A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography

Abstract Background Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European heart journal Ročník 40; číslo 43; s. 3529 - 3543
Hlavní autori: Oikonomou, Evangelos K, Williams, Michelle C, Kotanidis, Christos P, Desai, Milind Y, Marwan, Mohamed, Antonopoulos, Alexios S, Thomas, Katharine E, Thomas, Sheena, Akoumianakis, Ioannis, Fan, Lampson M, Kesavan, Sujatha, Herdman, Laura, Alashi, Alaa, Centeno, Erika Hutt, Lyasheva, Maria, Griffin, Brian P, Flamm, Scott D, Shirodaria, Cheerag, Sabharwal, Nikant, Kelion, Andrew, Dweck, Marc R, Van Beek, Edwin J R, Deanfield, John, Hopewell, Jemma C, Neubauer, Stefan, Channon, Keith M, Achenbach, Stephan, Newby, David E, Antoniades, Charalambos
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 14.11.2019
Predmet:
ISSN:0195-668X, 1522-9645, 1522-9645
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Background Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction. Methods and results We present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62–0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Δ[C-statistic] = 0.126, P < 0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI. Conclusion The CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art.
AbstractList Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction.BACKGROUNDCoronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction.We present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62-0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Δ[C-statistic] = 0.126, P < 0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI.METHODS AND RESULTSWe present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62-0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Δ[C-statistic] = 0.126, P < 0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI.The CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art.CONCLUSIONThe CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art.
Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction. We present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62-0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Δ[C-statistic] = 0.126, P < 0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI. The CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art.
Abstract Background Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular Fat Attenuation Index (FAI) in standard coronary CT angiography (CCTA). However, inflammation is not the only process involved in atherogenesis and we hypothesized that additional radiomic signatures of adverse fibrotic and microvascular PVAT remodelling, may further improve cardiac risk prediction. Methods and results We present a new artificial intelligence-powered method to predict cardiac risk by analysing the radiomic profile of coronary PVAT, developed and validated in patient cohorts acquired in three different studies. In Study 1, adipose tissue biopsies were obtained from 167 patients undergoing cardiac surgery, and the expression of genes representing inflammation, fibrosis and vascularity was linked with the radiomic features extracted from tissue CT images. Adipose tissue wavelet-transformed mean attenuation (captured by FAI) was the most sensitive radiomic feature in describing tissue inflammation (TNFA expression), while features of radiomic texture were related to adipose tissue fibrosis (COL1A1 expression) and vascularity (CD31 expression). In Study 2, we analysed 1391 coronary PVAT radiomic features in 101 patients who experienced major adverse cardiac events (MACE) within 5 years of having a CCTA and 101 matched controls, training and validating a machine learning (random forest) algorithm (fat radiomic profile, FRP) to discriminate cases from controls (C-statistic 0.77 [95%CI: 0.62–0.93] in the external validation set). The coronary FRP signature was then tested in 1575 consecutive eligible participants in the SCOT-HEART trial, where it significantly improved MACE prediction beyond traditional risk stratification that included risk factors, coronary calcium score, coronary stenosis, and high-risk plaque features on CCTA (Δ[C-statistic] = 0.126, P < 0.001). In Study 3, FRP was significantly higher in 44 patients presenting with acute myocardial infarction compared with 44 matched controls, but unlike FAI, remained unchanged 6 months after the index event, confirming that FRP detects persistent PVAT changes not captured by FAI. Conclusion The CCTA-based radiomic profiling of coronary artery PVAT detects perivascular structural remodelling associated with coronary artery disease, beyond inflammation. A new artificial intelligence (AI)-powered imaging biomarker (FRP) leads to a striking improvement of cardiac risk prediction over and above the current state-of-the-art.
Author Kesavan, Sujatha
Centeno, Erika Hutt
Flamm, Scott D
Channon, Keith M
Shirodaria, Cheerag
Neubauer, Stefan
Sabharwal, Nikant
Thomas, Katharine E
Dweck, Marc R
Antonopoulos, Alexios S
Alashi, Alaa
Oikonomou, Evangelos K
Kelion, Andrew
Antoniades, Charalambos
Thomas, Sheena
Deanfield, John
Griffin, Brian P
Desai, Milind Y
Van Beek, Edwin J R
Newby, David E
Fan, Lampson M
Williams, Michelle C
Marwan, Mohamed
Herdman, Laura
Akoumianakis, Ioannis
Hopewell, Jemma C
Kotanidis, Christos P
Lyasheva, Maria
Achenbach, Stephan
Author_xml – sequence: 1
  givenname: Evangelos K
  orcidid: 0000-0003-4362-0720
  surname: Oikonomou
  fullname: Oikonomou, Evangelos K
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
– sequence: 2
  givenname: Michelle C
  orcidid: 0000-0003-3556-2428
  surname: Williams
  fullname: Williams, Michelle C
  organization: British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor's Building, 49 Little France Cres, Edinburgh, UK
– sequence: 3
  givenname: Christos P
  orcidid: 0000-0002-1494-8340
  surname: Kotanidis
  fullname: Kotanidis, Christos P
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
– sequence: 4
  givenname: Milind Y
  surname: Desai
  fullname: Desai, Milind Y
  organization: Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, USA
– sequence: 5
  givenname: Mohamed
  surname: Marwan
  fullname: Marwan, Mohamed
  organization: Department of Cardiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, Erlangen, Germany
– sequence: 6
  givenname: Alexios S
  surname: Antonopoulos
  fullname: Antonopoulos, Alexios S
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
– sequence: 7
  givenname: Katharine E
  orcidid: 0000-0002-7788-4663
  surname: Thomas
  fullname: Thomas, Katharine E
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
– sequence: 8
  givenname: Sheena
  orcidid: 0000-0002-2097-465X
  surname: Thomas
  fullname: Thomas, Sheena
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
– sequence: 9
  givenname: Ioannis
  orcidid: 0000-0002-4674-0210
  surname: Akoumianakis
  fullname: Akoumianakis, Ioannis
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
– sequence: 10
  givenname: Lampson M
  surname: Fan
  fullname: Fan, Lampson M
  organization: Department of Cardiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
– sequence: 11
  givenname: Sujatha
  orcidid: 0000-0001-5007-5527
  surname: Kesavan
  fullname: Kesavan, Sujatha
  organization: Department of Cardiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
– sequence: 12
  givenname: Laura
  surname: Herdman
  fullname: Herdman, Laura
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
– sequence: 13
  givenname: Alaa
  surname: Alashi
  fullname: Alashi, Alaa
  organization: Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, USA
– sequence: 14
  givenname: Erika Hutt
  surname: Centeno
  fullname: Centeno, Erika Hutt
  organization: Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, USA
– sequence: 15
  givenname: Maria
  surname: Lyasheva
  fullname: Lyasheva, Maria
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
– sequence: 16
  givenname: Brian P
  surname: Griffin
  fullname: Griffin, Brian P
  organization: Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, USA
– sequence: 17
  givenname: Scott D
  surname: Flamm
  fullname: Flamm, Scott D
  organization: Heart and Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, USA
– sequence: 18
  givenname: Cheerag
  orcidid: 0000-0001-6463-1838
  surname: Shirodaria
  fullname: Shirodaria, Cheerag
  organization: Department of Cardiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
– sequence: 19
  givenname: Nikant
  orcidid: 0000-0002-1989-947X
  surname: Sabharwal
  fullname: Sabharwal, Nikant
  organization: Department of Cardiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
– sequence: 20
  givenname: Andrew
  surname: Kelion
  fullname: Kelion, Andrew
  organization: Department of Cardiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
– sequence: 21
  givenname: Marc R
  orcidid: 0000-0001-9847-5917
  surname: Dweck
  fullname: Dweck, Marc R
  organization: British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor's Building, 49 Little France Cres, Edinburgh, UK
– sequence: 22
  givenname: Edwin J R
  orcidid: 0000-0002-2777-5071
  surname: Van Beek
  fullname: Van Beek, Edwin J R
  organization: Edinburgh Imaging Facility QMRI, University of Edinburgh, 47 Little France Cres, Edinburgh, UK
– sequence: 23
  givenname: John
  orcidid: 0000-0001-8806-6052
  surname: Deanfield
  fullname: Deanfield, John
  organization: National Centre for Cardiovascular Prevention and Outcomes, Institute of Cardiovascular Science, University College London, 1 St Martins Le Grand, London, UK
– sequence: 24
  givenname: Jemma C
  surname: Hopewell
  fullname: Hopewell, Jemma C
  organization: Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, BHF Centre for Research Excellence, Big Data Institute, Old Road Campus, Roosevelt Drive, Oxford, UK
– sequence: 25
  givenname: Stefan
  surname: Neubauer
  fullname: Neubauer, Stefan
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
– sequence: 26
  givenname: Keith M
  orcidid: 0000-0002-1043-4342
  surname: Channon
  fullname: Channon, Keith M
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
– sequence: 27
  givenname: Stephan
  surname: Achenbach
  fullname: Achenbach, Stephan
  organization: Department of Cardiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, Erlangen, Germany
– sequence: 28
  givenname: David E
  orcidid: 0000-0001-7971-4628
  surname: Newby
  fullname: Newby, David E
  organization: British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Chancellor's Building, 49 Little France Cres, Edinburgh, UK
– sequence: 29
  givenname: Charalambos
  orcidid: 0000-0002-6983-5423
  surname: Antoniades
  fullname: Antoniades, Charalambos
  email: antoniad@well.ox.ac.uk
  organization: Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31504423$$D View this record in MEDLINE/PubMed
BookMark eNo9kU1LxDAQhoMo7ofePUmOglSTNE3Toyx-geBFwVtJk8lu1japSSvov_AfW1n1NId5eOZl3gXa98EDQieUXFBS5Zcwxg2oOGwvYfNZVGwPzWnBWFYJXuyjOaFVkQkhX2ZokdKWECIFFYdoltOCcM7yOfq6wj68Q4s7pTfOA24nn3d-nRmI7h0Mjsq4METlk46uH0LnNE5u7dUwRsDB4v4HVEmPrYrYqgG7ro-TM2GtonFK4-jSK-4jGKcHFzwe03QA6xCDV_EDr56w8msX1lH1m48jdGBVm-D4dy7R88310-oue3i8vV9dPWSaMzlkjS6BE9UQxo2k1AhrZSmANDloaqzgupJcVKIsc645pbapSpBSk8Za0FWRL9HZzjuFfRshDXXnkoa2VR7CmGrGpCxZLpmY0NNfdGw6MHUfXTcFr__eOAHnOyCM_f-WkvqnpPq_pHpXUv4NhvuMZA
CitedBy_id crossref_primary_10_1038_s41598_024_73867_x
crossref_primary_10_1186_s41747_024_00493_7
crossref_primary_10_3389_fcvm_2024_1499219
crossref_primary_10_1007_s10554_025_03329_6
crossref_primary_10_1186_s41824_021_00107_0
crossref_primary_10_1093_eurheartj_ehab538
crossref_primary_10_1111_eci_14364
crossref_primary_10_3389_fphys_2022_980996
crossref_primary_10_3390_jcm14030769
crossref_primary_10_1016_j_acra_2022_03_015
crossref_primary_10_1186_s12872_024_03970_4
crossref_primary_10_1007_s11547_025_01991_3
crossref_primary_10_2478_rjc_2024_0029
crossref_primary_10_1016_j_crad_2024_08_018
crossref_primary_10_3389_fcvm_2022_773524
crossref_primary_10_3390_ijms23126504
crossref_primary_10_1089_ars_2020_8128
crossref_primary_10_3390_diagnostics13122074
crossref_primary_10_1016_j_ejrad_2022_110269
crossref_primary_10_1007_s10554_020_01926_1
crossref_primary_10_1186_s12880_025_01876_x
crossref_primary_10_1016_j_xcrm_2025_102288
crossref_primary_10_1016_j_jcct_2022_07_005
crossref_primary_10_1136_heartjnl_2021_320265
crossref_primary_10_3389_fcvm_2023_1206156
crossref_primary_10_1093_ehjopen_oeab019
crossref_primary_10_1007_s11886_023_01982_8
crossref_primary_10_1038_s41746_023_00806_x
crossref_primary_10_1016_j_atherosclerosis_2025_120414
crossref_primary_10_1093_eurheartjsupp_suad038
crossref_primary_10_1007_s11936_020_00838_6
crossref_primary_10_1016_j_crad_2022_08_149
crossref_primary_10_1186_s12933_025_02913_3
crossref_primary_10_1016_j_ajpc_2021_100176
crossref_primary_10_1016_j_acra_2023_01_023
crossref_primary_10_1016_j_ebiom_2020_102726
crossref_primary_10_1111_bph_15654
crossref_primary_10_3390_jpm11100991
crossref_primary_10_1007_s11547_025_02063_2
crossref_primary_10_1161_CIRCIMAGING_125_018291
crossref_primary_10_1093_bjr_tqae032
crossref_primary_10_1016_j_ijcard_2021_04_060
crossref_primary_10_1109_ACCESS_2024_3369912
crossref_primary_10_1093_eurheartj_ehab678
crossref_primary_10_1186_s13244_024_01804_7
crossref_primary_10_1016_j_clinthera_2023_09_019
crossref_primary_10_1016_j_ejrad_2021_109767
crossref_primary_10_1016_j_medp_2023_100001
crossref_primary_10_1093_eurheartj_ehaa227
crossref_primary_10_1038_s41598_024_70218_8
crossref_primary_10_1161_JAHA_120_017759
crossref_primary_10_1093_eurheartj_ehz824
crossref_primary_10_3389_fcvm_2022_949454
crossref_primary_10_3389_fneur_2024_1340202
crossref_primary_10_3389_fcvm_2022_896366
crossref_primary_10_1016_j_pcad_2023_09_001
crossref_primary_10_1097_MD_0000000000037014
crossref_primary_10_1038_s41598_021_02971_z
crossref_primary_10_1002_clc_24305
crossref_primary_10_3390_jpm12081208
crossref_primary_10_3390_diagnostics13182902
crossref_primary_10_3389_fphys_2025_1579885
crossref_primary_10_3390_cells10040879
crossref_primary_10_3390_ijms26178320
crossref_primary_10_1007_s00330_022_08587_9
crossref_primary_10_1007_s00330_025_11347_0
crossref_primary_10_1177_02841851231189998
crossref_primary_10_1186_s12880_024_01325_1
crossref_primary_10_1007_s11886_020_01402_1
crossref_primary_10_1016_j_cpcardiol_2023_101841
crossref_primary_10_1016_j_ijcard_2025_133778
crossref_primary_10_1007_s00464_023_10403_4
crossref_primary_10_1093_eurheartj_ehac751
crossref_primary_10_1080_07853890_2024_2431606
crossref_primary_10_1093_eurjpc_zwab067
crossref_primary_10_1088_1361_6560_ac69a7
crossref_primary_10_1161_CIRCIMAGING_121_013025
crossref_primary_10_2478_jim_2021_0008
crossref_primary_10_3390_jcm12237212
crossref_primary_10_1093_eurheartj_ehaa1065
crossref_primary_10_1038_s41598_023_39809_9
crossref_primary_10_1093_cvr_cvz319
crossref_primary_10_1007_s00259_020_05171_5
crossref_primary_10_1109_JBHI_2022_3146590
crossref_primary_10_1161_CIRCIMAGING_120_011747
crossref_primary_10_1259_bjr_20220971
crossref_primary_10_1002_mp_17324
crossref_primary_10_1016_j_crad_2021_07_010
crossref_primary_10_1093_cvr_cvab286
crossref_primary_10_1007_s10554_023_02831_z
crossref_primary_10_1093_ehjopen_oeac018
crossref_primary_10_1016_j_ejrad_2021_110102
crossref_primary_10_1016_j_ijcard_2025_133482
crossref_primary_10_3389_fphys_2025_1651249
crossref_primary_10_7759_cureus_58400
crossref_primary_10_1007_s00330_022_08812_5
crossref_primary_10_1007_s00330_021_08109_z
crossref_primary_10_1016_j_compbiomed_2024_108910
crossref_primary_10_1161_JAHA_120_016612
crossref_primary_10_3390_bioengineering10030360
crossref_primary_10_1093_eurheartj_ehab045
crossref_primary_10_1097_CP9_0000000000000117
crossref_primary_10_1016_j_acra_2023_04_006
crossref_primary_10_1097_RCT_0000000000001749
crossref_primary_10_1016_j_tcm_2024_06_003
crossref_primary_10_1016_j_jmir_2024_01_005
crossref_primary_10_1016_j_jcmg_2021_09_014
crossref_primary_10_1007_s12553_020_00498_3
crossref_primary_10_1007_s10278_024_01012_1
crossref_primary_10_1016_j_rec_2020_06_036
crossref_primary_10_3390_ijms232113638
crossref_primary_10_1016_j_ijcard_2021_12_006
crossref_primary_10_1016_j_jacasi_2022_12_005
crossref_primary_10_1093_bjr_tqaf046
crossref_primary_10_1371_journal_pone_0291451
crossref_primary_10_1097_RCT_0000000000001770
crossref_primary_10_1186_s12933_023_01748_0
crossref_primary_10_1007_s00330_023_10111_6
crossref_primary_10_1093_eurheartj_ehae465
crossref_primary_10_1155_2022_4824575
crossref_primary_10_4330_wjc_v13_i10_546
crossref_primary_10_1016_j_ijcard_2025_133906
crossref_primary_10_3389_fdgth_2023_1201392
crossref_primary_10_1007_s12559_023_10118_7
crossref_primary_10_1016_j_jcmg_2023_04_004
crossref_primary_10_1177_00033197221098894
crossref_primary_10_1186_s13244_024_01731_7
crossref_primary_10_4250_jcvi_2021_0016
crossref_primary_10_1016_j_ijcard_2024_132749
crossref_primary_10_1038_s41569_024_01110_1
crossref_primary_10_1016_j_compmedimag_2023_102264
crossref_primary_10_1016_j_numecd_2024_06_020
crossref_primary_10_1097_HCO_0000000000000888
crossref_primary_10_3390_medsci11010020
crossref_primary_10_3389_fcvm_2024_1462566
crossref_primary_10_1111_eci_70017
crossref_primary_10_1007_s11547_024_01771_5
crossref_primary_10_1111_echo_70098
crossref_primary_10_3389_fcvm_2023_1192093
crossref_primary_10_1093_eurheartj_ehad484
crossref_primary_10_3389_fcvm_2021_736491
crossref_primary_10_1016_j_jcct_2020_04_004
crossref_primary_10_1093_cvr_cvab059
crossref_primary_10_1016_j_ejro_2025_100638
crossref_primary_10_3389_fcvm_2022_829553
crossref_primary_10_1007_s10278_024_01013_0
crossref_primary_10_3390_life14060652
crossref_primary_10_1007_s40619_024_01493_w
crossref_primary_10_1016_j_acra_2020_09_021
crossref_primary_10_1016_j_jcmg_2022_02_004
crossref_primary_10_3390_ijerph18126677
crossref_primary_10_1007_s11883_024_01205_7
crossref_primary_10_1016_j_jcmg_2024_08_006
crossref_primary_10_15829_1560_4071_2021_4425
crossref_primary_10_1093_cvr_cvaa272
crossref_primary_10_1186_s12931_024_02977_x
crossref_primary_10_3389_fcvm_2021_736223
crossref_primary_10_1038_s41569_019_0278_y
crossref_primary_10_3390_ijms222413471
crossref_primary_10_1007_s10554_020_01896_4
crossref_primary_10_1038_s41598_020_59873_9
crossref_primary_10_1161_ATVBAHA_119_312899
crossref_primary_10_1148_rg_2020190220
crossref_primary_10_3390_cells11060991
crossref_primary_10_1093_eurheartj_ehaa608
crossref_primary_10_1186_s12933_024_02411_y
crossref_primary_10_5114_pjr_2023_126084
crossref_primary_10_1109_ACCESS_2023_3327808
crossref_primary_10_1186_s40644_024_00821_5
crossref_primary_10_3389_fcvm_2025_1613900
crossref_primary_10_1007_s11831_024_10099_2
crossref_primary_10_1186_s13052_024_01739_1
crossref_primary_10_2478_jim_2019_0026
crossref_primary_10_1259_bjr_20220885
crossref_primary_10_3390_diagnostics13020307
crossref_primary_10_1016_j_ultrasmedbio_2023_06_008
crossref_primary_10_3390_a18020086
crossref_primary_10_1007_s12928_025_01126_5
crossref_primary_10_1093_eurheartj_ehaa155
crossref_primary_10_1093_cvr_cvaa021
crossref_primary_10_1093_eurjpc_zwae279
crossref_primary_10_1016_j_atherosclerosis_2024_117580
crossref_primary_10_1186_s12933_024_02530_6
crossref_primary_10_1186_s12933_022_01478_9
crossref_primary_10_1111_eci_70004
crossref_primary_10_3389_fonc_2021_646267
crossref_primary_10_1016_j_cjca_2021_09_030
crossref_primary_10_3389_fcvm_2022_1016032
crossref_primary_10_1016_j_jcct_2020_09_008
crossref_primary_10_1007_s11883_024_01245_z
crossref_primary_10_1016_j_jcct_2024_09_002
crossref_primary_10_1186_s12880_024_01295_4
crossref_primary_10_3389_fcvm_2021_743538
crossref_primary_10_1093_eurheartj_ehad576
crossref_primary_10_1155_2024_2991243
crossref_primary_10_1186_s12872_023_03162_6
crossref_primary_10_1111_dom_14933
crossref_primary_10_1259_bjr_20190812
crossref_primary_10_1038_s41598_022_19546_1
crossref_primary_10_3390_diagnostics11122383
crossref_primary_10_1007_s00259_021_05341_z
crossref_primary_10_1016_j_ijcard_2020_06_008
crossref_primary_10_1016_S0140_6736_24_00596_8
crossref_primary_10_1016_j_jcmg_2025_06_012
crossref_primary_10_1007_s00330_021_08518_0
crossref_primary_10_1016_j_clinimag_2023_02_009
crossref_primary_10_1148_radiol_2021203179
crossref_primary_10_1038_s41598_022_24884_1
crossref_primary_10_1186_s12880_023_01051_0
crossref_primary_10_1007_s12350_022_03179_y
crossref_primary_10_1093_eurheartj_ehae415
crossref_primary_10_1080_13506129_2025_2486072
crossref_primary_10_1007_s11886_025_02221_y
crossref_primary_10_3390_jimaging9020032
crossref_primary_10_1016_j_atherosclerosis_2023_03_002
crossref_primary_10_1016_j_ejro_2025_100682
crossref_primary_10_1016_j_cjca_2024_06_011
crossref_primary_10_3389_fphys_2024_1522471
crossref_primary_10_1097_RTI_0000000000000790
crossref_primary_10_1016_j_imu_2024_101535
crossref_primary_10_1016_j_acra_2024_08_022
crossref_primary_10_1016_j_clnu_2023_04_003
crossref_primary_10_1093_bjr_tqad017
crossref_primary_10_2459_JCM_0000000000001433
crossref_primary_10_3389_fcvm_2022_822308
crossref_primary_10_1161_CIRCULATIONAHA_119_044720
crossref_primary_10_1007_s42979_023_02529_y
crossref_primary_10_3389_fmed_2025_1626390
crossref_primary_10_1016_j_jcmg_2020_06_033
crossref_primary_10_1007_s00330_021_08429_0
crossref_primary_10_1097_RTI_0000000000000583
crossref_primary_10_3389_fonc_2021_663370
crossref_primary_10_1007_s12170_023_00731_4
crossref_primary_10_1093_eurheartj_ehz929
crossref_primary_10_1186_s12933_024_02474_x
crossref_primary_10_1007_s10554_025_03425_7
crossref_primary_10_1136_heartjnl_2023_322482
crossref_primary_10_1016_j_ijcha_2025_101765
crossref_primary_10_1111_obr_13820
crossref_primary_10_1016_j_crad_2025_107018
crossref_primary_10_1016_j_acra_2024_11_063
crossref_primary_10_1136_heartjnl_2022_321158
crossref_primary_10_3389_fcvm_2023_1120361
crossref_primary_10_1007_s10278_024_01028_7
crossref_primary_10_1080_14779072_2025_2564137
crossref_primary_10_1002_lipd_12290
crossref_primary_10_1093_eurheartj_ehz930
crossref_primary_10_1007_s11883_023_01174_3
crossref_primary_10_1007_s00330_024_10607_9
crossref_primary_10_15829_1560_4071_2025_6540
crossref_primary_10_3389_fcvm_2021_755295
crossref_primary_10_1038_s41440_023_01469_7
crossref_primary_10_1002_jmri_29440
crossref_primary_10_1007_s12350_023_03247_x
crossref_primary_10_3390_bioengineering11080843
crossref_primary_10_1016_j_heliyon_2023_e15738
crossref_primary_10_1002_mco2_413
crossref_primary_10_1016_j_crad_2021_10_019
crossref_primary_10_3390_diagnostics13122021
crossref_primary_10_1080_17434440_2025_2500631
crossref_primary_10_1007_s00330_022_09175_7
crossref_primary_10_1007_s12181_021_00454_z
crossref_primary_10_1016_j_jcmg_2024_04_019
crossref_primary_10_1016_j_jcmg_2025_05_017
crossref_primary_10_1093_eurheartj_ehae508
crossref_primary_10_1111_echo_70148
crossref_primary_10_3390_healthcare10020232
crossref_primary_10_3389_fcvm_2022_839400
crossref_primary_10_3390_jcm14020462
crossref_primary_10_1093_eurheartj_ehab472
crossref_primary_10_1093_eurheartj_ehae069
crossref_primary_10_1016_j_hfc_2021_11_003
crossref_primary_10_1007_s00059_023_05207_0
crossref_primary_10_3389_fmed_2022_1025382
crossref_primary_10_1186_s40537_023_00817_1
crossref_primary_10_1093_ehjimp_qyaf031
crossref_primary_10_1007_s11547_023_01658_x
crossref_primary_10_1097_QAD_0000000000002449
crossref_primary_10_1097_QAD_0000000000002448
crossref_primary_10_1016_j_hfc_2024_12_005
crossref_primary_10_1016_j_cjca_2024_07_014
crossref_primary_10_3389_fcvm_2023_1223035
crossref_primary_10_1259_bjr_20211274
crossref_primary_10_2459_JCM_0000000000001103
crossref_primary_10_3389_fcvm_2021_782971
crossref_primary_10_1016_j_ejrad_2020_108969
crossref_primary_10_1016_j_ijcard_2020_09_070
crossref_primary_10_1055_a_2499_3122
crossref_primary_10_3390_diagnostics14161830
crossref_primary_10_1007_s00330_023_10527_0
crossref_primary_10_1016_j_kint_2021_05_031
crossref_primary_10_1093_eurjpc_zwab139
crossref_primary_10_1097_MD_0000000000040592
crossref_primary_10_1016_j_ejrad_2021_109551
crossref_primary_10_1007_s00330_023_10311_0
crossref_primary_10_3389_fcvm_2020_618849
crossref_primary_10_1007_s12652_021_03612_z
crossref_primary_10_1111_bph_15634
crossref_primary_10_1007_s40119_022_00271_9
crossref_primary_10_1111_bph_15632
crossref_primary_10_1093_ehjci_jeac092
crossref_primary_10_1148_ryct_240242
crossref_primary_10_1161_CIRCULATIONAHA_122_060308
crossref_primary_10_1186_s12938_024_01273_5
crossref_primary_10_1136_openhrt_2020_001297
crossref_primary_10_1093_bjr_tqad046
crossref_primary_10_1016_j_jcct_2022_05_004
crossref_primary_10_1093_bjr_tqae135
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology. 2019
The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology. 2019
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology.
DBID TOX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/eurheartj/ehz592
DatabaseName Oxford Journals Open Access Collection
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Focus Issue on Preventive Cardiology
EISSN 1522-9645
EndPage 3543
ExternalDocumentID 31504423
10.1093/eurheartj/ehz592
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Institute for Health Research Oxford Biomedical Research Centre
– fundername: SCOT-HEART
  grantid: CZH/4/588
– fundername: British Heart Foundation
  grantid: FS/16/15/32047; TG/16/3/32687; CH/16/1/32013; FS/14/55/30806
  funderid: 10.13039/501100000274
– fundername: Edinburgh and Lothians Health Foundation Trust
– fundername: Heart Diseases Research Fund
– fundername: Chief Scientist Office of the Scottish Government, the British Heart Foundation
  grantid: CH/09/002; RE/13/3/30183
– fundername: British Heart Foundation
  grantid: TG/16/3/32687
– fundername: British Heart Foundation
  grantid: RE/18/5/34216
– fundername: Department of Health
– fundername: Chief Scientist Office
  grantid: CZH/4/588
– fundername: British Heart Foundation
  grantid: FS/14/78/31020
– fundername: Wellcome Trust
– fundername: British Heart Foundation
  grantid: RG/17/10/32859
– fundername: British Heart Foundation
  grantid: CH/16/1/32013
– fundername: British Heart Foundation
  grantid: PG/13/56/30383
– fundername: British Heart Foundation
  grantid: RE/13/3/30183
GroupedDBID ---
-E4
.2P
.I3
.XZ
.ZR
08P
0R~
18M
1TH
29G
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAJKP
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
ABEUO
ABIXL
ABKDP
ABNHQ
ABNKS
ABOCM
ABPTD
ABQLI
ABQNK
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFXAL
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AGUTN
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ATGXG
AXUDD
BAWUL
BAYMD
BCGUY
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
D~K
E3Z
EBS
EE~
EMOBN
ENERS
F5P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M41
M49
MHKGH
ML0
N9A
NGC
NOMLY
NOYVH
NU-
O9-
OAUYM
OAWHX
OB3
OCZFY
ODMLO
OGROG
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
SEL
TCURE
TEORI
TJX
TOX
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAFWJ
ABDFA
ABEJV
ABGNP
ABJNI
ABPQP
ABVGC
ADGHP
ADNBA
AEMQT
AFYAG
AGORE
AHGBF
AHMMS
AJBYB
AJNCP
ALXQX
CGR
CUY
CVF
ECM
EIF
JXSIZ
NPM
7X8
ID FETCH-LOGICAL-c428t-bc7e40ab024d811d6ff876e0b3ec1df64c9846967734c411fb97e88c0bffec953
IEDL.DBID TOX
ISICitedReferencesCount 359
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501743300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0195-668X
1522-9645
IngestDate Sun Nov 09 14:19:32 EST 2025
Mon Jul 21 05:42:29 EDT 2025
Wed Sep 11 04:40:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords Adipose tissue
Computed tomography
Coronary artery disease
Machine learning
Risk stratification
Radiomics
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-bc7e40ab024d811d6ff876e0b3ec1df64c9846967734c411fb97e88c0bffec953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1494-8340
0000-0001-9847-5917
0000-0003-4362-0720
0000-0002-1043-4342
0000-0002-7788-4663
0000-0002-6983-5423
0000-0001-5007-5527
0000-0001-8806-6052
0000-0002-2097-465X
0000-0001-7971-4628
0000-0002-1989-947X
0000-0002-4674-0210
0000-0001-6463-1838
0000-0002-2777-5071
0000-0003-3556-2428
OpenAccessLink https://dx.doi.org/10.1093/eurheartj/ehz592
PMID 31504423
PQID 2288723826
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2288723826
pubmed_primary_31504423
oup_primary_10_1093_eurheartj_ehz592
PublicationCentury 2000
PublicationDate 2019-11-14
PublicationDateYYYYMMDD 2019-11-14
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle European heart journal
PublicationTitleAlternate Eur Heart J
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 31534173 - Nat Rev Cardiol. 2019 Nov;16(11):646-647. doi: 10.1038/s41569-019-0278-y.
31605139 - Eur Heart J. 2019 Nov 14;40(43):3544-3546. doi: 10.1093/eurheartj/ehz717.
References_xml – reference: 31534173 - Nat Rev Cardiol. 2019 Nov;16(11):646-647. doi: 10.1038/s41569-019-0278-y.
– reference: 31605139 - Eur Heart J. 2019 Nov 14;40(43):3544-3546. doi: 10.1093/eurheartj/ehz717.
SSID ssj0008616
Score 2.6912854
Snippet Abstract Background Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as...
Coronary inflammation induces dynamic changes in the balance between water and lipid content in perivascular adipose tissue (PVAT), as captured by perivascular...
SourceID proquest
pubmed
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage 3529
SubjectTerms Adipose Tissue - diagnostic imaging
Adipose Tissue - pathology
Aged
Algorithms
Case-Control Studies
Computed Tomography Angiography
Coronary Artery Disease - diagnostic imaging
Coronary Artery Disease - genetics
Coronary Artery Disease - pathology
Female
Follow-Up Studies
Gene Expression Profiling - methods
Genetic Markers
Humans
Machine Learning
Male
Middle Aged
Phenotype
Plaque, Atherosclerotic - diagnostic imaging
Plaque, Atherosclerotic - genetics
Plaque, Atherosclerotic - pathology
Risk Assessment
Transcriptome
Title A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography
URI https://www.ncbi.nlm.nih.gov/pubmed/31504423
https://www.proquest.com/docview/2288723826
Volume 40
WOSCitedRecordID wos000501743300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgQhWXUqDAAq0Gqdeo-XDs-FhVVFy69LBIuUX-GG8XQVJlsyuVf8E_Zuykeyg9wCVH2_KMZp4zM-8xdmoLL13ueOJMahLKt2mihA-TXJqyvTEllj6KTcj5vKprdT3xbK8fKeGr4gw3fRB3Hr6f4c2vUoV4m5VV8OnF13oXdSsRZU6j9qAQVT2VJB9b4MEs21-QMqaWyxf_dahDdjAhSDgfTf6SPcH2Fdu_mmrkr9nvc2i7Lf6An7FPEmEShlgmjrxtiw567VbdEJJUDBlhLhlCH0fk-ITOQ2A_vm9RBa8HWMVfD7gGGx3KQuhIh9s-bBosC6F9fgk20CHo_g4uFqDb5Wqiwz5i3y4_Ly6-JJPwQmLpNTIkxkrkqTaUv12VZU54T0ETU1OgzZwX3CqCLUpIWXDLs8wbJbGqbGpCD4oqizdsr-1afMcAlc8x17rknLAC51qgJATpnZf0OBb5jJ2SLZrbkVqjGUviRbO73ma83hn7dG-shvw_FDV0i91m3eQ5hUnCHbmYsbejFXerFYR2ad_i_b9t8oE9JzikwqRhxj-yvaHf4DF7ZrfDat2fsKeyrug7v746ia73B4uB3Mk
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+machine+learning-derived+radiotranscriptomic+signature+of+perivascular+fat+improves+cardiac+risk+prediction+using+coronary+CT+angiography&rft.jtitle=European+heart+journal&rft.au=Oikonomou%2C+Evangelos+K&rft.au=Williams%2C+Michelle+C&rft.au=Kotanidis%2C+Christos+P&rft.au=Desai%2C+Milind+Y&rft.date=2019-11-14&rft.pub=Oxford+University+Press&rft.issn=0195-668X&rft.eissn=1522-9645&rft.volume=40&rft.issue=43&rft.spage=3529&rft.epage=3543&rft_id=info:doi/10.1093%2Feurheartj%2Fehz592&rft.externalDocID=10.1093%2Feurheartj%2Fehz592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-668X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-668X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-668X&client=summon