Physics of humping formation in laser powder bed fusion

•Implementation of ray tracing heat source in the CFD model•Good consistency between simulations and experiments•Humping defects in samples fabricated at high laser power and scanning speed•Discussion on the roles of various force on humping formation Despite of the promising attributes of laser pow...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer Vol. 149; p. 119172
Main Authors: Tang, C., Le, K.Q., Wong, C.H.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01.03.2020
Elsevier BV
Subjects:
ISSN:0017-9310, 1879-2189
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Implementation of ray tracing heat source in the CFD model•Good consistency between simulations and experiments•Humping defects in samples fabricated at high laser power and scanning speed•Discussion on the roles of various force on humping formation Despite of the promising attributes of laser powder bed fusion, part quality such as porosity and surface roughness remains a critical issue for industrial applications. Humping is a surface defect that may greatly deteriorate the mechanical performances of as-built components. However, current understanding of humping formation remains vague and unclear. In this respect, laser powder bed fusion of stainless steel 316 L single tracks was simulated by using computational fluid dynamics. With the same linear energy density, the simulated tracks exhibit irregular humps at high scanning velocities, which is validated against experiments. In addition, flow kinetics was analyzed to elucidate the physical origins of humping formation during printing process. The study reveals the various effects of surface tension, Marangoni shear force, viscous force and recoil pressure on the humping phenomenon in laser powder bed fusion. At relatively high scanning speed, a swelling with large contact angle is formed due to the competition between surface tension and flow inertia. Capillary instability divides the swelling into separated regions, which is responsible for the humping formation during printing process.
AbstractList •Implementation of ray tracing heat source in the CFD model•Good consistency between simulations and experiments•Humping defects in samples fabricated at high laser power and scanning speed•Discussion on the roles of various force on humping formation Despite of the promising attributes of laser powder bed fusion, part quality such as porosity and surface roughness remains a critical issue for industrial applications. Humping is a surface defect that may greatly deteriorate the mechanical performances of as-built components. However, current understanding of humping formation remains vague and unclear. In this respect, laser powder bed fusion of stainless steel 316 L single tracks was simulated by using computational fluid dynamics. With the same linear energy density, the simulated tracks exhibit irregular humps at high scanning velocities, which is validated against experiments. In addition, flow kinetics was analyzed to elucidate the physical origins of humping formation during printing process. The study reveals the various effects of surface tension, Marangoni shear force, viscous force and recoil pressure on the humping phenomenon in laser powder bed fusion. At relatively high scanning speed, a swelling with large contact angle is formed due to the competition between surface tension and flow inertia. Capillary instability divides the swelling into separated regions, which is responsible for the humping formation during printing process.
Despite of the promising attributes of laser powder bed fusion, part quality such as porosity and surface roughness remains a critical issue for industrial applications. Humping is a surface defect that may greatly deteriorate the mechanical performances of as-built components. However, current understanding of humping formation remains vague and unclear. In this respect, laser powder bed fusion of stainless steel 316 L single tracks was simulated by using computational fluid dynamics. With the same linear energy density, the simulated tracks exhibit irregular humps at high scanning velocities, which is validated against experiments. In addition, flow kinetics was analyzed to elucidate the physical origins of humping formation during printing process. The study reveals the various effects of surface tension, Marangoni shear force, viscous force and recoil pressure on the humping phenomenon in laser powder bed fusion. At relatively high scanning speed, a swelling with large contact angle is formed due to the competition between surface tension and flow inertia. Capillary instability divides the swelling into separated regions, which is responsible for the humping formation during printing process.
ArticleNumber 119172
Author Le, K.Q.
Tang, C.
Wong, C.H.
Author_xml – sequence: 1
  givenname: C.
  surname: Tang
  fullname: Tang, C.
  email: tangchao@ntu.edu.sg
  organization: Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
– sequence: 2
  givenname: K.Q.
  surname: Le
  fullname: Le, K.Q.
  organization: Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
– sequence: 3
  givenname: C.H.
  surname: Wong
  fullname: Wong, C.H.
  email: chwongsgsg@gmail.com
  organization: Independent Researcher, Singapore
BookMark eNqVkMtOwzAQRS1UJNrCP0RiwybBdh62d6CK8lAlWMDail_UUWMXOwH170kIK9jAajS6V2c0ZwFmzjsNwAWCGYKoumwy22x13bV1jF2oXTQ6ZBgiliHEEMFHYI4oYSlGlM3AHEJEUpYjeAIWMTbjCotqDsjT9hCtjIk3ybZv99a9JsaHtu6sd4l1ya6OOiR7_6GGIbRKTB-H6BQcm3oX9dn3XIKX9c3z6i7dPN7er643qSww7VJhSiUqWinJmFQQEsUYJbQSuKwKJGhJNM61wtRQSYUuEcqJQKUwaowUzZfgfOLug3_rdex44_vghpMc52WRY4bJ2FpPLRl8jEEbLm339cKgxu44gnyUxhv-WxofpfFJ2gC6-gHaB9vW4fAfxMOE0IOWdzukUVrtpFY2aNlx5e3fYZ81L5oQ
CitedBy_id crossref_primary_10_1016_j_addma_2020_101512
crossref_primary_10_1016_j_addma_2024_104506
crossref_primary_10_1016_j_jmapro_2022_05_042
crossref_primary_10_1016_j_procir_2024_08_078
crossref_primary_10_1016_j_tws_2023_110814
crossref_primary_10_1016_j_xcrp_2025_102674
crossref_primary_10_1088_1742_6596_1983_1_012074
crossref_primary_10_1016_j_actamat_2020_116522
crossref_primary_10_2351_7_0000330
crossref_primary_10_1016_j_actamat_2021_117331
crossref_primary_10_1080_09506608_2023_2169501
crossref_primary_10_1016_j_ijthermalsci_2024_109377
crossref_primary_10_1016_j_addma_2021_102178
crossref_primary_10_1016_j_ijmachtools_2022_103977
crossref_primary_10_1007_s00466_024_02571_4
crossref_primary_10_3390_app112411910
crossref_primary_10_7736_JKSPE_025_075
crossref_primary_10_1007_s10854_021_05720_0
crossref_primary_10_3389_fmech_2024_1325623
crossref_primary_10_1016_j_addma_2023_103821
crossref_primary_10_1016_j_optlastec_2021_107289
crossref_primary_10_3390_jmmp7030093
crossref_primary_10_1080_17452759_2024_2446619
crossref_primary_10_1016_j_msea_2025_148480
crossref_primary_10_3390_met13040741
crossref_primary_10_3390_ma15072420
crossref_primary_10_1007_s00170_022_09272_3
crossref_primary_10_1016_j_ijmachtools_2020_103686
crossref_primary_10_1002_pat_5926
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126704
crossref_primary_10_3390_met12010011
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124115
crossref_primary_10_1016_j_jmrt_2024_08_019
crossref_primary_10_1016_j_jmrt_2025_08_138
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124596
crossref_primary_10_1016_j_msea_2025_147858
crossref_primary_10_1016_j_matdes_2020_109115
crossref_primary_10_1108_RPJ_11_2020_0278
crossref_primary_10_1016_j_addma_2025_104970
crossref_primary_10_1007_s11837_023_06177_8
crossref_primary_10_1088_2515_7639_ac09fb
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127267
crossref_primary_10_1016_j_pmatsci_2023_101129
crossref_primary_10_3390_met13010011
crossref_primary_10_1016_j_ijthermalsci_2023_108221
crossref_primary_10_1016_j_optlastec_2021_107713
crossref_primary_10_1016_j_addma_2024_104576
crossref_primary_10_1002_adem_202401727
crossref_primary_10_1016_j_addma_2021_102278
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121602
crossref_primary_10_1016_j_msea_2022_144113
crossref_primary_10_1016_j_jmst_2024_08_046
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120284
crossref_primary_10_1016_j_optlastec_2022_108811
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123894
crossref_primary_10_1016_j_powtec_2022_117789
crossref_primary_10_1016_j_addma_2023_103449
crossref_primary_10_1080_00202967_2024_2411903
crossref_primary_10_1007_s12540_022_01168_x
crossref_primary_10_1016_j_matdes_2025_114551
crossref_primary_10_1016_j_jmapro_2023_09_041
crossref_primary_10_1177_09544062221143869
crossref_primary_10_3390_met13061091
crossref_primary_10_1016_j_jallcom_2023_171778
crossref_primary_10_1016_j_jmrt_2025_03_085
crossref_primary_10_1016_j_addma_2024_104046
crossref_primary_10_1016_j_commatsci_2022_111383
crossref_primary_10_1108_RPJ_12_2020_0301
crossref_primary_10_1016_j_addma_2023_103614
crossref_primary_10_1016_j_jmatprotec_2025_119080
crossref_primary_10_1016_j_matdes_2021_109857
crossref_primary_10_1038_s41598_021_90423_z
crossref_primary_10_1016_j_nxmate_2024_100202
crossref_primary_10_1016_j_optlastec_2023_109276
crossref_primary_10_1007_s00170_021_08633_8
crossref_primary_10_1016_j_jmrt_2025_04_068
crossref_primary_10_1016_j_ijmecsci_2021_106957
crossref_primary_10_1016_j_procir_2023_09_122
crossref_primary_10_1016_j_addma_2025_104833
crossref_primary_10_1016_j_ijthermalsci_2024_109611
crossref_primary_10_1016_j_jmapro_2024_12_048
crossref_primary_10_1007_s40571_025_01043_7
crossref_primary_10_3390_ma13225063
crossref_primary_10_1115_1_4065457
crossref_primary_10_3390_s21051626
crossref_primary_10_1016_j_vacuum_2024_113073
crossref_primary_10_3390_jmmp9060200
crossref_primary_10_1016_j_engfailanal_2024_108429
crossref_primary_10_1088_2053_1591_accfe8
crossref_primary_10_3390_mi15020170
crossref_primary_10_1007_s11837_022_05310_3
crossref_primary_10_1108_HFF_04_2021_0282
crossref_primary_10_1007_s10845_022_02004_0
crossref_primary_10_1016_j_cjmeam_2021_100010
crossref_primary_10_1016_j_ijmecsci_2022_107478
crossref_primary_10_1080_17452759_2023_2235324
crossref_primary_10_1016_j_addma_2024_104420
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123663
crossref_primary_10_1016_j_jmapro_2025_03_010
crossref_primary_10_1007_s40964_024_00775_x
crossref_primary_10_1016_j_pmatsci_2024_101361
crossref_primary_10_1016_j_ijthermalsci_2021_106954
crossref_primary_10_1016_j_powtec_2021_11_056
crossref_primary_10_1016_j_cie_2024_110098
crossref_primary_10_1016_j_addma_2023_103481
crossref_primary_10_1016_j_addma_2022_103081
crossref_primary_10_1016_j_infrared_2024_105408
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122855
crossref_primary_10_1016_j_jmatprotec_2024_118335
crossref_primary_10_1016_j_ijmecsci_2022_107389
crossref_primary_10_1016_j_ijmachtools_2021_103797
crossref_primary_10_1016_j_ijmachtools_2023_104049
crossref_primary_10_3390_met12010087
crossref_primary_10_1038_s41467_024_53888_w
crossref_primary_10_1007_s41403_021_00256_5
crossref_primary_10_1016_j_jmapro_2023_03_040
crossref_primary_10_1016_j_actamat_2025_121443
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125894
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124262
crossref_primary_10_1002_adem_202500914
crossref_primary_10_1016_j_jallcom_2022_164079
crossref_primary_10_1016_j_addma_2023_103809
crossref_primary_10_1016_j_apt_2021_09_036
crossref_primary_10_1177_13621718251347370
crossref_primary_10_1016_j_jmapro_2025_04_030
crossref_primary_10_1007_s40192_024_00382_2
crossref_primary_10_1016_j_cjmeam_2022_100017
crossref_primary_10_1016_j_matpr_2023_06_169
crossref_primary_10_1007_s00170_024_13750_1
crossref_primary_10_1016_j_addma_2024_104487
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120766
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123835
Cites_doi 10.1016/j.matdes.2016.05.070
10.2351/1.5040636
10.1016/j.actamat.2016.02.014
10.1016/j.matdes.2019.107949
10.1016/j.addma.2019.100784
10.1016/j.apmt.2017.08.006
10.1016/j.jmatprotec.2012.11.011
10.1007/BF02657748
10.1016/j.compstruc.2004.08.017
10.1016/j.compfluid.2017.11.011
10.1016/j.ijheatmasstransfer.2018.06.073
10.1016/j.cirp.2017.04.075
10.1016/j.ijheatmasstransfer.2019.05.003
10.1016/j.ijheatmasstransfer.2016.08.110
10.1016/j.actamat.2010.07.056
10.1016/j.ijheatmasstransfer.2014.09.014
10.1038/s41467-019-10009-2
10.1088/0022-3727/46/5/055501
10.1088/0022-3727/35/13/320
10.1016/j.ijheatmasstransfer.2013.07.085
10.1016/0021-9991(81)90145-5
10.1016/j.commatsci.2010.06.025
10.1016/j.jmatprotec.2011.09.011
10.1016/j.compfluid.2013.06.024
10.1016/j.actamat.2015.06.004
10.1016/j.ijheatmasstransfer.2019.06.038
10.1088/0022-3727/43/44/445501
10.1364/AO.54.002477
10.1179/174329306X120787
10.1016/j.actamat.2015.07.014
10.1006/jcph.1994.1123
10.1179/174329305X44134
10.1016/j.matdes.2016.10.037
10.1016/j.jmatprotec.2017.08.012
10.1016/j.actamat.2017.05.061
10.1007/s11663-007-9034-5
10.3390/met8070475
10.1016/j.pmatsci.2017.10.001
10.1016/j.jmatprotec.2017.11.032
10.1016/j.jmatprotec.2014.06.001
10.1016/j.jmatprotec.2014.06.005
10.1016/j.jcp.2008.01.042
10.1098/rsta.1998.0196
10.1038/s41467-018-03734-7
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Mar 2020
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Mar 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2019.119172
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2019_119172
S0017931019346502
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c428t-bf5db686dc99cd007d998786b25641b857e23ed28f8c8be51137b15bfd857ed83
ISICitedReferencesCount 141
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538009600075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Sun Nov 09 08:55:54 EST 2025
Sat Nov 29 07:31:09 EST 2025
Tue Nov 18 19:37:03 EST 2025
Fri Feb 23 02:48:06 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Laser powder bed fusion
Ray tracing algorithm
Additive manufacturing
Computational fluid dynamics
Surface morphology
Humping
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-bf5db686dc99cd007d998786b25641b857e23ed28f8c8be51137b15bfd857ed83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0017931019346502
PQID 2354329278
PQPubID 2045464
ParticipantIDs proquest_journals_2354329278
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2019_119172
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119172
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_119172
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Loh, Chua, Yeong, Song, Mapar, Sing, Liu, Zhang (bib0044) 2015; 80
Kasperovich, Haubrich, Gussone, Requena (bib0007) 2016; 105
Fabbro (bib0045) 2010; 43
Aboulkhair, Everitt, Ashcroft, Tuck (bib0002) 2014; 1
Sahoo, Debroy, McNallan (bib0037) 1988; 19
Hirt, Nichols (bib0030) 1981; 39
Patel, Kuipers, Peters (bib0032) 2018; 161
Soderstrom, Mendez (bib0048) 2006; 11
Hoang, van Steijn, Portela, Kreutzer, Kleijn (bib0033) 2013; 86
Zhao, Kwakernaak, Pan, Richardson, Saldi, Kenjeres, Kleijn (bib0034) 2010; 58
Tang, Tan, Wong (bib0020) 2018; 126
Saldi, Kidess, Kenjereš, Zhao, Richardson, Kleijn (bib0035) 2013; 66
Lee, Zhang (bib0018) 2015
King, Barth, Castillo, Gallegos, Gibbs, Hahn, Kamath, Rubenchik (bib0009) 2014; 214
Cummins, Francois, Kothe (bib0046) 2005; 83
Cho, Farson (bib0049) 2007; 38
Leung, Marussi, Atwood, Towrie, Withers, Lee (bib0006) 2018; 9
Lee, Zhang (bib0023) 2016; 12
Lafaurie, Nardone, Scardovelli, Zaleski, Zanetti (bib0031) 1994; 113
Soylemez (bib0015) 2018
Khairallah, Anderson, Rubenchik, King (bib0017) 2016; 108
Cho, Na, Thomy, Vollertsen (bib0039) 2012; 212
Yin, Wang, Yang, Wei, Dong, Ke, Wang, Zhu, Zeng (bib0052) 2019
Jasak, Jemcov, Tukovic (bib0027) 2007
DebRoy, Wei, Zuback, Mukherjee, Elmer, Milewski, Beese, Wilson-Heid, De, Zhang (bib0001) 2018; 92
Strano, Hao, Everson, Evans (bib0004) 2013; 213
Bayat, Mohanty, Hattel (bib0021) 2019; 139
Schlottke, Weigand (bib0029) 2008; 227
Bosio, Aversa, Lorusso, Marola, Gianoglio, Battezzati, Fino, Manfredi, Lombardi (bib0014) 2019
Matthews, Trapp, Guss, Rubenchik (bib0043) 2018; 30
Bayat, Thanki, Mohanty, Witvrouw, Yang, Thorborg, Tiedje, Hattel (bib0022) 2019
Zheng, Wei, Chen, Zhang, Zhong, Lin, Huang (bib0025) 2019; 140
Bertoli, Wolfer, Matthews, Delplanque, Schoenung (bib0011) 2017; 113
Mills, Keene, Brooks, Shirali (bib0038) 1998; 356
Zhou, Wang, Liu, Zhang, Qu, Ma, London, Shen, Liu (bib0010) 2015; 98
Yan, Ge, Qian, Lin, Zhou, Liu, Lin, Wagner (bib0019) 2017; 134
Boley, Khairallah, Rubenchik (bib0042) 2015; 54
Wu, San, Chang, Lin, Marwan, Baba, Hwang (bib0024) 2018; 254
Trapp, Rubenchik, Guss, Matthews (bib0026) 2017; 9
Mills (bib0036) 2002
Birnbaum, Steuben, Barrick, Iliopoulos, Michopoulos (bib0051) 2019; 29
Gunenthiram, Peyre, Schneider, Dal, Coste, Koutiri, Fabbro (bib0012) 2018; 251
Thompson, Senin, Giusca, Leach (bib0005) 2017; 66
Tan, Bailey, Shin (bib0028) 2013; 46
Makoana, Yadroitsava, Möller, Yadroitsev (bib0013) 2018; 8
Martin, Calta, Khairallah, Wang, Depond, Fong, Thampy, Guss, Kiss, Stone (bib0008) 2019; 10
Qiu, Panwisawas, Ward, Basoalto, Brooks, Attallah (bib0003) 2015; 96
Khairallah, Anderson (bib0016) 2014; 214
Lee, Ko, Farson, Yoo (bib0041) 2002; 35
Nguyen, Weckman, Johnson, Kerr (bib0047) 2005; 10
Wu, Hua, Ye, Li (bib0050) 2017; 104
Cho, Na, Cho, Lee (bib0040) 2010; 49
Bayat (10.1016/j.ijheatmasstransfer.2019.119172_bib0021) 2019; 139
Zhao (10.1016/j.ijheatmasstransfer.2019.119172_bib0034) 2010; 58
Khairallah (10.1016/j.ijheatmasstransfer.2019.119172_bib0016) 2014; 214
Yan (10.1016/j.ijheatmasstransfer.2019.119172_bib0019) 2017; 134
Lee (10.1016/j.ijheatmasstransfer.2019.119172_bib0023) 2016; 12
Jasak (10.1016/j.ijheatmasstransfer.2019.119172_bib0027) 2007
Patel (10.1016/j.ijheatmasstransfer.2019.119172_bib0032) 2018; 161
Gunenthiram (10.1016/j.ijheatmasstransfer.2019.119172_bib0012) 2018; 251
Lafaurie (10.1016/j.ijheatmasstransfer.2019.119172_bib0031) 1994; 113
Loh (10.1016/j.ijheatmasstransfer.2019.119172_bib0044) 2015; 80
Nguyen (10.1016/j.ijheatmasstransfer.2019.119172_bib0047) 2005; 10
Martin (10.1016/j.ijheatmasstransfer.2019.119172_bib0008) 2019; 10
Bosio (10.1016/j.ijheatmasstransfer.2019.119172_bib0014) 2019
Tang (10.1016/j.ijheatmasstransfer.2019.119172_bib0020) 2018; 126
Zhou (10.1016/j.ijheatmasstransfer.2019.119172_bib0010) 2015; 98
Matthews (10.1016/j.ijheatmasstransfer.2019.119172_bib0043) 2018; 30
Khairallah (10.1016/j.ijheatmasstransfer.2019.119172_bib0017) 2016; 108
Bayat (10.1016/j.ijheatmasstransfer.2019.119172_bib0022) 2019
Wu (10.1016/j.ijheatmasstransfer.2019.119172_bib0024) 2018; 254
Qiu (10.1016/j.ijheatmasstransfer.2019.119172_bib0003) 2015; 96
Cho (10.1016/j.ijheatmasstransfer.2019.119172_bib0040) 2010; 49
Boley (10.1016/j.ijheatmasstransfer.2019.119172_bib0042) 2015; 54
Wu (10.1016/j.ijheatmasstransfer.2019.119172_bib0050) 2017; 104
Schlottke (10.1016/j.ijheatmasstransfer.2019.119172_bib0029) 2008; 227
Tan (10.1016/j.ijheatmasstransfer.2019.119172_bib0028) 2013; 46
Aboulkhair (10.1016/j.ijheatmasstransfer.2019.119172_bib0002) 2014; 1
Thompson (10.1016/j.ijheatmasstransfer.2019.119172_bib0005) 2017; 66
Fabbro (10.1016/j.ijheatmasstransfer.2019.119172_bib0045) 2010; 43
Makoana (10.1016/j.ijheatmasstransfer.2019.119172_bib0013) 2018; 8
Cummins (10.1016/j.ijheatmasstransfer.2019.119172_bib0046) 2005; 83
Mills (10.1016/j.ijheatmasstransfer.2019.119172_bib0038) 1998; 356
Kasperovich (10.1016/j.ijheatmasstransfer.2019.119172_bib0007) 2016; 105
Saldi (10.1016/j.ijheatmasstransfer.2019.119172_bib0035) 2013; 66
DebRoy (10.1016/j.ijheatmasstransfer.2019.119172_bib0001) 2018; 92
Trapp (10.1016/j.ijheatmasstransfer.2019.119172_bib0026) 2017; 9
Zheng (10.1016/j.ijheatmasstransfer.2019.119172_bib0025) 2019; 140
Lee (10.1016/j.ijheatmasstransfer.2019.119172_bib0041) 2002; 35
Soylemez (10.1016/j.ijheatmasstransfer.2019.119172_bib0015) 2018
Hirt (10.1016/j.ijheatmasstransfer.2019.119172_bib0030) 1981; 39
Mills (10.1016/j.ijheatmasstransfer.2019.119172_bib0036) 2002
Bertoli (10.1016/j.ijheatmasstransfer.2019.119172_bib0011) 2017; 113
Lee (10.1016/j.ijheatmasstransfer.2019.119172_bib0018) 2015
Strano (10.1016/j.ijheatmasstransfer.2019.119172_bib0004) 2013; 213
King (10.1016/j.ijheatmasstransfer.2019.119172_bib0009) 2014; 214
Cho (10.1016/j.ijheatmasstransfer.2019.119172_bib0049) 2007; 38
Sahoo (10.1016/j.ijheatmasstransfer.2019.119172_bib0037) 1988; 19
Hoang (10.1016/j.ijheatmasstransfer.2019.119172_bib0033) 2013; 86
Cho (10.1016/j.ijheatmasstransfer.2019.119172_bib0039) 2012; 212
Yin (10.1016/j.ijheatmasstransfer.2019.119172_bib0052) 2019
Leung (10.1016/j.ijheatmasstransfer.2019.119172_bib0006) 2018; 9
Soderstrom (10.1016/j.ijheatmasstransfer.2019.119172_bib0048) 2006; 11
Birnbaum (10.1016/j.ijheatmasstransfer.2019.119172_bib0051) 2019; 29
References_xml – volume: 49
  start-page: 792
  year: 2010
  end-page: 800
  ident: bib0040
  article-title: Numerical study of alloying element distribution in CO2 laser–GMA hybrid welding
  publication-title: Comput. Mater. Sci.
– volume: 113
  start-page: 331
  year: 2017
  end-page: 340
  ident: bib0011
  article-title: On the limitations of volumetric energy density as a design parameter for selective laser melting
  publication-title: Mater. Des.
– volume: 1
  start-page: 77
  year: 2014
  end-page: 86
  ident: bib0002
  article-title: Reducing porosity in AlSi10Mg parts processed by selective laser melting
  publication-title: Addit. Manuf.
– volume: 86
  start-page: 28
  year: 2013
  end-page: 36
  ident: bib0033
  article-title: Benchmark numerical simulations of segmented two-phase flows in microchannels using the Volume of Fluid method
  publication-title: Comput. Fluids
– volume: 58
  start-page: 6345
  year: 2010
  end-page: 6357
  ident: bib0034
  article-title: The effect of oxygen on transitional Marangoni flow in laser spot welding
  publication-title: Acta Mater.
– volume: 11
  start-page: 572
  year: 2006
  end-page: 579
  ident: bib0048
  article-title: Humping mechanisms present in high speed welding
  publication-title: Sci. Technol. Weld. Join.
– volume: 214
  start-page: 2915
  year: 2014
  end-page: 2925
  ident: bib0009
  article-title: Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing
  publication-title: J. Mater. Process. Technol.
– volume: 66
  start-page: 879
  year: 2013
  end-page: 888
  ident: bib0035
  article-title: Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel
  publication-title: Int. J. Heat Mass Transfer
– year: 2019
  ident: bib0014
  article-title: A time-saving and cost-effective method to process alloys by Laser Powder Bed Fusion
  publication-title: Mater. Des.
– volume: 212
  start-page: 262
  year: 2012
  end-page: 275
  ident: bib0039
  article-title: Numerical simulation of molten pool dynamics in high power disk laser welding
  publication-title: J. Mater. Process. Technol.
– volume: 10
  start-page: 1987
  year: 2019
  ident: bib0008
  article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing
  publication-title: Nat. Commun.
– volume: 19
  start-page: 483
  year: 1988
  end-page: 491
  ident: bib0037
  article-title: Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy
  publication-title: Metall. Trans. B
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: bib0030
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
– volume: 113
  start-page: 134
  year: 1994
  end-page: 147
  ident: bib0031
  article-title: Modelling merging and fragmentation in multiphase flows with SURFER
  publication-title: J. Comput. Phys.
– volume: 104
  start-page: 634
  year: 2017
  end-page: 643
  ident: bib0050
  article-title: Understanding of humping formation and suppression mechanisms using the numerical simulation
  publication-title: Int. J. Heat Mass Transfer
– volume: 10
  start-page: 447
  year: 2005
  end-page: 459
  ident: bib0047
  article-title: The humping phenomenon during high speed gas metal arc welding
  publication-title: Sci. Technol. Weld. Join.
– volume: 96
  start-page: 72
  year: 2015
  end-page: 79
  ident: bib0003
  article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting
  publication-title: Acta Mater.
– volume: 54
  start-page: 2477
  year: 2015
  end-page: 2482
  ident: bib0042
  article-title: Calculation of laser absorption by metal powders in additive manufacturing
  publication-title: Appl. Opt.
– volume: 139
  start-page: 95
  year: 2019
  end-page: 114
  ident: bib0021
  article-title: Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF
  publication-title: Int. J. Heat Mass Transfer
– volume: 66
  start-page: 543
  year: 2017
  end-page: 546
  ident: bib0005
  article-title: Topography of selectively laser melted surfaces: a comparison of different measurement methods
  publication-title: CIRP Ann.
– volume: 251
  start-page: 376
  year: 2018
  end-page: 386
  ident: bib0012
  article-title: Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process
  publication-title: J. Mater. Process. Technol.
– year: 2002
  ident: bib0036
  article-title: Recommended Values of Thermophysical Properties for Selected Commercial Alloys
– volume: 213
  start-page: 589
  year: 2013
  end-page: 597
  ident: bib0004
  article-title: Surface roughness analysis, modelling and prediction in selective laser melting
  publication-title: J. Mater. Process. Technol.
– volume: 29
  year: 2019
  ident: bib0051
  article-title: Intrinsic strain aging, Σ3 boundaries, and origins of cellular substructure in additively manufactured 316L
  publication-title: Additive Manufacturing
– volume: 356
  start-page: 911
  year: 1998
  end-page: 925
  ident: bib0038
  article-title: Marangoni effects in welding, philosophical transactions of the Royal Society of London. Series A: Mathematical
  publication-title: Phys. Eng. Sci.
– volume: 9
  start-page: 1355
  year: 2018
  ident: bib0006
  article-title: In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing
  publication-title: Nat. Commun.
– volume: 80
  start-page: 288
  year: 2015
  end-page: 300
  ident: bib0044
  article-title: Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061
  publication-title: Int. J. Heat Mass Transfer
– volume: 98
  start-page: 1
  year: 2015
  end-page: 16
  ident: bib0010
  article-title: 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT
  publication-title: Acta Mater.
– volume: 134
  start-page: 324
  year: 2017
  end-page: 333
  ident: bib0019
  article-title: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting
  publication-title: Acta Mater.
– volume: 8
  start-page: 475
  year: 2018
  ident: bib0013
  article-title: Characterization of 17-4PH single tracks produced at different parametric conditions towards increased productivity of LPBF systems—the effect of laser power and spot size upscaling
  publication-title: Metals
– volume: 126
  start-page: 957
  year: 2018
  end-page: 968
  ident: bib0020
  article-title: A numerical investigation on the physical mechanisms of single track defects in selective laser melting
  publication-title: Int. J. Heat Mass Transfer
– volume: 12
  start-page: 178
  year: 2016
  end-page: 188
  ident: bib0023
  article-title: Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 105
  start-page: 160
  year: 2016
  end-page: 170
  ident: bib0007
  article-title: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting
  publication-title: Mater. Des.
– start-page: 1
  year: 2007
  end-page: 20
  ident: bib0027
  article-title: OpenFOAM: a C++ library for complex physics simulations, International workshop on coupled methods in numerical dynamics
  publication-title: IUC Dubrovnik Croatia
– volume: 214
  start-page: 2627
  year: 2014
  end-page: 2636
  ident: bib0016
  article-title: Mesoscopic simulation model of selective laser melting of stainless steel powder
  publication-title: J. Mater. Process. Technol.
– start-page: 1154
  year: 2015
  end-page: 1165
  ident: bib0018
  article-title: Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing
  publication-title: International Solid Free Form Fabrication Symposium
– volume: 9
  start-page: 341
  year: 2017
  end-page: 349
  ident: bib0026
  article-title: In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing
  publication-title: Applied Materials Today
– volume: 108
  start-page: 36
  year: 2016
  end-page: 45
  ident: bib0017
  article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
  publication-title: Acta Mater.
– volume: 30
  year: 2018
  ident: bib0043
  article-title: Direct measurements of laser absorptivity during metal melt pool formation associated with powder bed fusion additive manufacturing processes
  publication-title: J. Laser Appl.
– volume: 46
  year: 2013
  ident: bib0028
  article-title: Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation
  publication-title: J. Phys. D Appl. Phys.
– volume: 140
  start-page: 1091
  year: 2019
  end-page: 1105
  ident: bib0025
  article-title: A novel method for the molten pool and porosity formation modelling in selective laser melting
  publication-title: Int. J. Heat Mass Transfer
– volume: 227
  start-page: 5215
  year: 2008
  end-page: 5237
  ident: bib0029
  article-title: Direct numerical simulation of evaporating droplets
  publication-title: J. Comput. Phys.
– volume: 43
  year: 2010
  ident: bib0045
  article-title: Melt pool and keyhole behaviour analysis for deep penetration laser welding
  publication-title: J. Phys. D Appl. Phys.
– volume: 35
  start-page: 1570
  year: 2002
  ident: bib0041
  article-title: Mechanism of keyhole formation and stability in stationary laser welding
  publication-title: J. Phys. D Appl. Phys.
– start-page: 13
  year: 2018
  end-page: 15
  ident: bib0015
  article-title: Modeling the melt pool of the laser sintered Ti6al4v layers with Goldak's double-ellipsoidal heat source
  publication-title: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium
– volume: 83
  start-page: 425
  year: 2005
  end-page: 434
  ident: bib0046
  article-title: Estimating curvature from volume fractions
  publication-title: Comput. Struct.
– volume: 254
  start-page: 72
  year: 2018
  end-page: 78
  ident: bib0024
  article-title: Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation
  publication-title: J. Mater. Process. Technol.
– volume: 161
  start-page: 74
  year: 2018
  end-page: 88
  ident: bib0032
  article-title: Computing interface curvature from volume fractions: a hybrid approach
  publication-title: Comput. Fluids
– volume: 38
  start-page: 305
  year: 2007
  end-page: 319
  ident: bib0049
  article-title: Understanding bead hump formation in gas metal arc welding using a numerical simulation
  publication-title: Metall. Mater. Trans. B
– volume: 92
  start-page: 112
  year: 2018
  end-page: 224
  ident: bib0001
  article-title: Additive manufacturing of metallic components–process, structure and properties
  publication-title: Prog. Mater Sci.
– year: 2019
  ident: bib0022
  article-title: Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: high-fidelity modelling and experimental validation
  publication-title: Addit. Manuf.
– year: 2019
  ident: bib0052
  article-title: Correlation between forming quality and spatter dynamics in laser powder bed fusion
  publication-title: Additive Manufacturing
– volume: 105
  start-page: 160
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0007
  article-title: Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.05.070
– start-page: 1
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0027
  article-title: OpenFOAM: a C++ library for complex physics simulations, International workshop on coupled methods in numerical dynamics
  publication-title: IUC Dubrovnik Croatia
– volume: 30
  issue: 3
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0043
  article-title: Direct measurements of laser absorptivity during metal melt pool formation associated with powder bed fusion additive manufacturing processes
  publication-title: J. Laser Appl.
  doi: 10.2351/1.5040636
– volume: 108
  start-page: 36
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0017
  article-title: Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.02.014
– year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0014
  article-title: A time-saving and cost-effective method to process alloys by Laser Powder Bed Fusion
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.107949
– volume: 29
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0051
  article-title: Intrinsic strain aging, Σ3 boundaries, and origins of cellular substructure in additively manufactured 316L
  publication-title: Additive Manufacturing
  doi: 10.1016/j.addma.2019.100784
– volume: 1
  start-page: 77
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0002
  article-title: Reducing porosity in AlSi10Mg parts processed by selective laser melting
  publication-title: Addit. Manuf.
– volume: 9
  start-page: 341
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0026
  article-title: In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing
  publication-title: Applied Materials Today
  doi: 10.1016/j.apmt.2017.08.006
– volume: 213
  start-page: 589
  issue: 4
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0004
  article-title: Surface roughness analysis, modelling and prediction in selective laser melting
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2012.11.011
– volume: 19
  start-page: 483
  issue: 3
  year: 1988
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0037
  article-title: Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy
  publication-title: Metall. Trans. B
  doi: 10.1007/BF02657748
– volume: 83
  start-page: 425
  issue: 6–7
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0046
  article-title: Estimating curvature from volume fractions
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.08.017
– volume: 161
  start-page: 74
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0032
  article-title: Computing interface curvature from volume fractions: a hybrid approach
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2017.11.011
– volume: 126
  start-page: 957
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0020
  article-title: A numerical investigation on the physical mechanisms of single track defects in selective laser melting
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2018.06.073
– volume: 66
  start-page: 543
  issue: 1
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0005
  article-title: Topography of selectively laser melted surfaces: a comparison of different measurement methods
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2017.04.075
– volume: 139
  start-page: 95
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0021
  article-title: Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2019.05.003
– volume: 104
  start-page: 634
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0050
  article-title: Understanding of humping formation and suppression mechanisms using the numerical simulation
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.08.110
– volume: 58
  start-page: 6345
  issue: 19
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0034
  article-title: The effect of oxygen on transitional Marangoni flow in laser spot welding
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.07.056
– volume: 80
  start-page: 288
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0044
  article-title: Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2014.09.014
– volume: 10
  start-page: 1987
  issue: 1
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0008
  article-title: Dynamics of pore formation during laser powder bed fusion additive manufacturing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10009-2
– volume: 46
  issue: 5
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0028
  article-title: Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/46/5/055501
– volume: 35
  start-page: 1570
  issue: 13
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0041
  article-title: Mechanism of keyhole formation and stability in stationary laser welding
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/35/13/320
– volume: 66
  start-page: 879
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0035
  article-title: Effect of enhanced heat and mass transport and flow reversal during cool down on weld pool shapes in laser spot welding of steel
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.07.085
– volume: 39
  start-page: 201
  issue: 1
  year: 1981
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0030
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
– volume: 49
  start-page: 792
  issue: 4
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0040
  article-title: Numerical study of alloying element distribution in CO2 laser–GMA hybrid welding
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2010.06.025
– volume: 212
  start-page: 262
  issue: 1
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0039
  article-title: Numerical simulation of molten pool dynamics in high power disk laser welding
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2011.09.011
– volume: 86
  start-page: 28
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0033
  article-title: Benchmark numerical simulations of segmented two-phase flows in microchannels using the Volume of Fluid method
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2013.06.024
– volume: 96
  start-page: 72
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0003
  article-title: On the role of melt flow into the surface structure and porosity development during selective laser melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.06.004
– start-page: 1154
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0018
  article-title: Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing
– year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0022
  article-title: Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: high-fidelity modelling and experimental validation
  publication-title: Addit. Manuf.
– volume: 140
  start-page: 1091
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0025
  article-title: A novel method for the molten pool and porosity formation modelling in selective laser melting
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2019.06.038
– volume: 43
  issue: 44
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0045
  article-title: Melt pool and keyhole behaviour analysis for deep penetration laser welding
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/43/44/445501
– volume: 54
  start-page: 2477
  issue: 9
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0042
  article-title: Calculation of laser absorption by metal powders in additive manufacturing
  publication-title: Appl. Opt.
  doi: 10.1364/AO.54.002477
– volume: 11
  start-page: 572
  issue: 5
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0048
  article-title: Humping mechanisms present in high speed welding
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/174329306X120787
– volume: 98
  start-page: 1
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0010
  article-title: 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.07.014
– volume: 113
  start-page: 134
  issue: 1
  year: 1994
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0031
  article-title: Modelling merging and fragmentation in multiphase flows with SURFER
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1123
– volume: 10
  start-page: 447
  issue: 4
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0047
  article-title: The humping phenomenon during high speed gas metal arc welding
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/174329305X44134
– volume: 113
  start-page: 331
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0011
  article-title: On the limitations of volumetric energy density as a design parameter for selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.10.037
– volume: 251
  start-page: 376
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0012
  article-title: Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.08.012
– start-page: 13
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0015
  article-title: Modeling the melt pool of the laser sintered Ti6al4v layers with Goldak's double-ellipsoidal heat source
– year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0052
  article-title: Correlation between forming quality and spatter dynamics in laser powder bed fusion
  publication-title: Additive Manufacturing
– volume: 134
  start-page: 324
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0019
  article-title: Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.05.061
– year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0036
– volume: 38
  start-page: 305
  issue: 2
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0049
  article-title: Understanding bead hump formation in gas metal arc welding using a numerical simulation
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-007-9034-5
– volume: 8
  start-page: 475
  issue: 7
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0013
  article-title: Characterization of 17-4PH single tracks produced at different parametric conditions towards increased productivity of LPBF systems—the effect of laser power and spot size upscaling
  publication-title: Metals
  doi: 10.3390/met8070475
– volume: 92
  start-page: 112
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0001
  article-title: Additive manufacturing of metallic components–process, structure and properties
  publication-title: Prog. Mater Sci.
  doi: 10.1016/j.pmatsci.2017.10.001
– volume: 254
  start-page: 72
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0024
  article-title: Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.11.032
– volume: 214
  start-page: 2627
  issue: 11
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0016
  article-title: Mesoscopic simulation model of selective laser melting of stainless steel powder
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2014.06.001
– volume: 214
  start-page: 2915
  issue: 12
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0009
  article-title: Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2014.06.005
– volume: 227
  start-page: 5215
  issue: 10
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0029
  article-title: Direct numerical simulation of evaporating droplets
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.01.042
– volume: 356
  start-page: 911
  issue: 1739
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0038
  article-title: Marangoni effects in welding, philosophical transactions of the Royal Society of London. Series A: Mathematical
  publication-title: Phys. Eng. Sci.
  doi: 10.1098/rsta.1998.0196
– volume: 9
  start-page: 1355
  issue: 1
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0006
  article-title: In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03734-7
– volume: 12
  start-page: 178
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.119172_bib0023
  article-title: Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion
  publication-title: Addit. Manuf.
SSID ssj0017046
Score 2.639341
Snippet •Implementation of ray tracing heat source in the CFD model•Good consistency between simulations and experiments•Humping defects in samples fabricated at high...
Despite of the promising attributes of laser powder bed fusion, part quality such as porosity and surface roughness remains a critical issue for industrial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119172
SubjectTerms Additive manufacturing
Austenitic stainless steels
Capillary flow
Computational fluid dynamics
Computer simulation
Contact angle
Flow stability
Flux density
Humping
Industrial applications
Laser powder bed fusion
Lasers
Porosity
Powder beds
Rapid prototyping
Ray tracing algorithm
Recoil
Scanning
Shear forces
Surface defects
Surface morphology
Surface roughness
Surface stability
Surface tension
Swelling
Title Physics of humping formation in laser powder bed fusion
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.119172
https://www.proquest.com/docview/2354329278
Volume 149
WOSCitedRecordID wos000538009600075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED-2dBt9Gftk_djQwx4Gw8a2Ykt6KiV0dGOUDTLIm4hkiSVsTkjStX9-T5Zkdy0bDWMvRsj4kH2n0-_kn-4A3k4zy21RiURl0zIZGmxxXWPgqtnQWpVTptqqJZ_Z2RmfTMSXQMhct-UEWNPwy0ux_K-qxj5Utjs6u4W6O6HYgW1UOl5R7Xi9k-JbTqduGRrfUVeBKelPKLrdDYTLZvV-ubhwWSQU4k17vo7Kmfe89n6b8FpyCee5298NPxFzu_ISCHp7eu847D2P0p7m0zqS9GvXEynAo_Q0vb7jgOFlR7mKXhRXNkEDHTV6UZ95NPhBlzbOl-S55aL9bsE8nc3dmN1w42gd0U6k_aO_Z8e-sWp1XMJIU5vL2xKlkyi9xPuwU7BS8AHsHH88mXzq_jWxzB_nim_1CN71LMC_j_JPYObGst5ilfETeByCDHLsjeMp3DPNM3gYDOM5sNAiC0uCiZDORMisIa2JEG8iBE2EeBN5Ad8-nIxHp0kooJFojCo3ibJlrSpe1VoIXSMarDG4ZrxSiHOHueIlMwU1dcEt11wZxN44NfNS2drdqjl9CYNm0ZhXQKqqpDajhrkDRYipFc20tZkS-dRkOdd7cBS_hNQhu7wrcvJD3lU_eyA6CUufaWWLZ0fx48uAHD0ilGh1W0g5jHqTYWqtZUHLIS1Ewfj-PwzwAHb7mXQIg83q3LyGB_rXZrZevQkWeQUCpqev
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics+of+humping+formation+in+laser+powder+bed+fusion&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Tang%2C+C.&rft.au=Le%2C+K.Q.&rft.au=Wong%2C+C.H.&rft.date=2020-03-01&rft.issn=0017-9310&rft.volume=149&rft.spage=119172&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.119172&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2019_119172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon