively manufactured 316L publication-title: Additive Manufacturing – volume: 356 start-page: 911 year: 1998 end-page: 925 ident: bib0038 article-title: Marangoni effects in welding, philosophical transactions of the Royal Society of London. Series A: Mathematical publication-title: Phys. Eng. Sci. – volume: 9 start-page: 1355 year: 2018 ident: bib0006 article-title: In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing publication-title: Nat. Commun. – volume: 80 start-page: 288 year: 2015 end-page: 300 ident: bib0044 article-title: Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061 publication-title: Int. J. Heat Mass Transfer – volume: 98 start-page: 1 year: 2015 end-page: 16 ident: bib0010 article-title: 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT publication-title: Acta Mater. – volume: 134 start-page: 324 year: 2017 end-page: 333 ident: bib0019 article-title: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting publication-title: Acta Mater. – volume: 8 start-page: 475 year: 2018 ident: bib0013 article-title: Characterization of 17-4PH single tracks produced at different parametric conditions towards increased productivity of LPBF systems—the effect of laser power and spot size upscaling publication-title: Metals – volume: 126 start-page: 957 year: 2018 end-page: 968 ident: bib0020 article-title: A numerical investigation on the physical mechanisms of single track defects in selective laser melting publication-title: Int. J. Heat Mass Transfer – volume: 12 start-page: 178 year: 2016 end-page: 188 ident: bib0023 article-title: Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion publication-title: Addit. Manuf. – volume: 105 start-page: 160 year: 2016 end-page: 170 ident: bib0007 article-title: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting publication-title: Mater. Des. – start-page: 1 year: 2007 end-page: 20 ident: bib0027 article-title: OpenFOAM: a C++ library for complex physics simulations, International workshop on coupled methods in numerical dynamics publication-title: IUC Dubrovnik Croatia – volume: 214 start-page: 2627 year: 2014 end-page: 2636 ident: bib0016 article-title: Mesoscopic simulation model of selective laser melting of stainless steel powder publication-title: J. Mater. Process. Technol. – start-page: 1154 year: 2015 end-page: 1165 ident: bib0018 article-title: Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing publication-title: International Solid Free Form Fabrication Symposium – volume: 9 start-page: 341 year: 2017 end-page: 349 ident: bib0026 article-title: In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing publication-title: Applied Materials Today – volume: 108 start-page: 36 year: 2016 end-page: 45 ident: bib0017 article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones publication-title: Acta Mater. – volume: 30 year: 2018 ident: bib0043 article-title: Direct measurements of laser absorptivity during metal melt pool formation associated with powder bed fusion additive manufacturing processes publication-title: J. Laser Appl. – volume: 46 year: 2013 ident: bib0028 article-title: Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation publication-title: J. Phys. D Appl. Phys. – volume: 140 start-page: 1091 year: 2019 end-page: 1105 ident: bib0025 article-title: A novel method for the molten pool and porosity formation modelling in selective laser melting publication-title: Int. J. Heat Mass Transfer – volume: 227 start-page: 5215 year: 2008 end-page: 5237 ident: bib0029 article-title: Direct numerical simulation of evaporating droplets publication-title: J. Comput. Phys. – volume: 43 year: 2010 ident: bib0045 article-title: Melt pool and keyhole behaviour analysis for deep penetration laser welding publication-title: J. Phys. D Appl. Phys. – volume: 35 start-page: 1570 year: 2002 ident: bib0041 article-title: Mechanism of keyhole formation and stability in stationary laser welding publication-title: J. Phys. D Appl. Phys. – start-page: 13 year: 2018 end-page: 15 ident: bib0015 article-title: Modeling the melt pool of the laser sintered Ti6al4v layers with Goldak's double-ellipsoidal heat source publication-title: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – volume: 83 start-page: 425 year: 2005 end-page: 434 ident: bib0046 article-title: Estimating curvature from volume fractions publication-title: Comput. Struct. – volume: 254 start-page: 72 year: 2018 end-page: 78 ident: bib0024 article-title: Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation publication-title: J. Mater. Process. Technol. – volume: 161 start-page: 74 year: 2018 end-page: 88 ident: bib0032 article-title: Computing interface curvature from volume fractions: a hybrid approach publication-title: Comput. Fluids – volume: 38 start-page: 305 year: 2007 end-page: 319 ident: bib0049 article-title: Understanding bead hump formation in gas metal arc welding using a numerical simulation publication-title: Metall. Mater. Trans. B – volume: 92 start-page: 112 year: 2018 end-page: 224 ident: bib0001 article-title: Additive manufacturing of metallic components–process, structure and properties publication-title: Prog. Mater Sci. – year: 2019 ident: bib0022 article-title: Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: high-fidelity modelling and experimental validation publication-title: Addit. Manuf. – year: 2019 ident: bib0052 article-title: Correlation between forming quality and spatter dynamics in laser powder bed fusion publication-title: Additive Manufacturing – volume: 105 start-page: 160 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0007 article-title: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.05.070 – start-page: 1 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0027 article-title: OpenFOAM: a C++ library for complex physics simulations, International workshop on coupled methods in numerical dynamics publication-title: IUC Dubrovnik Croatia – volume: 30 issue: 3 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0043 article-title: Direct measurements of laser absorptivity during metal melt pool formation associated with powder bed fusion additive manufacturing processes publication-title: J. Laser Appl. doi: 10.2351/1.5040636 – volume: 108 start-page: 36 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0017 article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.02.014 – year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0014 article-title: A time-saving and cost-effective method to process alloys by Laser Powder Bed Fusion publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.107949 – volume: 29 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0051 article-title: Intrinsic strain aging, Σ3 boundaries, and origins of cellular substructure in additively manufactured 316L publication-title: Additive Manufacturing doi: 10.1016/j.addma.2019.100784 – volume: 1 start-page: 77 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0002 article-title: Reducing porosity in AlSi10Mg parts processed by selective laser melting publication-title: Addit. Manuf. – volume: 9 start-page: 341 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0026 article-title: In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing publication-title: Applied Materials Today doi: 10.1016/j.apmt.2017.08.006 – volume: 213 start-page: 589 issue: 4 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0004 article-title: Surface roughness analysis, modelling and prediction in selective laser melting publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2012.11.011 – volume: 19 start-page: 483 issue: 3 year: 1988 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0037 article-title: Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy publication-title: Metall. Trans. B doi: 10.1007/BF02657748 – volume: 83 start-page: 425 issue: 6–7 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0046 article-title: Estimating curvature from volume fractions publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2004.08.017 – volume: 161 start-page: 74 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0032 article-title: Computing interface curvature from volume fractions: a hybrid approach publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2017.11.011 – volume: 126 start-page: 957 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0020 article-title: A numerical investigation on the physical mechanisms of single track defects in selective laser melting publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.06.073 – volume: 66 start-page: 543 issue: 1 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0005 article-title: Topography of selectively laser melted surfaces: a comparison of different measurement methods publication-title: CIRP Ann. doi: 10.1016/j.cirp.2017.04.075 – volume: 139 start-page: 95 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0021 article-title: Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2019.05.003 – volume: 104 start-page: 634 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0050 article-title: Understanding of humping formation and suppression mechanisms using the numerical simulation publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.08.110 – volume: 58 start-page: 6345 issue: 19 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0034 article-title: The effect of oxygen on transitional Marangoni flow in laser spot welding publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.07.056 – volume: 80 start-page: 288 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0044 article-title: Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2014.09.014 – volume: 10 start-page: 1987 issue: 1 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0008 article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing publication-title: Nat. Commun. doi: 10.1038/s41467-019-10009-2 – volume: 46 issue: 5 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0028 article-title: Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/46/5/055501 – volume: 35 start-page: 1570 issue: 13 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0041 article-title: Mechanism of keyhole formation and stability in stationary laser welding publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/35/13/320 – volume: 66 start-page: 879 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0035 article-title: Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.07.085 – volume: 39 start-page: 201 issue: 1 year: 1981 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0030 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – volume: 49 start-page: 792 issue: 4 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0040 article-title: Numerical study of alloying element distribution in CO2 laser–GMA hybrid welding publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2010.06.025 – volume: 212 start-page: 262 issue: 1 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0039 article-title: Numerical simulation of molten pool dynamics in high power disk laser welding publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2011.09.011 – volume: 86 start-page: 28 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0033 article-title: Benchmark numerical simulations of segmented two-phase flows in microchannels using the Volume of Fluid method publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2013.06.024 – volume: 96 start-page: 72 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0003 article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.06.004 – start-page: 1154 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0018 article-title: Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing – year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0022 article-title: Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: high-fidelity modelling and experimental validation publication-title: Addit. Manuf. – volume: 140 start-page: 1091 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0025 article-title: A novel method for the molten pool and porosity formation modelling in selective laser melting publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2019.06.038 – volume: 43 issue: 44 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0045 article-title: Melt pool and keyhole behaviour analysis for deep penetration laser welding publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/43/44/445501 – volume: 54 start-page: 2477 issue: 9 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0042 article-title: Calculation of laser absorption by metal powders in additive manufacturing publication-title: Appl. Opt. doi: 10.1364/AO.54.002477 – volume: 11 start-page: 572 issue: 5 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0048 article-title: Humping mechanisms present in high speed welding publication-title: Sci. Technol. Weld. Join. doi: 10.1179/174329306X120787 – volume: 98 start-page: 1 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0010 article-title: 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.07.014 – volume: 113 start-page: 134 issue: 1 year: 1994 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0031 article-title: Modelling merging and fragmentation in multiphase flows with SURFER publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1123 – volume: 10 start-page: 447 issue: 4 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0047 article-title: The humping phenomenon during high speed gas metal arc welding publication-title: Sci. Technol. Weld. Join. doi: 10.1179/174329305X44134 – volume: 113 start-page: 331 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0011 article-title: On the limitations of volumetric energy density as a design parameter for selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.10.037 – volume: 251 start-page: 376 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0012 article-title: Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.08.012 – start-page: 13 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0015 article-title: Modeling the melt pool of the laser sintered Ti6al4v layers with Goldak's double-ellipsoidal heat source – year: 2019 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0052 article-title: Correlation between forming quality and spatter dynamics in laser powder bed fusion publication-title: Additive Manufacturing – volume: 134 start-page: 324 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0019 article-title: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.05.061 – year: 2002 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0036 – volume: 38 start-page: 305 issue: 2 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0049 article-title: Understanding bead hump formation in gas metal arc welding using a numerical simulation publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-007-9034-5 – volume: 8 start-page: 475 issue: 7 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0013 article-title: Characterization of 17-4PH single tracks produced at different parametric conditions towards increased productivity of LPBF systems—the effect of laser power and spot size upscaling publication-title: Metals doi: 10.3390/met8070475 – volume: 92 start-page: 112 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0001 article-title: Additive manufacturing of metallic components–process, structure and properties publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2017.10.001 – volume: 254 start-page: 72 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0024 article-title: Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.11.032 – volume: 214 start-page: 2627 issue: 11 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0016 article-title: Mesoscopic simulation model of selective laser melting of stainless steel powder publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2014.06.001 – volume: 214 start-page: 2915 issue: 12 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0009 article-title: Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2014.06.005 – volume: 227 start-page: 5215 issue: 10 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0029 article-title: Direct numerical simulation of evaporating droplets publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.01.042 – volume: 356 start-page: 911 issue: 1739 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0038 article-title: Marangoni effects in welding, philosophical transactions of the Royal Society of London. Series A: Mathematical publication-title: Phys. Eng. Sci. doi: 10.1098/rsta.1998.0196 – volume: 9 start-page: 1355 issue: 1 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0006 article-title: In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing publication-title: Nat. Commun. doi: 10.1038/s41467-018-03734-7 – volume: 12 start-page: 178 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0023 article-title: Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion publication-title: Addit. Manuf. |
| SSID | ssj0017046 |
| Score | 2.639341 |
| Snippet | •Implementation of ray tracing heat source in the CFD model•Good consistency between simulations and experiments•Humping defects in samples fabricated at high... Despite of the promising attributes of laser powder bed fusion, part quality such as porosity and surface roughness remains a critical issue for industrial... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119172 |
| SubjectTerms | Additive manufacturing Austenitic stainless steels Capillary flow Computational fluid dynamics Computer simulation Contact angle Flow stability Flux density Humping Industrial applications Laser powder bed fusion Lasers Porosity Powder beds Rapid prototyping Ray tracing algorithm Recoil Scanning Shear forces Surface defects Surface morphology Surface roughness Surface stability Surface tension Swelling |
| Title | Physics of humping formation in laser powder bed fusion |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.119172 https://www.proquest.com/docview/2354329278 |
| Volume | 149 |
| WOSCitedRecordID | wos000538009600075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED-2dBt9Gftk_djQwx4Gw8a2Ykt6KiV0dGOUDTLIm4hkiSVsTkjStX9-T5Zkdy0bDWMvRsj4kH2n0-_kn-4A3k4zy21RiURl0zIZGmxxXWPgqtnQWpVTptqqJZ_Z2RmfTMSXQMhct-UEWNPwy0ux_K-qxj5Utjs6u4W6O6HYgW1UOl5R7Xi9k-JbTqduGRrfUVeBKelPKLrdDYTLZvV-ubhwWSQU4k17vo7Kmfe89n6b8FpyCee5298NPxFzu_ISCHp7eu847D2P0p7m0zqS9GvXEynAo_Q0vb7jgOFlR7mKXhRXNkEDHTV6UZ95NPhBlzbOl-S55aL9bsE8nc3dmN1w42gd0U6k_aO_Z8e-sWp1XMJIU5vL2xKlkyi9xPuwU7BS8AHsHH88mXzq_jWxzB_nim_1CN71LMC_j_JPYObGst5ilfETeByCDHLsjeMp3DPNM3gYDOM5sNAiC0uCiZDORMisIa2JEG8iBE2EeBN5Ad8-nIxHp0kooJFojCo3ibJlrSpe1VoIXSMarDG4ZrxSiHOHueIlMwU1dcEt11wZxN44NfNS2drdqjl9CYNm0ZhXQKqqpDajhrkDRYipFc20tZkS-dRkOdd7cBS_hNQhu7wrcvJD3lU_eyA6CUufaWWLZ0fx48uAHD0ilGh1W0g5jHqTYWqtZUHLIS1Ewfj-PwzwAHb7mXQIg83q3LyGB_rXZrZevQkWeQUCpqev |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+of+humping+formation+in+laser+powder+bed+fusion&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Tang%2C+C.&rft.au=Le%2C+K.Q.&rft.au=Wong%2C+C.H.&rft.date=2020-03-01&rft.issn=0017-9310&rft.volume=149&rft.spage=119172&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.119172&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2019_119172 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |