Application of Deep Learning Architectures for Satellite Image Time Series Prediction: A Review
Satellite image time series (SITS) is a sequence of satellite images that record a given area at several consecutive times. The aim of such sequences is to use not only spatial information but also the temporal dimension of the data, which is used for multiple real-world applications, such as classi...
Uložené v:
| Vydané v: | Remote sensing (Basel, Switzerland) Ročník 13; číslo 23; s. 4822 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.12.2021
MDPI |
| Predmet: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Satellite image time series (SITS) is a sequence of satellite images that record a given area at several consecutive times. The aim of such sequences is to use not only spatial information but also the temporal dimension of the data, which is used for multiple real-world applications, such as classification, segmentation, anomaly detection, and prediction. Several traditional machine learning algorithms have been developed and successfully applied to time series for predictions. However, these methods have limitations in some situations, thus deep learning (DL) techniques have been introduced to achieve the best performance. Reviews of machine learning and DL methods for time series prediction problems have been conducted in previous studies. However, to the best of our knowledge, none of these surveys have addressed the specific case of works using DL techniques and satellite images as datasets for predictions. Therefore, this paper concentrates on the DL applications for SITS prediction, giving an overview of the main elements used to design and evaluate the predictive models, namely the architectures, data, optimization functions, and evaluation metrics. The reviewed DL-based models are divided into three categories, namely recurrent neural network-based models, hybrid models, and feed-forward-based models (convolutional neural networks and multi-layer perceptron). The main characteristics of satellite images and the major existing applications in the field of SITS prediction are also presented in this article. These applications include weather forecasting, precipitation nowcasting, spatio-temporal analysis, and missing data reconstruction. Finally, current limitations and proposed workable solutions related to the use of DL for SITS prediction are also highlighted. |
|---|---|
| AbstractList | Satellite image time series (SITS) is a sequence of satellite images that record a given area at several consecutive times. The aim of such sequences is to use not only spatial information but also the temporal dimension of the data, which is used for multiple real-world applications, such as classification, segmentation, anomaly detection, and prediction. Several traditional machine learning algorithms have been developed and successfully applied to time series for predictions. However, these methods have limitations in some situations, thus deep learning (DL) techniques have been introduced to achieve the best performance. Reviews of machine learning and DL methods for time series prediction problems have been conducted in previous studies. However, to the best of our knowledge, none of these surveys have addressed the specific case of works using DL techniques and satellite images as datasets for predictions. Therefore, this paper concentrates on the DL applications for SITS prediction, giving an overview of the main elements used to design and evaluate the predictive models, namely the architectures, data, optimization functions, and evaluation metrics. The reviewed DL-based models are divided into three categories, namely recurrent neural network-based models, hybrid models, and feed-forward-based models (convolutional neural networks and multi-layer perceptron). The main characteristics of satellite images and the major existing applications in the field of SITS prediction are also presented in this article. These applications include weather forecasting, precipitation nowcasting, spatio-temporal analysis, and missing data reconstruction. Finally, current limitations and proposed workable solutions related to the use of DL for SITS prediction are also highlighted. |
| Author | Dipanda, Albert Abdou, Wahabou Kolyang Moskolaï, Waytehad Rose |
| Author_xml | – sequence: 1 givenname: Waytehad Rose orcidid: 0000-0001-9838-4994 surname: Moskolaï fullname: Moskolaï, Waytehad Rose – sequence: 2 givenname: Wahabou surname: Abdou fullname: Abdou, Wahabou – sequence: 3 givenname: Albert surname: Dipanda fullname: Dipanda, Albert – sequence: 4 surname: Kolyang fullname: Kolyang |
| BackLink | https://hal.science/hal-03813491$$DView record in HAL |
| BookMark | eNptkV1rFDEUhgdpwdr2xl8Q8EaFtfmafHg3tGoXFhRbr8OZzJltltnJmMxW_Pdmu6K2mJuEN08ewnlfVEdjHLGqXjL6TghLL1JmggtpOH9WnXCq-UJyy4_-OT-vznPe0LKEYJbKk8o10zQED3OII4k9uUKcyAohjWFckyb5uzCjn3cJM-ljIjcw4zCUjCy3sEZyG7ZIbjCFcv8lYRf83vSeNOQr3gf8cVYd9zBkPP-9n1bfPn64vbxerD5_Wl42q4WX3MwLUNS0WtLaoNFWUoaKokBDe26kUm2vWd9pbkB52XsLQrRgO0Q0IHVrrTitlgdvF2HjphS2kH66CME9BDGtHaQ5-AGdtbZvqVcoZCtrVbet70BLBMWw1twX15uD6w6GR6rrZuX2GRWGCWnZPSvs6wM7pfh9h3l225B9GRGMGHfZcSWU4bWsdUFfPUE3cZfGMpVCUcO4ZGwvfHugfIo5J-z__IBRt6_Z_a25wPQJ7MP80OWcIAz_e_ILn5WpcA |
| CitedBy_id | crossref_primary_10_1109_MGRS_2024_3393010 crossref_primary_10_3390_sym17060929 crossref_primary_10_1109_JSTARS_2025_3543386 crossref_primary_10_1016_j_isprsjprs_2025_06_012 crossref_primary_10_3390_geomatics2040024 crossref_primary_10_3390_su151310543 crossref_primary_10_3390_rs14153635 crossref_primary_10_3390_s23177632 crossref_primary_10_3389_fphys_2025_1605406 crossref_primary_10_3390_atmos14060953 crossref_primary_10_1080_13682199_2023_2229040 crossref_primary_10_3390_w14162570 crossref_primary_10_1016_j_rse_2025_114711 crossref_primary_10_1029_2024JH000464 crossref_primary_10_1109_TGRS_2023_3285401 crossref_primary_10_1109_ACCESS_2025_3600664 crossref_primary_10_1007_s12652_022_04333_7 crossref_primary_10_3389_fenvs_2025_1574981 crossref_primary_10_1109_ACCESS_2025_3589239 crossref_primary_10_3389_fmed_2025_1591793 crossref_primary_10_1007_s11831_024_10096_5 crossref_primary_10_3390_app132312658 crossref_primary_10_3389_fpsyt_2025_1623986 crossref_primary_10_1016_j_ecoinf_2025_103413 crossref_primary_10_1016_j_aiig_2025_100125 crossref_primary_10_1109_ACCESS_2025_3563966 crossref_primary_10_1109_ACCESS_2025_3578389 crossref_primary_10_3390_math10183392 crossref_primary_10_3390_environments10100170 crossref_primary_10_3390_s24216966 crossref_primary_10_3389_fmars_2022_956813 crossref_primary_10_1007_s11222_024_10383_y crossref_primary_10_1007_s44443_025_00117_z crossref_primary_10_3389_fpls_2025_1575796 crossref_primary_10_3389_fenvs_2025_1557388 crossref_primary_10_1080_10095020_2024_2336604 crossref_primary_10_3389_fmats_2025_1599439 crossref_primary_10_1016_j_rsase_2024_101167 crossref_primary_10_1145_3649448 |
| Cites_doi | 10.1109/TGRS.2019.2909057 10.1016/j.jastp.2019.105100 10.1016/j.solener.2018.07.050 10.1007/s10462-020-09825-6 10.1016/S2095-3119(17)61859-8 10.1038/nature14539 10.1016/j.ymssp.2020.107233 10.3390/rs13132428 10.1016/j.compag.2018.08.001 10.1109/TGRS.2011.2179050 10.3390/s20030811 10.1016/j.procs.2017.01.175 10.1109/LGRS.2019.2926776 10.1109/Agro-Geoinformatics.2019.8820257 10.1016/j.jag.2021.102456 10.1109/JSTARS.2017.2760202 10.1016/j.agrformet.2019.107886 10.1109/ICC.2019.8761462 10.1016/j.rse.2019.111358 10.1002/joc.2043 10.1109/VCIP.2018.8698733 10.1016/j.isprsjprs.2019.09.016 10.3390/atmos10050244 10.1016/j.inffus.2020.07.004 10.1109/LGRS.2016.2619984 10.5194/adgeo-7-97-2006 10.1109/MGRS.2017.2762307 10.1109/IGARSS.2018.8519459 10.3390/rs13173402 10.1109/TGRS.2018.2810208 10.1109/TPAMI.2021.3079209 10.3390/rs9121305 10.1016/j.future.2014.10.029 10.1016/j.isprsjprs.2019.04.015 10.1016/j.jhydrol.2020.125605 10.1016/j.ecoinf.2020.101136 10.1016/j.compag.2020.105709 10.1109/MGRS.2015.2441912 10.1162/neco.1997.9.8.1735 10.1016/j.rse.2020.111716 10.1016/j.envsoft.2019.104502 10.1186/s40537-021-00444-8 10.1016/j.fcij.2018.10.003 10.1002/(SICI)1099-131X(199909)18:5<359::AID-FOR746>3.0.CO;2-P 10.1088/1755-1315/37/1/012034 10.1089/big.2020.0159 10.1016/j.procs.2017.09.045 10.1007/s10618-019-00619-1 10.1016/j.isprsjprs.2014.12.011 10.1016/j.artmed.2018.12.007 10.1016/j.bdr.2020.100178 10.1117/1.JRS.11.042609 10.1016/j.rse.2019.111536 10.1016/j.enconman.2013.11.043 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 1XC DOA |
| DOI | 10.3390/rs13234822 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database (subscription) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database AGRICOLA CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Computer Science |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_999fb0c6e34b4565bbcda74ea61e572c oai:HAL:hal-03813491v1 10_3390_rs13234822 |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI 7S9 L.6 PUEGO 1XC C1A IPNFZ RIG |
| ID | FETCH-LOGICAL-c428t-a608b74058e879401e60e3e80f28466bf71fd728a6c4fc9a33ba9deee8a47b993 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000734712700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2072-4292 |
| IngestDate | Tue Oct 14 19:04:21 EDT 2025 Tue Oct 14 20:46:57 EDT 2025 Fri Sep 05 12:15:27 EDT 2025 Fri Jul 25 11:56:38 EDT 2025 Sat Nov 29 07:13:16 EST 2025 Tue Nov 18 22:29:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c428t-a608b74058e879401e60e3e80f28466bf71fd728a6c4fc9a33ba9deee8a47b993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9838-4994 |
| OpenAccessLink | https://doaj.org/article/999fb0c6e34b4565bbcda74ea61e572c |
| PQID | 2608124111 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_999fb0c6e34b4565bbcda74ea61e572c hal_primary_oai_HAL_hal_03813491v1 proquest_miscellaneous_2636825457 proquest_journals_2608124111 crossref_primary_10_3390_rs13234822 crossref_citationtrail_10_3390_rs13234822 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2021 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Fawaz (ref_14) 2019; 33 Alzahrani (ref_28) 2017; 114 Huang (ref_3) 2018; 17 ref_13 ref_57 ref_11 ref_53 ref_52 Tealab (ref_12) 2018; 3 ref_51 Ren (ref_39) 2021; 23 Lago (ref_26) 2018; 173 Zhang (ref_46) 2018; 56 ref_59 Torres (ref_21) 2021; 9 Barakat (ref_5) 2019; 13 Alzubaidi (ref_8) 2021; 8 ref_61 Mao (ref_35) 2021; 150 Ma (ref_10) 2019; 152 ref_69 ref_24 ref_68 ref_67 ref_22 ref_66 Rieder (ref_18) 2018; 153 Chen (ref_42) 2015; 102 ref_62 LeCun (ref_23) 2015; 521 Das (ref_44) 2016; 13 Goodfellow (ref_34) 2014; 27 Schwalbert (ref_49) 2020; 284 Fauvel (ref_6) 2020; 237 Khokhlova (ref_31) 2019; 94 Hochreiter (ref_30) 1997; 9 Zhu (ref_15) 2017; 5 Petrou (ref_43) 2019; 57 Xiao (ref_45) 2019; 120 ref_70 Arslan (ref_47) 2019; 194 ref_36 ref_33 ref_32 ref_76 ref_75 Khan (ref_9) 2020; 53 ref_74 Nelson (ref_56) 1999; 18 Tian (ref_58) 2019; 17 Stepchenko (ref_29) 2017; 104 Petitjean (ref_37) 2012; 50 ref_38 Das (ref_60) 2017; 10 Ball (ref_73) 2017; 11 Ienco (ref_65) 2019; 158 Xiao (ref_55) 2019; 233 Purnamasayangsukasih (ref_2) 2016; 37 Yuan (ref_16) 2020; 241 Dong (ref_25) 2014; 79 Ma (ref_72) 2015; 51 Kassahun (ref_17) 2020; 177 Fieuzal (ref_63) 2017; 59 ref_41 Sauter (ref_27) 2010; 30 ref_40 Zaytar (ref_48) 2016; 143 ref_1 Rivolta (ref_64) 2006; 7 Ghamisi (ref_19) 2020; 63 Shen (ref_20) 2015; 3 Balti (ref_71) 2020; 60 ref_4 ref_7 Xie (ref_54) 2021; 592 |
| References_xml | – ident: ref_74 – ident: ref_32 – volume: 57 start-page: 6865 year: 2019 ident: ref_43 article-title: Prediction of Sea Ice Motion with Convolutional Long Short-Term Memory Networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2909057 – volume: 194 start-page: 105100 year: 2019 ident: ref_47 article-title: Application of Long Short-Term Memory neural network model for the reconstruction of MODIS Land Surface Temperature images publication-title: J. Atmos. Sol.-Terr. Phys. doi: 10.1016/j.jastp.2019.105100 – volume: 173 start-page: 566 year: 2018 ident: ref_26 article-title: Short-term forecasting of solar irradiance without local telemetry: A generalized model using satellite data publication-title: Sol. Energy doi: 10.1016/j.solener.2018.07.050 – ident: ref_51 – volume: 53 start-page: 5455 year: 2020 ident: ref_9 article-title: A survey of the recent architectures of deep convolutional neural networks publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09825-6 – volume: 143 start-page: 7 year: 2016 ident: ref_48 article-title: Sequence to sequence weather forecasting with long short-term memory recurrent neural networks publication-title: Int. J. Comput. Appl. – ident: ref_68 – volume: 17 start-page: 1915 year: 2018 ident: ref_3 article-title: Agricultural remote sensing big data: Management and applications publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(17)61859-8 – volume: 521 start-page: 436 year: 2015 ident: ref_23 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 150 start-page: 107233 year: 2021 ident: ref_35 article-title: A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107233 – ident: ref_38 doi: 10.3390/rs13132428 – ident: ref_1 – volume: 153 start-page: 69 year: 2018 ident: ref_18 article-title: Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.08.001 – volume: 50 start-page: 3081 year: 2012 ident: ref_37 article-title: Satellite image time series analysis under time warping publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2179050 – ident: ref_50 doi: 10.3390/s20030811 – volume: 104 start-page: 578 year: 2017 ident: ref_29 article-title: Nonlinear, non-stationary and seasonal time series forecasting using different methods coupled with data preprocessing publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.01.175 – volume: 17 start-page: 601 year: 2019 ident: ref_58 article-title: A Generative Adversarial Gated Recurrent Unit Model for Precipitation Nowcasting publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2926776 – ident: ref_62 doi: 10.1109/Agro-Geoinformatics.2019.8820257 – ident: ref_75 doi: 10.1016/j.jag.2021.102456 – ident: ref_4 – volume: 10 start-page: 5228 year: 2017 ident: ref_60 article-title: A deep-learning-based forecasting ensemble to predict missing data for remote sensing analysis publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2760202 – ident: ref_69 – volume: 13 start-page: 361 year: 2019 ident: ref_5 article-title: Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco) publication-title: Remote Sens. Appl. Soc. Environ. – volume: 284 start-page: 107886 year: 2020 ident: ref_49 article-title: Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2019.107886 – ident: ref_41 – ident: ref_57 doi: 10.1109/ICC.2019.8761462 – ident: ref_66 – volume: 233 start-page: 111358 year: 2019 ident: ref_55 article-title: Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111358 – ident: ref_13 – volume: 30 start-page: 2330 year: 2010 ident: ref_27 article-title: Spatio-temporal prediction of snow cover in the Black Forest mountain range using remote sensing and a recurrent neural network publication-title: Int. J. Climatol. doi: 10.1002/joc.2043 – ident: ref_52 doi: 10.1109/VCIP.2018.8698733 – volume: 158 start-page: 11 year: 2019 ident: ref_65 article-title: Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.09.016 – ident: ref_59 – ident: ref_53 doi: 10.3390/atmos10050244 – volume: 63 start-page: 256 year: 2020 ident: ref_19 article-title: Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.07.004 – ident: ref_7 – volume: 13 start-page: 1984 year: 2016 ident: ref_44 article-title: Deep-STEP: A deep learning approach for spatiotemporal prediction of remote sensing data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2619984 – volume: 7 start-page: 97 year: 2006 ident: ref_64 article-title: Artificial neural-network technique for precipitation nowcasting from satellite imagery publication-title: Adv. Geosci. doi: 10.5194/adgeo-7-97-2006 – volume: 5 start-page: 8 year: 2017 ident: ref_15 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – ident: ref_24 – ident: ref_61 doi: 10.1109/IGARSS.2018.8519459 – volume: 27 start-page: 2672 year: 2014 ident: ref_34 article-title: Generative adversarial nets publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_36 doi: 10.3390/rs13173402 – volume: 56 start-page: 4274 year: 2018 ident: ref_46 article-title: Missing data reconstruction in remote sensing image with a unified spatial–temporal–spectral deep convolutional neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2810208 – ident: ref_76 doi: 10.1109/TPAMI.2021.3079209 – ident: ref_40 – ident: ref_11 doi: 10.3390/rs9121305 – volume: 59 start-page: 147 year: 2017 ident: ref_63 article-title: Forecast of wheat yield throughout the agricultural season using optical and radar satellite images publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_67 – volume: 51 start-page: 47 year: 2015 ident: ref_72 article-title: Remote sensing big data computing: Challenges and opportunities publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2014.10.029 – volume: 152 start-page: 166 year: 2019 ident: ref_10 article-title: Deep learning in remote sensing applications: A meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.015 – volume: 592 start-page: 125605 year: 2021 ident: ref_54 article-title: Artificial neural network based hybrid modeling approach for flood inundation modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125605 – volume: 60 start-page: 101136 year: 2020 ident: ref_71 article-title: A review of drought monitoring with big data: Issues, methods, challenges and research directions publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101136 – volume: 177 start-page: 105709 year: 2020 ident: ref_17 article-title: Crop yield prediction using machine learning: A systematic literature review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105709 – volume: 3 start-page: 61 year: 2015 ident: ref_20 article-title: Missing information reconstruction of remote sensing data: A technical review publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2015.2441912 – volume: 9 start-page: 1735 year: 1997 ident: ref_30 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 241 start-page: 111716 year: 2020 ident: ref_16 article-title: Deep learning in environmental remote sensing: Achievements and challenges publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111716 – volume: 120 start-page: 104502 year: 2019 ident: ref_45 article-title: A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2019.104502 – volume: 8 start-page: 53 year: 2021 ident: ref_8 article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions publication-title: J. Big Data doi: 10.1186/s40537-021-00444-8 – volume: 3 start-page: 334 year: 2018 ident: ref_12 article-title: Time series forecasting using artificial neural networks methodologies: A systematic review publication-title: Future Comput. Inform. J. doi: 10.1016/j.fcij.2018.10.003 – volume: 18 start-page: 359 year: 1999 ident: ref_56 article-title: Time series forecasting using neural networks: Should the data be deseasonalized first? publication-title: J. Forecast. doi: 10.1002/(SICI)1099-131X(199909)18:5<359::AID-FOR746>3.0.CO;2-P – volume: 37 start-page: 012034 year: 2016 ident: ref_2 article-title: A review of uses of satellite imagery in monitoring mangrove forests publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/37/1/012034 – volume: 9 start-page: 3 year: 2021 ident: ref_21 article-title: Deep Learning for Time Series Forecasting: A Survey publication-title: Big Data doi: 10.1089/big.2020.0159 – ident: ref_33 – volume: 114 start-page: 304 year: 2017 ident: ref_28 article-title: Solar irradiance forecasting using deep neural networks publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.09.045 – volume: 33 start-page: 917 year: 2019 ident: ref_14 article-title: Deep learning for time series classification: A review publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-019-00619-1 – volume: 102 start-page: 148 year: 2015 ident: ref_42 article-title: Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.12.011 – volume: 94 start-page: 54 year: 2019 ident: ref_31 article-title: Normal and pathological gait classification LSTM model publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2018.12.007 – volume: 23 start-page: 100178 year: 2021 ident: ref_39 article-title: Deep Learning-Based Weather Prediction: A Survey publication-title: Big Data Res. doi: 10.1016/j.bdr.2020.100178 – volume: 11 start-page: 042609 year: 2017 ident: ref_73 article-title: Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.11.042609 – ident: ref_70 – ident: ref_22 – volume: 237 start-page: 111536 year: 2020 ident: ref_6 article-title: Prediction of plant diversity in grasslands using Sentinel-1 and-2 satellite image time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111536 – volume: 79 start-page: 66 year: 2014 ident: ref_25 article-title: Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.11.043 |
| SSID | ssj0000331904 |
| Score | 2.5560634 |
| SecondaryResourceType | review_article |
| Snippet | Satellite image time series (SITS) is a sequence of satellite images that record a given area at several consecutive times. The aim of such sequences is to use... |
| SourceID | doaj hal proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4822 |
| SubjectTerms | Algorithms Anomalies Artificial intelligence Artificial neural networks Computer Science data collection Deep learning forecasting hybrids Image segmentation Learning algorithms Machine learning Missing data Multilayers Neural networks Nowcasting Optimization Precipitation prediction Prediction models Recurrent neural networks Remote sensing Reviews satellite image time series Satellite imagery Satellites Sequences Spatial data Time series time series analysis Weather forecasting |
| SummonAdditionalLinks | – databaseName: Engineering Database (subscription) dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGFd9VAQeZx4RA1iRPb4YLCoyoSqioVpN4s2xm3SHSzJNtK_HtmvN5dihAXrvbIsjKe9-Qbxl4JtKm6sihplZB5rUSba6sg92isg7QYOIsQh02ow0N9ctIepYTblNoqVzoxKup-8JQj30O_m2wRiubb-Y-cpkZRdTWN0LjObhBKQhlb947XOZZC4AMr6iUqqcDofm-cMPoiPJfqih2KcP1oXc6oGfIPnRwNzf7d_73iPXYnuZi8W76J--wazB6wW2na-dnPh8x0m6o1HwL_ADDnCWj1lHe_lRYmjj4tP7YRtnMB_NM5qh9Ov41wSqvh_tFIlR466Q3v-LLS8Ih93f_45f1BngYtIEsqvcgtXtwpdN00aJTPogRZgABdBDReUrqgytCrSlvp6-BbK4SzbQ8A2tbKoYezzbZmwwx2GC-b0GLQIwEwDrNlcE0QwtOYygYdl6rP2OvVZzc-oZDTMIzvBqMRYpHZsChjL9e08yX2xl-p3hH31hSElx0XhvHUJPEz6AYHV3gJonbkwzrne6tqsLKERlU-Yy-Q91fOOOg-G1qjUqqo2_KyzNjuiu8mSfpkNkzP2PP1NsooFV7sDIYLohGSIvFGPf73EU_Y7Yp6ZmK7zC7bWowX8JTd9JeLb9P4LD7uX_GeAOE priority: 102 providerName: ProQuest |
| Title | Application of Deep Learning Architectures for Satellite Image Time Series Prediction: A Review |
| URI | https://www.proquest.com/docview/2608124111 https://www.proquest.com/docview/2636825457 https://hal.science/hal-03813491 https://doaj.org/article/999fb0c6e34b4565bbcda74ea61e572c |
| Volume | 13 |
| WOSCitedRecordID | wos000734712700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (subscription) customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hggSXiqdIKSvzuHCImsSJ7XBLYatWglVEQSpcLNs7pkiwW-1uK3HhtzOTpNstQuLCxYfYiqwZe2a-zOQbgJeSfKopHN20Qqq01LJOjdOYBnLWUTkCzjJ2zSb0ZGJOTup2o9UX14T19MC94PYogIk-Cwpl6Tn68D5MnS7RqRwrXQS2vpmuN8BUZ4MlHa2s7PlIJeH6vcWScBczuRTXPFBH1E9-5ZTLIP-wxp2LObgL20NsKJp-T_fgBs7uw-2hTfnpzwdgm6t0s5hH8RbxTAwMqV9Fs5ETWAoKRsWx6_g2VyiOfpDdEPy_h-DvYTTfLjhFw296LRrRpwgewqeD8cc3h-nQIYFkWZhV6lRmvKaYy6Chi5XlqDKUaLJIXkcpH3Uep7owToUyhtpJ6V09RUTjSu0pNHkEW7P5DB-DyKtYE1pRiASgXB59FaUM3F-yooijmCbw6lJqNgz04dzF4rslGMEStlcSTuDFeu1ZT5rx11X7LPz1Cia67h6Q-u2gfvsv9SfwnFR37R2HzTvLzzgHKss6v8gT2L3UrB2u6NISkOPghmx9As_W03S5OGPiZjg_5zVSMYSu9M7_2OwTuFNwSUxXDbMLW6vFOT6FW-Fi9W25GMHN_fGk_TDqTvKIi1CPefw1prGtvtB8e_S-_fwbXar6Rg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKVK58EYYCiyvAwerttf22kgIGUqVqGkUiSKVk1mvZ1skiEOcFvVP8RuZ8SOhCHHrgat3NJa93857ZwCeS9KpSaDppAUydkMlUzfRCl1DytrGmhxnaZthE2oySY6O0ukG_OzvwnBZZS8TG0FdVoZj5Dtkd7MuoqP5Zv7d5alRnF3tR2i0sNjH8x_kstWvR7u0vy-CYO_94buh200VoPcHydLVxKhQZKckmBAYPR9jDyUmniVJHceFVb4tVZDo2ITWpFrKQqclIiY6VEXKzZdI5G-GDPYBbE5HB9NPq6iOJwnSXtj2QZUy9XYWNfl73EEmuKD5mgEBpM9OuPzyDy3QqLa96__bT7kB1zojWmQt6m_CBs5uwVY3z_3k_Dbk2TovLyordhHnomsleyyy35IntSCrXXzQTWPSJYrRNxKwgi_GCA4c0vp0wbks5vRKZKLNpdyBj5fyfXdhMKtmeA-EH9mU3LoYkTxN7dsislIaHsQZkWkWlA687Lc5N12fdR738TUnf4shka8h4cCzFe287S7yV6q3jJYVBXcEbx5Ui-O8EzA5Gfq28EyMMizYSi8KU2oVoo59jFRgHHhKWLvAY5iNc37GyWIZpv6Z78B2j7O8k2V1vgaZA09WyySFOLWkZ1idMo2MOdYQqfv_ZvEYtoaHB-N8PJrsP4CrAVcINcVB2zBYLk7xIVwxZ8sv9eJRd7QEfL5s4P4CxYRfXQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqgoALb0SggHkdOERN7CROkBAKLKuuWq1WAqSKi3GccVupbJZkW9S_xq9jJo9dihC3HrjGo1ESf563Zxh7IVGnpsLgSRMy8SMlMz81CnyLytolBh1n6dphE2o6Tff3s9kG-znchaGyykEmtoK6rCzFyLfR7iZdRFU4ri-LmI3GbxfffZogRZnWYZxGB5FdOPuB7lvzZjLCvX4pxPjDp_c7fj9hAN9FpEvfINNCoc2SQorADEJIApCQBg6ldpIUToWuVCI1iY2czYyUhclKAEhNpIqMGjGh-L-k0MekcsJZ_GUV3wkkgjuIuo6oUmbBdt2g50e9ZMQ5HdiOCkDNdkiFmH_og1bJjW_8z7_nJrvem9Y8787CLbYB89vsaj_l_fDsDtP5OlvPK8dHAAveN5g94PlvKZWGoy3PP5q2XekS-OQbil1O12U4hRNxfVZThos4veY57zIsd9nnC_m-e2xzXs3hPuNh7DJ09hIA9D9N6IrYSWlpPGeMBpsoPfZq2HJt--7rNATkWKMXRvDQa3h47PmKdtH1HPkr1TtCzoqC-oS3D6r6QPdiR6P574rAJiCjgmz3orClURGYJIRYCeuxZ4i7czx28j1NzyiFLKMsPA09tjVgTvcSrtFrwHns6WoZZRMlnMwcqhOikQlFIGL14N8snrAriFa9N5nuPmTXBJUNtRVDW2xzWZ_AI3bZni6Pmvpxe8Y4-3rRqP0FQ1tmwA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Deep+Learning+Architectures+for+Satellite+Image+Time+Series+Prediction%3A+A+Review&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Moskola%C3%AF%2C+Waytehad+Rose&rft.au=Abdou%2C+Wahabou&rft.au=Dipanda%2C+A&rft.au=Kolyang&rft.date=2021-12-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=23&rft_id=info:doi/10.3390%2Frs13234822&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |