Evaluation of a retrieval-augmented generation system using a Japanese Institutional Nuclear Medicine Manual and large language model-automated scoring

Recent advances in large language models (LLMs) enable domain-specific question answering using external knowledge. However, addressing information that is not included in training data remains a challenge, particularly in nuclear medicine, where examination protocols are frequently updated and vary...

Full description

Saved in:
Bibliographic Details
Published in:Radiological physics and technology Vol. 18; no. 3; pp. 861 - 876
Main Authors: Fukui, Yusuke, Kawata, Yuhei, Kobashi, Kazumasa, Nagatani, Yukihiro, Iguchi, Harumi
Format: Journal Article
Language:English
Published: Singapore Springer Nature Singapore 01.09.2025
Springer Nature B.V
Subjects:
ISSN:1865-0333, 1865-0341, 1865-0341
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent advances in large language models (LLMs) enable domain-specific question answering using external knowledge. However, addressing information that is not included in training data remains a challenge, particularly in nuclear medicine, where examination protocols are frequently updated and vary across institutions. In this study, we developed a retrieval-augmented generation (RAG) system using 40 internal manuals from a single Japanese hospital, each corresponding to a different examination in nuclear medicine. These institution-specific documents were segmented and indexed using a hybrid retrieval strategy combining dense vector search (text-embedding-3-small) and sparse keyword search (BM25). GPT-3.5 and GPT-4o were used with the OpenAI application programming interface (API) for response generation. The quality of the generated answers was assessed using a four-point Likert scale by three certified radiological technologists, of which one held an additional certification in nuclear medicine and another held an additional certification in medical physics. Automated evaluation was conducted using RAGAS metrics, including factual correctness and context recall. The GPT-4o model combined with hybrid retrieval achieved the highest performance, as per expert evaluations. Although traditional string-based metrics such as ROUGE and the Levenshtein distance poorly align with human ratings, RAGAS provided consistent rankings across system configurations, despite showing only a modest correlation with manual scores. These findings demonstrate that integrating examination-specific institutional manuals into RAG frameworks can effectively support domain-specific question answering in nuclear medicine. Moreover, LLM-based evaluation methods such as RAGAS may serve as practical tools to complement expert reviews in developing healthcare-oriented artificial intelligence systems.
AbstractList Recent advances in large language models (LLMs) enable domain-specific question answering using external knowledge. However, addressing information that is not included in training data remains a challenge, particularly in nuclear medicine, where examination protocols are frequently updated and vary across institutions. In this study, we developed a retrieval-augmented generation (RAG) system using 40 internal manuals from a single Japanese hospital, each corresponding to a different examination in nuclear medicine. These institution-specific documents were segmented and indexed using a hybrid retrieval strategy combining dense vector search (text-embedding-3-small) and sparse keyword search (BM25). GPT-3.5 and GPT-4o were used with the OpenAI application programming interface (API) for response generation. The quality of the generated answers was assessed using a four-point Likert scale by three certified radiological technologists, of which one held an additional certification in nuclear medicine and another held an additional certification in medical physics. Automated evaluation was conducted using RAGAS metrics, including factual correctness and context recall. The GPT-4o model combined with hybrid retrieval achieved the highest performance, as per expert evaluations. Although traditional string-based metrics such as ROUGE and the Levenshtein distance poorly align with human ratings, RAGAS provided consistent rankings across system configurations, despite showing only a modest correlation with manual scores. These findings demonstrate that integrating examination-specific institutional manuals into RAG frameworks can effectively support domain-specific question answering in nuclear medicine. Moreover, LLM-based evaluation methods such as RAGAS may serve as practical tools to complement expert reviews in developing healthcare-oriented artificial intelligence systems.
Recent advances in large language models (LLMs) enable domain-specific question answering using external knowledge. However, addressing information that is not included in training data remains a challenge, particularly in nuclear medicine, where examination protocols are frequently updated and vary across institutions. In this study, we developed a retrieval-augmented generation (RAG) system using 40 internal manuals from a single Japanese hospital, each corresponding to a different examination in nuclear medicine. These institution-specific documents were segmented and indexed using a hybrid retrieval strategy combining dense vector search (text-embedding-3-small) and sparse keyword search (BM25). GPT-3.5 and GPT-4o were used with the OpenAI application programming interface (API) for response generation. The quality of the generated answers was assessed using a four-point Likert scale by three certified radiological technologists, of which one held an additional certification in nuclear medicine and another held an additional certification in medical physics. Automated evaluation was conducted using RAGAS metrics, including factual correctness and context recall. The GPT-4o model combined with hybrid retrieval achieved the highest performance, as per expert evaluations. Although traditional string-based metrics such as ROUGE and the Levenshtein distance poorly align with human ratings, RAGAS provided consistent rankings across system configurations, despite showing only a modest correlation with manual scores. These findings demonstrate that integrating examination-specific institutional manuals into RAG frameworks can effectively support domain-specific question answering in nuclear medicine. Moreover, LLM-based evaluation methods such as RAGAS may serve as practical tools to complement expert reviews in developing healthcare-oriented artificial intelligence systems.Recent advances in large language models (LLMs) enable domain-specific question answering using external knowledge. However, addressing information that is not included in training data remains a challenge, particularly in nuclear medicine, where examination protocols are frequently updated and vary across institutions. In this study, we developed a retrieval-augmented generation (RAG) system using 40 internal manuals from a single Japanese hospital, each corresponding to a different examination in nuclear medicine. These institution-specific documents were segmented and indexed using a hybrid retrieval strategy combining dense vector search (text-embedding-3-small) and sparse keyword search (BM25). GPT-3.5 and GPT-4o were used with the OpenAI application programming interface (API) for response generation. The quality of the generated answers was assessed using a four-point Likert scale by three certified radiological technologists, of which one held an additional certification in nuclear medicine and another held an additional certification in medical physics. Automated evaluation was conducted using RAGAS metrics, including factual correctness and context recall. The GPT-4o model combined with hybrid retrieval achieved the highest performance, as per expert evaluations. Although traditional string-based metrics such as ROUGE and the Levenshtein distance poorly align with human ratings, RAGAS provided consistent rankings across system configurations, despite showing only a modest correlation with manual scores. These findings demonstrate that integrating examination-specific institutional manuals into RAG frameworks can effectively support domain-specific question answering in nuclear medicine. Moreover, LLM-based evaluation methods such as RAGAS may serve as practical tools to complement expert reviews in developing healthcare-oriented artificial intelligence systems.
Author Nagatani, Yukihiro
Fukui, Yusuke
Iguchi, Harumi
Kawata, Yuhei
Kobashi, Kazumasa
Author_xml – sequence: 1
  givenname: Yusuke
  orcidid: 0000-0002-0267-6675
  surname: Fukui
  fullname: Fukui, Yusuke
  email: fyusuke@belle.shiga-med.ac.jp
  organization: Department of Radiology, Shiga University of Medical Science Hospital
– sequence: 2
  givenname: Yuhei
  surname: Kawata
  fullname: Kawata, Yuhei
  organization: Department of Radiology, Shiga University of Medical Science Hospital
– sequence: 3
  givenname: Kazumasa
  surname: Kobashi
  fullname: Kobashi, Kazumasa
  organization: Department of Radiology, Shiga University of Medical Science Hospital
– sequence: 4
  givenname: Yukihiro
  orcidid: 0000-0002-1110-963X
  surname: Nagatani
  fullname: Nagatani, Yukihiro
  organization: Department of Radiology, Shiga University of Medical Science Hospital
– sequence: 5
  givenname: Harumi
  surname: Iguchi
  fullname: Iguchi, Harumi
  organization: Department of Radiology, Shiga University of Medical Science Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40683982$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAQgC1URNuFP8ABWeLCJeBnNjkhVBUoauECZ2vWmQRXib3YcaX9JfxdHFKWx4GLZzz-5uk5Jyc-eCTkKWcvOWPbV4kL3qqKCV0x1ipeHR6QM97U5SoVPznqUp6S85RuGau5EOIROVWsbmTbiDPy_fIOxgyzC56GngKNOEeHxVhBHib0M3Z0QI9xZdIhzTjRnJwfCv0B9uAxIb3yaXZzXhgY6cdsR4RIb7Bz1nmkN-BzsYPv6AhxwHL6IUNRptDhkmsOEyy5kg2xxH5MHvYwJnxyLzfky9vLzxfvq-tP764u3lxXVolmrgChra1tVGtRq6bTUjWCcV3rLee214w1AmTX9lzrflvbrWWMd6wXu13XQ6vkhrxe4-7zbsLOloYjjGYf3QTxYAI48_eLd1_NEO4MF1K2tahLhBf3EWL4ljHNZnLJ4lg6xJCTkULyWm1FkRvy_B_0NuRYBrZQutVclo8p1LM_SzrW8uvTCiBWwMaQUsT-iHBmls0w62aYshnm52aYQ3GSq1PaL_PF-Dv3f7x-ABZPvxU
Cites_doi 10.5555/3495724.3496517
10.5551/jat.65240
10.3389/fnume.2023.1213714
10.1145/3637528.3671470
10.1109/MetroXRAINE62247.2024.10797032
10.1177/20552076251337177
10.2967/jnumed.120.254532
10.3390/healthcare13060603
10.18653/v1/2024.eacl-demo.16
10.18653/v1/2023.findings-emnlp.1057
10.3390/medicina60030445
10.2139/ssrn.4719185
10.1253/circj.CJ-23-0308
10.1162/tacl_a_00615
10.2196/58041
10.1101/2025.02.28.25323115
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
DOI 10.1007/s12194-025-00941-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1865-0341
EndPage 876
ExternalDocumentID PMC12339626
40683982
10_1007_s12194_025_00941_y
Genre Evaluation Study
Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
-Y2
.86
06C
06D
0R~
0VY
123
1N0
203
29P
29~
2JN
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
5VS
67Z
6NX
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABPLI
ABQBU
ABRTQ
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ATHPR
AUKKA
AXYYD
AYFIA
B-.
BA0
BDATZ
BGNMA
C6C
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
KPH
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P9S
PT4
QOR
QOS
R89
RIG
RLLFE
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZ9
T13
TSG
TSK
TT1
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c428t-aea96cc849ce548d5348201565711cf50082a3d9f155f76c7c001d0f2bbdfa943
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001531230500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1865-0333
1865-0341
IngestDate Tue Nov 04 02:05:03 EST 2025
Fri Sep 05 15:37:06 EDT 2025
Sat Oct 11 06:57:30 EDT 2025
Sat Aug 16 01:30:54 EDT 2025
Sat Nov 29 07:37:46 EST 2025
Tue Aug 12 01:10:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nuclear medicine
Medical question answering
Large language models (LLMs)
Retrieval-augmented generation (RAG)
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-aea96cc849ce548d5348201565711cf50082a3d9f155f76c7c001d0f2bbdfa943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0267-6675
0000-0002-1110-963X
OpenAccessLink https://link.springer.com/10.1007/s12194-025-00941-y
PMID 40683982
PQID 3259513406
PQPubID 2044184
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12339626
proquest_miscellaneous_3231647232
proquest_journals_3259513406
pubmed_primary_40683982
crossref_primary_10_1007_s12194_025_00941_y
springer_journals_10_1007_s12194_025_00941_y
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Japan
– name: Heidelberg
PublicationTitle Radiological physics and technology
PublicationTitleAbbrev Radiol Phys Technol
PublicationTitleAlternate Radiol Phys Technol
PublicationYear 2025
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References 941_CR5
941_CR4
941_CR1
NM Guerreiro (941_CR21) 2023; 11
941_CR24
941_CR25
941_CR3
941_CR22
941_CR2
T Hisamatsu (941_CR16) 2024
941_CR23
941_CR20
M Djekidel (941_CR7) 2023
J Vrdoljak (941_CR6) 2025; 13
WA Weber (941_CR8) 2020; 61
D Wang (941_CR12) 2024; 26
M Tomczak (941_CR27) 2014; 21
941_CR19
941_CR17
941_CR18
941_CR13
941_CR14
941_CR10
OK Gargari (941_CR26) 2025; 11
P Lewis (941_CR9) 2020; 33
K Kusunose (941_CR15) 2023
J Miao (941_CR11) 2024; 60
References_xml – volume: 33
  start-page: 9459
  year: 2020
  ident: 941_CR9
  publication-title: Adv Neural Inf Process Syst
  doi: 10.5555/3495724.3496517
– ident: 941_CR24
– ident: 941_CR2
– ident: 941_CR18
– year: 2024
  ident: 941_CR16
  publication-title: J Atheroscler Thromb
  doi: 10.5551/jat.65240
– ident: 941_CR14
– year: 2023
  ident: 941_CR7
  publication-title: Front Nucl Med
  doi: 10.3389/fnume.2023.1213714
– ident: 941_CR10
  doi: 10.1145/3637528.3671470
– ident: 941_CR3
  doi: 10.1109/MetroXRAINE62247.2024.10797032
– ident: 941_CR5
– volume: 11
  start-page: 205520762513371
  year: 2025
  ident: 941_CR26
  publication-title: Digit Health
  doi: 10.1177/20552076251337177
– volume: 61
  start-page: 263S
  issue: Suppl 2
  year: 2020
  ident: 941_CR8
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.120.254532
– ident: 941_CR1
– volume: 13
  start-page: 603
  issue: 6
  year: 2025
  ident: 941_CR6
  publication-title: Healthcare
  doi: 10.3390/healthcare13060603
– ident: 941_CR20
  doi: 10.18653/v1/2024.eacl-demo.16
– ident: 941_CR22
  doi: 10.18653/v1/2023.findings-emnlp.1057
– ident: 941_CR23
– volume: 60
  start-page: 445
  issue: 3
  year: 2024
  ident: 941_CR11
  publication-title: Medicina
  doi: 10.3390/medicina60030445
– ident: 941_CR13
  doi: 10.2139/ssrn.4719185
– ident: 941_CR19
– year: 2023
  ident: 941_CR15
  publication-title: Circ J
  doi: 10.1253/circj.CJ-23-0308
– ident: 941_CR17
– volume: 21
  start-page: 19
  issue: 1
  year: 2014
  ident: 941_CR27
  publication-title: Trends Sport Sci
– volume: 11
  start-page: 1500
  year: 2023
  ident: 941_CR21
  publication-title: Trans Assoc Comput Linguist
  doi: 10.1162/tacl_a_00615
– volume: 26
  year: 2024
  ident: 941_CR12
  publication-title: J Med Internet Res
  doi: 10.2196/58041
– ident: 941_CR4
– ident: 941_CR25
  doi: 10.1101/2025.02.28.25323115
SSID ssj0061222
Score 2.3312836
Snippet Recent advances in large language models (LLMs) enable domain-specific question answering using external knowledge. However, addressing information that is not...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 861
SubjectTerms Application programming interface
Artificial intelligence
Automation
Certification
Datasets
Documents
Drug dosages
Humans
Imaging
Information Storage and Retrieval - methods
Japan
Keywords
Kidneys
Knowledge
Language
Large Language Models
Manuals
Medical and Radiation Physics
Medicine
Medicine & Public Health
Nuclear Medicine
Performance evaluation
Questions
Radiology
Radiotherapy
Research Article
Retrieval
Scintigraphy
Title Evaluation of a retrieval-augmented generation system using a Japanese Institutional Nuclear Medicine Manual and large language model-automated scoring
URI https://link.springer.com/article/10.1007/s12194-025-00941-y
https://www.ncbi.nlm.nih.gov/pubmed/40683982
https://www.proquest.com/docview/3259513406
https://www.proquest.com/docview/3231647232
https://pubmed.ncbi.nlm.nih.gov/PMC12339626
Volume 18
WOSCitedRecordID wos001531230500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1865-0341
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061222
  issn: 1865-0333
  databaseCode: RSV
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6xgiZeNsYGhJXKSLxBpCROYucRoVYIqRVigPoWuXbcVUIpalOk_hL-7u6cuFUpPLDX-BIn9p3vc-78HcCbYlbJ3CYUdNcmTLMoQpMyNrRCJSLKZVLZyBWbEJOJnE6Lz92hsLXPdvchSbdS7w-7oXGlIZVfpXS4ONyewEN0d5IKNny5-e7XX3TZLnYQyxwlOefdUZm_P-PQHR1hzONUyT_ipc4Njc7v9wFP4KyDnex9qycX8KCqn8LpuAusX8Lv4Y71my0tU2zlKm3hxVBt5o6407C5o6h2Mi0BNKOs-TlKf0KXS6Usmc89cD8Y2YTIktWK-X7YWBEDKlO1YT8oBZ3536XMVeTBvpolQmjsa61dZuAVfBsNv374GHY1G0KNG5kmVJUqcq1lWugKN0MmI_IcOq6diTjWNiPIobgpLOIYK3ItNPpJE9lkNjNWFSl_Br16WVcvgHHNucm51dZkaZIKouKPMxspB0qEDeCtn7ryZ0vNUe5JmGmsSxzr0o11uQ2g72e37Mx0XXLc_GUxR1ATwOtdMxoYRU1w3JYbkuHEuYbIM4DnrTLsusMbEWBKbJEHarITIPLuw5Z6cetIvBEx8AJ3kwG889qyf69_f8bL_xO_hseJUzhKiutDr1ltqlfwSP9qFuvVAE7EVA6c9dwBrVUXQg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xCbiwL2E1EjeIlMRZjwiB2FohNnGLXDsuSChFXZD4En6XGTduVZYDXONJnNgznufM-A3AftYo0lgHFHSXyg0jz0OTUtrViQgSL06DQnum2ERSr6ePj9l1dSisY7PdbUjSrNTDw25oXKFL5VcpHc5338dhMkSPRYz5N7cPdv1Fl21iB34aoyTnvDoq8_MzRt3RN4z5PVXyS7zUuKHT-f99wALMVbCTHfX1ZBHGinIJpmtVYH0ZPk4GrN-spZlgbVNpCy-6otc0xJ2KNQ1FtZHpE0AzyppvovQFulwqZcls7oH5wcjqRJYs2sz2w2qCGFCZKBV7oRR0Zn-XMlORB_vqthBCY18daTIDV-D-9OTu-Mytaja4EjcyXVcUIoulTMNMFrgZUhGR59Bx7SjxfakjghyCq0wjjtFJLBOJflJ5Omg0lBZZyFdhomyVxTowLjlXMddSqygMwoSo-P1Ie8KAkkQ7cGCnLn_tU3PkQxJmGuscxzo3Y52_O7BlZzevzLSTc9z8RT5HUOPA3qAZDYyiJjhurR7JcOJcQ-TpwFpfGQbd4Y0IMFNsSUfUZCBA5N2jLeXzkyHxRsTAM9xNOnBotWX4Xr9_xsbfxHdh5uyudpVfndcvN2E2MMpHCXJbMNFt94ptmJJv3edOe8fY0Cc2rBk-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-NADLZ4Ce2FxwJLlrLMStwgapLJ84iAChZaIfEQt2g6kylIKEVtisQv4e-uPUlayuOAuHacTjOx68-x_RlgN-lmcag9SrpLZfuB46BJKW3rSHiRE8Zeph0zbCLqdOLb2-TiVRe_qXavU5JlTwOxNOVF81Hp5qTxDQ3Nt2kUK5XGufbzLMz7VEhP8frlTf1fjO7b5BHcOERJznnVNvPxd0y7pnd4833Z5JvcqXFJreXv38wKLFVwlB2U-rMKM1n-ExbbVcJ9DV6Ox2zgrK-ZYAMzgQs_tMWoZwg9FesZ6mojUxJDM6qm76H0P3TFNOKS1TUJ5sUj6xCJshiweh_WFsSMykSu2AOVprP6NSozk3pwr6KP0Br3GkpTMbgO163jq8MTu5rlYEsMcApbZCIJpYz9RGYYJKmASHWojTuIXFfqgKCI4CrRiG90FMpIov9Ujva6XaVF4vMNmMv7ebYJjEvOVci11CrwPT8iin430I4wYCXSFuzVjzF9LCk70gk5M511imedmrNOny1o1E86rcx3mHIMCgOXI9ix4O94GQ2Psil4bv0RyXDiYkNEasGvUjHG2-GFCDxjXImnVGYsQKTe0yv5_Z0h90YkwROMMi3YrzVn8rs-v43fXxPfgcWLo1Z6fto524IfntE9qptrwFwxGGXbsCCfivvh4I8xp_8DViIi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+a+retrieval-augmented+generation+system+using+a+Japanese+Institutional+Nuclear+Medicine+Manual+and+large+language+model-automated+scoring&rft.jtitle=Radiological+physics+and+technology&rft.au=Fukui%2C+Yusuke&rft.au=Kawata%2C+Yuhei&rft.au=Kobashi%2C+Kazumasa&rft.au=Nagatani%2C+Yukihiro&rft.date=2025-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1865-0333&rft.eissn=1865-0341&rft.volume=18&rft.issue=3&rft.spage=861&rft.epage=876&rft_id=info:doi/10.1007%2Fs12194-025-00941-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-0333&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-0333&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-0333&client=summon