Application of Deep Learning Architectures for Satellite Image Time Series Prediction: A Review

Satellite image time series (SITS) is a sequence of satellite images that record a given area at several consecutive times. The aim of such sequences is to use not only spatial information but also the temporal dimension of the data, which is used for multiple real-world applications, such as classi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing (Basel, Switzerland) Ročník 13; číslo 23; s. 4822
Hlavní autori: Moskolaï, Waytehad Rose, Abdou, Wahabou, Dipanda, Albert, Kolyang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.12.2021
MDPI
Predmet:
ISSN:2072-4292, 2072-4292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Satellite image time series (SITS) is a sequence of satellite images that record a given area at several consecutive times. The aim of such sequences is to use not only spatial information but also the temporal dimension of the data, which is used for multiple real-world applications, such as classification, segmentation, anomaly detection, and prediction. Several traditional machine learning algorithms have been developed and successfully applied to time series for predictions. However, these methods have limitations in some situations, thus deep learning (DL) techniques have been introduced to achieve the best performance. Reviews of machine learning and DL methods for time series prediction problems have been conducted in previous studies. However, to the best of our knowledge, none of these surveys have addressed the specific case of works using DL techniques and satellite images as datasets for predictions. Therefore, this paper concentrates on the DL applications for SITS prediction, giving an overview of the main elements used to design and evaluate the predictive models, namely the architectures, data, optimization functions, and evaluation metrics. The reviewed DL-based models are divided into three categories, namely recurrent neural network-based models, hybrid models, and feed-forward-based models (convolutional neural networks and multi-layer perceptron). The main characteristics of satellite images and the major existing applications in the field of SITS prediction are also presented in this article. These applications include weather forecasting, precipitation nowcasting, spatio-temporal analysis, and missing data reconstruction. Finally, current limitations and proposed workable solutions related to the use of DL for SITS prediction are also highlighted.
AbstractList Satellite image time series (SITS) is a sequence of satellite images that record a given area at several consecutive times. The aim of such sequences is to use not only spatial information but also the temporal dimension of the data, which is used for multiple real-world applications, such as classification, segmentation, anomaly detection, and prediction. Several traditional machine learning algorithms have been developed and successfully applied to time series for predictions. However, these methods have limitations in some situations, thus deep learning (DL) techniques have been introduced to achieve the best performance. Reviews of machine learning and DL methods for time series prediction problems have been conducted in previous studies. However, to the best of our knowledge, none of these surveys have addressed the specific case of works using DL techniques and satellite images as datasets for predictions. Therefore, this paper concentrates on the DL applications for SITS prediction, giving an overview of the main elements used to design and evaluate the predictive models, namely the architectures, data, optimization functions, and evaluation metrics. The reviewed DL-based models are divided into three categories, namely recurrent neural network-based models, hybrid models, and feed-forward-based models (convolutional neural networks and multi-layer perceptron). The main characteristics of satellite images and the major existing applications in the field of SITS prediction are also presented in this article. These applications include weather forecasting, precipitation nowcasting, spatio-temporal analysis, and missing data reconstruction. Finally, current limitations and proposed workable solutions related to the use of DL for SITS prediction are also highlighted.
Author Dipanda, Albert
Abdou, Wahabou
Kolyang
Moskolaï, Waytehad Rose
Author_xml – sequence: 1
  givenname: Waytehad Rose
  orcidid: 0000-0001-9838-4994
  surname: Moskolaï
  fullname: Moskolaï, Waytehad Rose
– sequence: 2
  givenname: Wahabou
  surname: Abdou
  fullname: Abdou, Wahabou
– sequence: 3
  givenname: Albert
  surname: Dipanda
  fullname: Dipanda, Albert
– sequence: 4
  surname: Kolyang
  fullname: Kolyang
BackLink https://hal.science/hal-03813491$$DView record in HAL
BookMark eNptkV1rFDEUhgdpwdr2xl8Q8EaFtfmafHg3tGoXFhRbr8OZzJltltnJmMxW_Pdmu6K2mJuEN08ewnlfVEdjHLGqXjL6TghLL1JmggtpOH9WnXCq-UJyy4_-OT-vznPe0LKEYJbKk8o10zQED3OII4k9uUKcyAohjWFckyb5uzCjn3cJM-ljIjcw4zCUjCy3sEZyG7ZIbjCFcv8lYRf83vSeNOQr3gf8cVYd9zBkPP-9n1bfPn64vbxerD5_Wl42q4WX3MwLUNS0WtLaoNFWUoaKokBDe26kUm2vWd9pbkB52XsLQrRgO0Q0IHVrrTitlgdvF2HjphS2kH66CME9BDGtHaQ5-AGdtbZvqVcoZCtrVbet70BLBMWw1twX15uD6w6GR6rrZuX2GRWGCWnZPSvs6wM7pfh9h3l225B9GRGMGHfZcSWU4bWsdUFfPUE3cZfGMpVCUcO4ZGwvfHugfIo5J-z__IBRt6_Z_a25wPQJ7MP80OWcIAz_e_ILn5WpcA
CitedBy_id crossref_primary_10_1109_MGRS_2024_3393010
crossref_primary_10_3390_sym17060929
crossref_primary_10_1109_JSTARS_2025_3543386
crossref_primary_10_1016_j_isprsjprs_2025_06_012
crossref_primary_10_3390_geomatics2040024
crossref_primary_10_3390_su151310543
crossref_primary_10_3390_rs14153635
crossref_primary_10_3390_s23177632
crossref_primary_10_3389_fphys_2025_1605406
crossref_primary_10_3390_atmos14060953
crossref_primary_10_1080_13682199_2023_2229040
crossref_primary_10_3390_w14162570
crossref_primary_10_1016_j_rse_2025_114711
crossref_primary_10_1029_2024JH000464
crossref_primary_10_1109_TGRS_2023_3285401
crossref_primary_10_1109_ACCESS_2025_3600664
crossref_primary_10_1007_s12652_022_04333_7
crossref_primary_10_3389_fenvs_2025_1574981
crossref_primary_10_1109_ACCESS_2025_3589239
crossref_primary_10_3389_fmed_2025_1591793
crossref_primary_10_1007_s11831_024_10096_5
crossref_primary_10_3390_app132312658
crossref_primary_10_3389_fpsyt_2025_1623986
crossref_primary_10_1016_j_ecoinf_2025_103413
crossref_primary_10_1016_j_aiig_2025_100125
crossref_primary_10_1109_ACCESS_2025_3563966
crossref_primary_10_1109_ACCESS_2025_3578389
crossref_primary_10_3390_math10183392
crossref_primary_10_3390_environments10100170
crossref_primary_10_3390_s24216966
crossref_primary_10_3389_fmars_2022_956813
crossref_primary_10_1007_s11222_024_10383_y
crossref_primary_10_1007_s44443_025_00117_z
crossref_primary_10_3389_fpls_2025_1575796
crossref_primary_10_3389_fenvs_2025_1557388
crossref_primary_10_1080_10095020_2024_2336604
crossref_primary_10_3389_fmats_2025_1599439
crossref_primary_10_1016_j_rsase_2024_101167
crossref_primary_10_1145_3649448
Cites_doi 10.1109/TGRS.2019.2909057
10.1016/j.jastp.2019.105100
10.1016/j.solener.2018.07.050
10.1007/s10462-020-09825-6
10.1016/S2095-3119(17)61859-8
10.1038/nature14539
10.1016/j.ymssp.2020.107233
10.3390/rs13132428
10.1016/j.compag.2018.08.001
10.1109/TGRS.2011.2179050
10.3390/s20030811
10.1016/j.procs.2017.01.175
10.1109/LGRS.2019.2926776
10.1109/Agro-Geoinformatics.2019.8820257
10.1016/j.jag.2021.102456
10.1109/JSTARS.2017.2760202
10.1016/j.agrformet.2019.107886
10.1109/ICC.2019.8761462
10.1016/j.rse.2019.111358
10.1002/joc.2043
10.1109/VCIP.2018.8698733
10.1016/j.isprsjprs.2019.09.016
10.3390/atmos10050244
10.1016/j.inffus.2020.07.004
10.1109/LGRS.2016.2619984
10.5194/adgeo-7-97-2006
10.1109/MGRS.2017.2762307
10.1109/IGARSS.2018.8519459
10.3390/rs13173402
10.1109/TGRS.2018.2810208
10.1109/TPAMI.2021.3079209
10.3390/rs9121305
10.1016/j.future.2014.10.029
10.1016/j.isprsjprs.2019.04.015
10.1016/j.jhydrol.2020.125605
10.1016/j.ecoinf.2020.101136
10.1016/j.compag.2020.105709
10.1109/MGRS.2015.2441912
10.1162/neco.1997.9.8.1735
10.1016/j.rse.2020.111716
10.1016/j.envsoft.2019.104502
10.1186/s40537-021-00444-8
10.1016/j.fcij.2018.10.003
10.1002/(SICI)1099-131X(199909)18:5<359::AID-FOR746>3.0.CO;2-P
10.1088/1755-1315/37/1/012034
10.1089/big.2020.0159
10.1016/j.procs.2017.09.045
10.1007/s10618-019-00619-1
10.1016/j.isprsjprs.2014.12.011
10.1016/j.artmed.2018.12.007
10.1016/j.bdr.2020.100178
10.1117/1.JRS.11.042609
10.1016/j.rse.2019.111536
10.1016/j.enconman.2013.11.043
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
1XC
DOA
DOI 10.3390/rs13234822
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (subscription)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering collection
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Computer Science
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_999fb0c6e34b4565bbcda74ea61e572c
oai:HAL:hal-03813491v1
10_3390_rs13234822
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
PUEGO
1XC
C1A
IPNFZ
RIG
ID FETCH-LOGICAL-c428t-a608b74058e879401e60e3e80f28466bf71fd728a6c4fc9a33ba9deee8a47b993
IEDL.DBID DOA
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000734712700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Tue Oct 14 19:04:21 EDT 2025
Tue Oct 14 20:46:57 EDT 2025
Fri Sep 05 12:15:27 EDT 2025
Fri Jul 25 11:56:38 EDT 2025
Sat Nov 29 07:13:16 EST 2025
Tue Nov 18 22:29:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-a608b74058e879401e60e3e80f28466bf71fd728a6c4fc9a33ba9deee8a47b993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9838-4994
OpenAccessLink https://doaj.org/article/999fb0c6e34b4565bbcda74ea61e572c
PQID 2608124111
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_999fb0c6e34b4565bbcda74ea61e572c
hal_primary_oai_HAL_hal_03813491v1
proquest_miscellaneous_2636825457
proquest_journals_2608124111
crossref_primary_10_3390_rs13234822
crossref_citationtrail_10_3390_rs13234822
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Fawaz (ref_14) 2019; 33
Alzahrani (ref_28) 2017; 114
Huang (ref_3) 2018; 17
ref_13
ref_57
ref_11
ref_53
ref_52
Tealab (ref_12) 2018; 3
ref_51
Ren (ref_39) 2021; 23
Lago (ref_26) 2018; 173
Zhang (ref_46) 2018; 56
ref_59
Torres (ref_21) 2021; 9
Barakat (ref_5) 2019; 13
Alzubaidi (ref_8) 2021; 8
ref_61
Mao (ref_35) 2021; 150
Ma (ref_10) 2019; 152
ref_69
ref_24
ref_68
ref_67
ref_22
ref_66
Rieder (ref_18) 2018; 153
Chen (ref_42) 2015; 102
ref_62
LeCun (ref_23) 2015; 521
Das (ref_44) 2016; 13
Goodfellow (ref_34) 2014; 27
Schwalbert (ref_49) 2020; 284
Fauvel (ref_6) 2020; 237
Khokhlova (ref_31) 2019; 94
Hochreiter (ref_30) 1997; 9
Zhu (ref_15) 2017; 5
Petrou (ref_43) 2019; 57
Xiao (ref_45) 2019; 120
ref_70
Arslan (ref_47) 2019; 194
ref_36
ref_33
ref_32
ref_76
ref_75
Khan (ref_9) 2020; 53
ref_74
Nelson (ref_56) 1999; 18
Tian (ref_58) 2019; 17
Stepchenko (ref_29) 2017; 104
Petitjean (ref_37) 2012; 50
ref_38
Das (ref_60) 2017; 10
Ball (ref_73) 2017; 11
Ienco (ref_65) 2019; 158
Xiao (ref_55) 2019; 233
Purnamasayangsukasih (ref_2) 2016; 37
Yuan (ref_16) 2020; 241
Dong (ref_25) 2014; 79
Ma (ref_72) 2015; 51
Kassahun (ref_17) 2020; 177
Fieuzal (ref_63) 2017; 59
ref_41
Sauter (ref_27) 2010; 30
ref_40
Zaytar (ref_48) 2016; 143
ref_1
Rivolta (ref_64) 2006; 7
Ghamisi (ref_19) 2020; 63
Shen (ref_20) 2015; 3
Balti (ref_71) 2020; 60
ref_4
ref_7
Xie (ref_54) 2021; 592
References_xml – ident: ref_74
– ident: ref_32
– volume: 57
  start-page: 6865
  year: 2019
  ident: ref_43
  article-title: Prediction of Sea Ice Motion with Convolutional Long Short-Term Memory Networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2909057
– volume: 194
  start-page: 105100
  year: 2019
  ident: ref_47
  article-title: Application of Long Short-Term Memory neural network model for the reconstruction of MODIS Land Surface Temperature images
  publication-title: J. Atmos. Sol.-Terr. Phys.
  doi: 10.1016/j.jastp.2019.105100
– volume: 173
  start-page: 566
  year: 2018
  ident: ref_26
  article-title: Short-term forecasting of solar irradiance without local telemetry: A generalized model using satellite data
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.07.050
– ident: ref_51
– volume: 53
  start-page: 5455
  year: 2020
  ident: ref_9
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09825-6
– volume: 143
  start-page: 7
  year: 2016
  ident: ref_48
  article-title: Sequence to sequence weather forecasting with long short-term memory recurrent neural networks
  publication-title: Int. J. Comput. Appl.
– ident: ref_68
– volume: 17
  start-page: 1915
  year: 2018
  ident: ref_3
  article-title: Agricultural remote sensing big data: Management and applications
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(17)61859-8
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_23
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 150
  start-page: 107233
  year: 2021
  ident: ref_35
  article-title: A new deep auto-encoder method with fusing discriminant information for bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107233
– ident: ref_38
  doi: 10.3390/rs13132428
– ident: ref_1
– volume: 153
  start-page: 69
  year: 2018
  ident: ref_18
  article-title: Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.08.001
– volume: 50
  start-page: 3081
  year: 2012
  ident: ref_37
  article-title: Satellite image time series analysis under time warping
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2179050
– ident: ref_50
  doi: 10.3390/s20030811
– volume: 104
  start-page: 578
  year: 2017
  ident: ref_29
  article-title: Nonlinear, non-stationary and seasonal time series forecasting using different methods coupled with data preprocessing
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.01.175
– volume: 17
  start-page: 601
  year: 2019
  ident: ref_58
  article-title: A Generative Adversarial Gated Recurrent Unit Model for Precipitation Nowcasting
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2926776
– ident: ref_62
  doi: 10.1109/Agro-Geoinformatics.2019.8820257
– ident: ref_75
  doi: 10.1016/j.jag.2021.102456
– ident: ref_4
– volume: 10
  start-page: 5228
  year: 2017
  ident: ref_60
  article-title: A deep-learning-based forecasting ensemble to predict missing data for remote sensing analysis
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2760202
– ident: ref_69
– volume: 13
  start-page: 361
  year: 2019
  ident: ref_5
  article-title: Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco)
  publication-title: Remote Sens. Appl. Soc. Environ.
– volume: 284
  start-page: 107886
  year: 2020
  ident: ref_49
  article-title: Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2019.107886
– ident: ref_41
– ident: ref_57
  doi: 10.1109/ICC.2019.8761462
– ident: ref_66
– volume: 233
  start-page: 111358
  year: 2019
  ident: ref_55
  article-title: Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111358
– ident: ref_13
– volume: 30
  start-page: 2330
  year: 2010
  ident: ref_27
  article-title: Spatio-temporal prediction of snow cover in the Black Forest mountain range using remote sensing and a recurrent neural network
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.2043
– ident: ref_52
  doi: 10.1109/VCIP.2018.8698733
– volume: 158
  start-page: 11
  year: 2019
  ident: ref_65
  article-title: Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.016
– ident: ref_59
– ident: ref_53
  doi: 10.3390/atmos10050244
– volume: 63
  start-page: 256
  year: 2020
  ident: ref_19
  article-title: Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.07.004
– ident: ref_7
– volume: 13
  start-page: 1984
  year: 2016
  ident: ref_44
  article-title: Deep-STEP: A deep learning approach for spatiotemporal prediction of remote sensing data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2619984
– volume: 7
  start-page: 97
  year: 2006
  ident: ref_64
  article-title: Artificial neural-network technique for precipitation nowcasting from satellite imagery
  publication-title: Adv. Geosci.
  doi: 10.5194/adgeo-7-97-2006
– volume: 5
  start-page: 8
  year: 2017
  ident: ref_15
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
– ident: ref_24
– ident: ref_61
  doi: 10.1109/IGARSS.2018.8519459
– volume: 27
  start-page: 2672
  year: 2014
  ident: ref_34
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_36
  doi: 10.3390/rs13173402
– volume: 56
  start-page: 4274
  year: 2018
  ident: ref_46
  article-title: Missing data reconstruction in remote sensing image with a unified spatial–temporal–spectral deep convolutional neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2810208
– ident: ref_76
  doi: 10.1109/TPAMI.2021.3079209
– ident: ref_40
– ident: ref_11
  doi: 10.3390/rs9121305
– volume: 59
  start-page: 147
  year: 2017
  ident: ref_63
  article-title: Forecast of wheat yield throughout the agricultural season using optical and radar satellite images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_67
– volume: 51
  start-page: 47
  year: 2015
  ident: ref_72
  article-title: Remote sensing big data computing: Challenges and opportunities
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2014.10.029
– volume: 152
  start-page: 166
  year: 2019
  ident: ref_10
  article-title: Deep learning in remote sensing applications: A meta-analysis and review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.04.015
– volume: 592
  start-page: 125605
  year: 2021
  ident: ref_54
  article-title: Artificial neural network based hybrid modeling approach for flood inundation modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125605
– volume: 60
  start-page: 101136
  year: 2020
  ident: ref_71
  article-title: A review of drought monitoring with big data: Issues, methods, challenges and research directions
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101136
– volume: 177
  start-page: 105709
  year: 2020
  ident: ref_17
  article-title: Crop yield prediction using machine learning: A systematic literature review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105709
– volume: 3
  start-page: 61
  year: 2015
  ident: ref_20
  article-title: Missing information reconstruction of remote sensing data: A technical review
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2015.2441912
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_30
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 241
  start-page: 111716
  year: 2020
  ident: ref_16
  article-title: Deep learning in environmental remote sensing: Achievements and challenges
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111716
– volume: 120
  start-page: 104502
  year: 2019
  ident: ref_45
  article-title: A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.104502
– volume: 8
  start-page: 53
  year: 2021
  ident: ref_8
  article-title: Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions
  publication-title: J. Big Data
  doi: 10.1186/s40537-021-00444-8
– volume: 3
  start-page: 334
  year: 2018
  ident: ref_12
  article-title: Time series forecasting using artificial neural networks methodologies: A systematic review
  publication-title: Future Comput. Inform. J.
  doi: 10.1016/j.fcij.2018.10.003
– volume: 18
  start-page: 359
  year: 1999
  ident: ref_56
  article-title: Time series forecasting using neural networks: Should the data be deseasonalized first?
  publication-title: J. Forecast.
  doi: 10.1002/(SICI)1099-131X(199909)18:5<359::AID-FOR746>3.0.CO;2-P
– volume: 37
  start-page: 012034
  year: 2016
  ident: ref_2
  article-title: A review of uses of satellite imagery in monitoring mangrove forests
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/37/1/012034
– volume: 9
  start-page: 3
  year: 2021
  ident: ref_21
  article-title: Deep Learning for Time Series Forecasting: A Survey
  publication-title: Big Data
  doi: 10.1089/big.2020.0159
– ident: ref_33
– volume: 114
  start-page: 304
  year: 2017
  ident: ref_28
  article-title: Solar irradiance forecasting using deep neural networks
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.09.045
– volume: 33
  start-page: 917
  year: 2019
  ident: ref_14
  article-title: Deep learning for time series classification: A review
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-019-00619-1
– volume: 102
  start-page: 148
  year: 2015
  ident: ref_42
  article-title: Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.12.011
– volume: 94
  start-page: 54
  year: 2019
  ident: ref_31
  article-title: Normal and pathological gait classification LSTM model
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2018.12.007
– volume: 23
  start-page: 100178
  year: 2021
  ident: ref_39
  article-title: Deep Learning-Based Weather Prediction: A Survey
  publication-title: Big Data Res.
  doi: 10.1016/j.bdr.2020.100178
– volume: 11
  start-page: 042609
  year: 2017
  ident: ref_73
  article-title: Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.11.042609
– ident: ref_70
– ident: ref_22
– volume: 237
  start-page: 111536
  year: 2020
  ident: ref_6
  article-title: Prediction of plant diversity in grasslands using Sentinel-1 and-2 satellite image time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111536
– volume: 79
  start-page: 66
  year: 2014
  ident: ref_25
  article-title: Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.11.043
SSID ssj0000331904
Score 2.5560634
SecondaryResourceType review_article
Snippet Satellite image time series (SITS) is a sequence of satellite images that record a given area at several consecutive times. The aim of such sequences is to use...
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4822
SubjectTerms Algorithms
Anomalies
Artificial intelligence
Artificial neural networks
Computer Science
data collection
Deep learning
forecasting
hybrids
Image segmentation
Learning algorithms
Machine learning
Missing data
Multilayers
Neural networks
Nowcasting
Optimization
Precipitation
prediction
Prediction models
Recurrent neural networks
Remote sensing
Reviews
satellite image time series
Satellite imagery
Satellites
Sequences
Spatial data
Time series
time series analysis
Weather forecasting
SummonAdditionalLinks – databaseName: Engineering Database (subscription)
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagIMGFd9VAQeZx4RA1iRPb4YLCoyoSqioVpN4s2xm3SHSzJNtK_HtmvN5dihAXrvbIsjKe9-Qbxl4JtKm6sihplZB5rUSba6sg92isg7QYOIsQh02ow0N9ctIepYTblNoqVzoxKup-8JQj30O_m2wRiubb-Y-cpkZRdTWN0LjObhBKQhlb947XOZZC4AMr6iUqqcDofm-cMPoiPJfqih2KcP1oXc6oGfIPnRwNzf7d_73iPXYnuZi8W76J--wazB6wW2na-dnPh8x0m6o1HwL_ADDnCWj1lHe_lRYmjj4tP7YRtnMB_NM5qh9Ov41wSqvh_tFIlR466Q3v-LLS8Ih93f_45f1BngYtIEsqvcgtXtwpdN00aJTPogRZgABdBDReUrqgytCrSlvp6-BbK4SzbQ8A2tbKoYezzbZmwwx2GC-b0GLQIwEwDrNlcE0QwtOYygYdl6rP2OvVZzc-oZDTMIzvBqMRYpHZsChjL9e08yX2xl-p3hH31hSElx0XhvHUJPEz6AYHV3gJonbkwzrne6tqsLKERlU-Yy-Q91fOOOg-G1qjUqqo2_KyzNjuiu8mSfpkNkzP2PP1NsooFV7sDIYLohGSIvFGPf73EU_Y7Yp6ZmK7zC7bWowX8JTd9JeLb9P4LD7uX_GeAOE
  priority: 102
  providerName: ProQuest
Title Application of Deep Learning Architectures for Satellite Image Time Series Prediction: A Review
URI https://www.proquest.com/docview/2608124111
https://www.proquest.com/docview/2636825457
https://hal.science/hal-03813491
https://doaj.org/article/999fb0c6e34b4565bbcda74ea61e572c
Volume 13
WOSCitedRecordID wos000734712700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hggSXiqdIKSvzuHCImsSJ7XBLYatWglVEQSpcLNs7pkiwW-1uK3HhtzOTpNstQuLCxYfYiqwZe2a-zOQbgJeSfKopHN20Qqq01LJOjdOYBnLWUTkCzjJ2zSb0ZGJOTup2o9UX14T19MC94PYogIk-Cwpl6Tn68D5MnS7RqRwrXQS2vpmuN8BUZ4MlHa2s7PlIJeH6vcWScBczuRTXPFBH1E9-5ZTLIP-wxp2LObgL20NsKJp-T_fgBs7uw-2hTfnpzwdgm6t0s5hH8RbxTAwMqV9Fs5ETWAoKRsWx6_g2VyiOfpDdEPy_h-DvYTTfLjhFw296LRrRpwgewqeD8cc3h-nQIYFkWZhV6lRmvKaYy6Chi5XlqDKUaLJIXkcpH3Uep7owToUyhtpJ6V09RUTjSu0pNHkEW7P5DB-DyKtYE1pRiASgXB59FaUM3F-yooijmCbw6lJqNgz04dzF4rslGMEStlcSTuDFeu1ZT5rx11X7LPz1Cia67h6Q-u2gfvsv9SfwnFR37R2HzTvLzzgHKss6v8gT2L3UrB2u6NISkOPghmx9As_W03S5OGPiZjg_5zVSMYSu9M7_2OwTuFNwSUxXDbMLW6vFOT6FW-Fi9W25GMHN_fGk_TDqTvKIi1CPefw1prGtvtB8e_S-_fwbXar6Rg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKVK58EYYCiyvAwerttf22kgIGUqVqGkUiSKVk1mvZ1skiEOcFvVP8RuZ8SOhCHHrgat3NJa93857ZwCeS9KpSaDppAUydkMlUzfRCl1DytrGmhxnaZthE2oySY6O0ukG_OzvwnBZZS8TG0FdVoZj5Dtkd7MuoqP5Zv7d5alRnF3tR2i0sNjH8x_kstWvR7u0vy-CYO_94buh200VoPcHydLVxKhQZKckmBAYPR9jDyUmniVJHceFVb4tVZDo2ITWpFrKQqclIiY6VEXKzZdI5G-GDPYBbE5HB9NPq6iOJwnSXtj2QZUy9XYWNfl73EEmuKD5mgEBpM9OuPzyDy3QqLa96__bT7kB1zojWmQt6m_CBs5uwVY3z_3k_Dbk2TovLyordhHnomsleyyy35IntSCrXXzQTWPSJYrRNxKwgi_GCA4c0vp0wbks5vRKZKLNpdyBj5fyfXdhMKtmeA-EH9mU3LoYkTxN7dsislIaHsQZkWkWlA687Lc5N12fdR738TUnf4shka8h4cCzFe287S7yV6q3jJYVBXcEbx5Ui-O8EzA5Gfq28EyMMizYSi8KU2oVoo59jFRgHHhKWLvAY5iNc37GyWIZpv6Z78B2j7O8k2V1vgaZA09WyySFOLWkZ1idMo2MOdYQqfv_ZvEYtoaHB-N8PJrsP4CrAVcINcVB2zBYLk7xIVwxZ8sv9eJRd7QEfL5s4P4CxYRfXQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqgoALb0SggHkdOERN7CROkBAKLKuuWq1WAqSKi3GccVupbJZkW9S_xq9jJo9dihC3HrjGo1ESf563Zxh7IVGnpsLgSRMy8SMlMz81CnyLytolBh1n6dphE2o6Tff3s9kG-znchaGyykEmtoK6rCzFyLfR7iZdRFU4ri-LmI3GbxfffZogRZnWYZxGB5FdOPuB7lvzZjLCvX4pxPjDp_c7fj9hAN9FpEvfINNCoc2SQorADEJIApCQBg6ldpIUToWuVCI1iY2czYyUhclKAEhNpIqMGjGh-L-k0MekcsJZ_GUV3wkkgjuIuo6oUmbBdt2g50e9ZMQ5HdiOCkDNdkiFmH_og1bJjW_8z7_nJrvem9Y8787CLbYB89vsaj_l_fDsDtP5OlvPK8dHAAveN5g94PlvKZWGoy3PP5q2XekS-OQbil1O12U4hRNxfVZThos4veY57zIsd9nnC_m-e2xzXs3hPuNh7DJ09hIA9D9N6IrYSWlpPGeMBpsoPfZq2HJt--7rNATkWKMXRvDQa3h47PmKdtH1HPkr1TtCzoqC-oS3D6r6QPdiR6P574rAJiCjgmz3orClURGYJIRYCeuxZ4i7czx28j1NzyiFLKMsPA09tjVgTvcSrtFrwHns6WoZZRMlnMwcqhOikQlFIGL14N8snrAriFa9N5nuPmTXBJUNtRVDW2xzWZ_AI3bZni6Pmvpxe8Y4-3rRqP0FQ1tmwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Deep+Learning+Architectures+for+Satellite+Image+Time+Series+Prediction%3A+A+Review&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Moskola%C3%AF%2C+Waytehad+Rose&rft.au=Abdou%2C+Wahabou&rft.au=Dipanda%2C+A&rft.au=Kolyang&rft.date=2021-12-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=13&rft.issue=23&rft_id=info:doi/10.3390%2Frs13234822&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon