Singular perturbation analysis of competitive neural networks with different time scales

The dynamics of complex neural networks must include the aspects of long- and short-term memory. The behavior of the network is characterized by an equation of neural activity as a fast phenomenon and an equation of synaptic modification as a slow part of the neural system. The main idea of this pap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation Jg. 8; H. 8; S. 1731
Hauptverfasser: Meyer-Bäse, A, Ohl, F, Scheich, H
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 15.11.1996
Schlagworte:
ISSN:0899-7667
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The dynamics of complex neural networks must include the aspects of long- and short-term memory. The behavior of the network is characterized by an equation of neural activity as a fast phenomenon and an equation of synaptic modification as a slow part of the neural system. The main idea of this paper is to apply a stability analysis method of fixed points of the combined activity and weight dynamics for a special class of competitive neural networks. We present a quadratic-type Lyapunov function for the flow of a competitive neural system with fast and slow dynamic variables as a global stability method and a modality of detecting the local stability behavior around individual equilibrium points.
AbstractList The dynamics of complex neural networks must include the aspects of long- and short-term memory. The behavior of the network is characterized by an equation of neural activity as a fast phenomenon and an equation of synaptic modification as a slow part of the neural system. The main idea of this paper is to apply a stability analysis method of fixed points of the combined activity and weight dynamics for a special class of competitive neural networks. We present a quadratic-type Lyapunov function for the flow of a competitive neural system with fast and slow dynamic variables as a global stability method and a modality of detecting the local stability behavior around individual equilibrium points.
The dynamics of complex neural networks must include the aspects of long- and short-term memory. The behavior of the network is characterized by an equation of neural activity as a fast phenomenon and an equation of synaptic modification as a slow part of the neural system. The main idea of this paper is to apply a stability analysis method of fixed points of the combined activity and weight dynamics for a special class of competitive neural networks. We present a quadratic-type Lyapunov function for the flow of a competitive neural system with fast and slow dynamic variables as a global stability method and a modality of detecting the local stability behavior around individual equilibrium points.The dynamics of complex neural networks must include the aspects of long- and short-term memory. The behavior of the network is characterized by an equation of neural activity as a fast phenomenon and an equation of synaptic modification as a slow part of the neural system. The main idea of this paper is to apply a stability analysis method of fixed points of the combined activity and weight dynamics for a special class of competitive neural networks. We present a quadratic-type Lyapunov function for the flow of a competitive neural system with fast and slow dynamic variables as a global stability method and a modality of detecting the local stability behavior around individual equilibrium points.
Author Meyer-Bäse, A
Ohl, F
Scheich, H
Author_xml – sequence: 1
  givenname: A
  surname: Meyer-Bäse
  fullname: Meyer-Bäse, A
  organization: Institute for Flight Mechanics and Control, Darmstadt, Germany
– sequence: 2
  givenname: F
  surname: Ohl
  fullname: Ohl, F
– sequence: 3
  givenname: H
  surname: Scheich
  fullname: Scheich, H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/8888615$$D View this record in MEDLINE/PubMed
BookMark eNotkLFOwzAURT0UlbbwA0hInthSbDdx7BFVUJAqMQASW_TivIAhsYPtUPXviUTvHc5ydIe7JDPnHRJyxdmacyluHRq_5lrLtZrKyw2fkQVTWmellOU5Wcb4xRiTnBVzMldTJC8W5P3Fuo-xg0AHDGkMNSTrHQUH3THaSH1Lje8HTDbZX6QOxwDdhHTw4TvSg02ftLFtiwFdosn2SKOBDuMFOWuhi3h54oq8Pdy_bh-z_fPuaXu3z0wuVMpAFFLKRnJjEIQwimHdIG8FaihEnbcglNRNWSBs6kYKbViuQUIBedMWBsWK3PzvDsH_jBhT1dtosOvAoR9jVaq8VLqUk3h9Ese6x6Yagu0hHKvTFeIP_ytkbg
CitedBy_id crossref_primary_10_1016_j_chaos_2021_111033
crossref_primary_10_1007_s11063_004_3427_0
crossref_primary_10_1109_TNNLS_2023_3321434
crossref_primary_10_1140_epjs_s11734_025_01909_0
crossref_primary_10_1007_s12190_020_01346_3
crossref_primary_10_1243_09596518JSCE575
crossref_primary_10_1016_j_chaos_2023_114260
crossref_primary_10_1007_s11063_024_11610_3
crossref_primary_10_1016_j_neunet_2004_11_009
crossref_primary_10_1186_s13660_019_2136_1
crossref_primary_10_1007_s13042_012_0097_5
crossref_primary_10_1109_TNNLS_2021_3052868
crossref_primary_10_1016_j_neucom_2013_07_026
crossref_primary_10_1007_s00521_011_0626_2
crossref_primary_10_1007_s11071_017_3836_z
crossref_primary_10_1007_s11431_017_9163_7
crossref_primary_10_1016_j_cnsns_2018_02_033
crossref_primary_10_1016_j_neucom_2020_11_023
crossref_primary_10_1109_TAC_2021_3113471
crossref_primary_10_1007_s00521_019_04654_3
crossref_primary_10_1016_j_neucom_2021_01_009
crossref_primary_10_1007_s11071_022_07206_y
crossref_primary_10_1016_j_fss_2023_108676
crossref_primary_10_1016_j_neunet_2025_107691
crossref_primary_10_1109_TNN_2006_875995
crossref_primary_10_1007_s13042_017_0670_z
crossref_primary_10_1016_j_neunet_2022_06_002
crossref_primary_10_1016_j_neunet_2021_06_026
crossref_primary_10_1177_09544062231225513
crossref_primary_10_1002_mma_8368
crossref_primary_10_1109_TNSE_2023_3271109
crossref_primary_10_1016_j_ins_2025_122136
crossref_primary_10_1109_TNNLS_2022_3176887
crossref_primary_10_1177_01423312231152701
crossref_primary_10_1080_00207179_2016_1263396
crossref_primary_10_1007_s10706_008_9180_9
crossref_primary_10_1007_s40314_025_03262_3
crossref_primary_10_1016_j_neucom_2014_11_016
crossref_primary_10_1016_j_nonrwa_2007_11_014
crossref_primary_10_1016_j_neucom_2018_09_053
crossref_primary_10_1002_qute_202400180
crossref_primary_10_1016_j_neucom_2017_07_047
crossref_primary_10_1016_j_neucom_2009_10_003
crossref_primary_10_1016_j_jfranklin_2018_06_006
crossref_primary_10_1155_2022_5926415
crossref_primary_10_1016_j_chaos_2023_114162
crossref_primary_10_1007_s11071_011_0116_1
crossref_primary_10_1016_j_arcontrol_2023_100926
crossref_primary_10_1016_j_jfranklin_2009_03_005
crossref_primary_10_1016_j_neucom_2019_06_049
crossref_primary_10_1080_27684830_2025_2518815
crossref_primary_10_1007_s11063_007_9034_0
crossref_primary_10_1109_TCYB_2021_3082153
crossref_primary_10_1016_j_neucom_2020_05_061
crossref_primary_10_1007_s11063_017_9777_1
crossref_primary_10_1016_j_chaos_2023_114216
crossref_primary_10_1016_j_fss_2024_108913
crossref_primary_10_1002_mma_3732
crossref_primary_10_1007_s12555_017_0371_0
crossref_primary_10_3233_JIFS_223495
crossref_primary_10_1016_j_neucom_2015_11_094
crossref_primary_10_1002_asjc_1926
crossref_primary_10_1016_j_neucom_2024_128612
crossref_primary_10_1016_j_isatra_2021_06_015
crossref_primary_10_1016_j_amc_2019_03_026
crossref_primary_10_1016_j_matcom_2023_09_004
crossref_primary_10_1002_andp_202400221
crossref_primary_10_1016_j_neucom_2012_11_041
crossref_primary_10_1016_j_amc_2018_09_033
crossref_primary_10_1007_s11063_024_11583_3
crossref_primary_10_1002_acs_3961
crossref_primary_10_1016_j_neucom_2009_08_004
crossref_primary_10_1007_s00521_014_1598_9
crossref_primary_10_1016_j_neucom_2013_12_008
crossref_primary_10_1109_TCSII_2005_852537
crossref_primary_10_1080_0952813X_2019_1647564
crossref_primary_10_3390_sym14112224
crossref_primary_10_1007_s00521_024_09504_5
crossref_primary_10_1016_j_jfranklin_2019_05_017
crossref_primary_10_1016_j_ymssp_2017_04_015
crossref_primary_10_1109_TNN_2010_2068560
crossref_primary_10_1007_s00521_024_09885_7
crossref_primary_10_1109_TCYB_2018_2884498
crossref_primary_10_1109_TFUZZ_2024_3423014
crossref_primary_10_1016_j_neucom_2011_06_007
crossref_primary_10_1080_02522667_2018_1453670
crossref_primary_10_1080_00207721_2018_1496297
crossref_primary_10_3390_e26030199
crossref_primary_10_1007_s11071_017_3483_4
crossref_primary_10_1109_TNN_2003_810594
crossref_primary_10_1016_j_cnsns_2025_108746
crossref_primary_10_1016_j_neunet_2018_09_005
crossref_primary_10_1016_j_neucom_2023_126555
crossref_primary_10_1016_j_neunet_2025_107411
crossref_primary_10_1016_j_matcom_2018_05_008
crossref_primary_10_1007_s11071_023_08422_w
crossref_primary_10_3389_fncom_2021_743537
crossref_primary_10_1155_2017_6987436
crossref_primary_10_1002_mma_1525
crossref_primary_10_1007_s00521_020_04728_7
crossref_primary_10_1016_j_fss_2024_109130
crossref_primary_10_1002_mma_9492
crossref_primary_10_1186_s13662_019_2476_7
crossref_primary_10_1016_j_chaos_2023_113790
crossref_primary_10_1016_j_engappai_2004_02_010
crossref_primary_10_1109_TCYB_2015_2413212
crossref_primary_10_1049_iet_cta_2019_0235
crossref_primary_10_1007_s11063_020_10269_w
crossref_primary_10_1080_00207721_2010_503945
crossref_primary_10_1109_ACCESS_2017_2787572
crossref_primary_10_1007_s11071_022_07427_1
crossref_primary_10_1109_TFUZZ_2024_3359181
crossref_primary_10_1002_asjc_2772
crossref_primary_10_1016_j_nahs_2018_08_011
crossref_primary_10_1109_TNN_2007_908626
crossref_primary_10_1016_j_cnsns_2012_01_021
crossref_primary_10_1016_j_jfranklin_2025_107714
crossref_primary_10_1007_s11063_017_9620_8
crossref_primary_10_3233_JIFS_230821
crossref_primary_10_1016_j_neunet_2023_10_008
crossref_primary_10_1007_s11063_024_11667_0
crossref_primary_10_1016_j_cjph_2024_02_032
crossref_primary_10_1007_s11063_015_9486_6
crossref_primary_10_1016_j_neunet_2015_07_013
crossref_primary_10_1162_NECO_a_00629
crossref_primary_10_1162_NECO_a_00740
crossref_primary_10_1155_2024_3853241
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1162/neco.1996.8.8.1731
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 8888615
Genre Journal Article
Comparative Study
GroupedDBID ---
-~X
0R~
123
36B
4.4
53G
6IK
AAJGR
ABAZT
ABDNZ
ABIVO
ABJNI
ACGFO
AEGXH
AEILP
AENEX
AFHIN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CGR
COF
CS3
CUY
CVF
DU5
EBS
ECM
EIF
EJD
F5P
FNEHJ
HZ~
H~9
IPLJI
JAVBF
MCG
MINIK
NPM
O9-
OCL
P2P
PK0
PQQKQ
RMI
WG8
WH7
7X8
ABUFD
ABVLG
TUS
ID FETCH-LOGICAL-c428t-a25666d61ccea22c80ebde1f2e9a52b4fa2869d75ea3bd629c049a6a5a4df5ce2
IEDL.DBID 7X8
ISICitedReferencesCount 142
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1162_neco_1996_8_8_1731&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0899-7667
IngestDate Sun Nov 09 13:55:28 EST 2025
Thu Jan 02 21:45:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-a25666d61ccea22c80ebde1f2e9a52b4fa2869d75ea3bd629c049a6a5a4df5ce2
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 8888615
PQID 78478976
PQPubID 23479
ParticipantIDs proquest_miscellaneous_78478976
pubmed_primary_8888615
PublicationCentury 1900
PublicationDate 1996-11-15
PublicationDateYYYYMMDD 1996-11-15
PublicationDate_xml – month: 11
  year: 1996
  text: 1996-11-15
  day: 15
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural computation
PublicationTitleAlternate Neural Comput
PublicationYear 1996
SSID ssj0006105
Score 1.8883816
Snippet The dynamics of complex neural networks must include the aspects of long- and short-term memory. The behavior of the network is characterized by an equation of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1731
SubjectTerms Algorithms
Models, Neurological
Models, Statistical
Neural Networks (Computer)
Neurons - physiology
Probability
Time Factors
Title Singular perturbation analysis of competitive neural networks with different time scales
URI https://www.ncbi.nlm.nih.gov/pubmed/8888615
https://www.proquest.com/docview/78478976
Volume 8
WOSCitedRecordID wos10_1162_neco_1996_8_8_1731&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA2j48KN4xPHZxZu40wzzaMgiIiDCx0GVOiu5HELbjrjdPT7vUlb3AgupNBVXyS3ueckJ_cQcoWQAYmPSxiAmLDUg2FGOIxlm6YTLUFrG11LntRspvM8m_fITbcXJsgquzExDtR-4cIc-UjhMKoxd94uP1jwjAprq62Bxgbp4xuzENMq_6kVLlsBIzIKpqRU3ZYZyUcVUruwT09eazwS1VrM_QowY6KZDv73ibtkpwWY9K6JiD3Sg2qfDDrzBtr-ywckf8GkFTSodAkrzDs2dhE1bZESuiipi5g6iotoqHuJj60a1XhNw_wt7dxV1jRY1NMa-xvqQ_I2fXi9f2StzQJzyD3WzCDqkdLLxDkwnDs9BushKTlkRnCbloZrmXklwEyslzxzyCqMNMKkvhQO-BHZrBYVHBMqkBxKL7gyY5vaxCMaxYsQM6gU7LhUQ3LZtVyBYRzWJkwFi8-66NpuSI6axi-WTbWNAim6Rth18uetp2Q7SqqDRk-ckX6J_y-cky33tX6vVxcxOPA8mz9_A99exxQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Singular+perturbation+analysis+of+competitive+neural+networks+with+different+time+scales&rft.jtitle=Neural+computation&rft.au=Meyer-B%C3%A4se%2C+A&rft.au=Ohl%2C+F&rft.au=Scheich%2C+H&rft.date=1996-11-15&rft.issn=0899-7667&rft.volume=8&rft.issue=8&rft.spage=1731&rft_id=info:doi/10.1162%2Fneco.1996.8.8.1731&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0899-7667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0899-7667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0899-7667&client=summon