Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation
Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction...
Gespeichert in:
| Veröffentlicht in: | American journal of physiology: endocrinology and metabolism Jg. 299; H. 6; S. E1016 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.12.2010
|
| Schlagworte: | |
| ISSN: | 1522-1555, 1522-1555 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity. |
|---|---|
| AbstractList | Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity. Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity. |
| Author | Unal, Resat Yao-Borengasser, Aiwei Gurley, Catherine M Rasouli, Neda Kern, Philip A Zhu, Beibei Peterson, Charlotte A Spencer, Michael |
| Author_xml | – sequence: 1 givenname: Michael surname: Spencer fullname: Spencer, Michael organization: Division of Endocrinology, CTW 521, Univ. of Kentucky, Lexington, KY 40536, USA – sequence: 2 givenname: Aiwei surname: Yao-Borengasser fullname: Yao-Borengasser, Aiwei – sequence: 3 givenname: Resat surname: Unal fullname: Unal, Resat – sequence: 4 givenname: Neda surname: Rasouli fullname: Rasouli, Neda – sequence: 5 givenname: Catherine M surname: Gurley fullname: Gurley, Catherine M – sequence: 6 givenname: Beibei surname: Zhu fullname: Zhu, Beibei – sequence: 7 givenname: Charlotte A surname: Peterson fullname: Peterson, Charlotte A – sequence: 8 givenname: Philip A surname: Kern fullname: Kern, Philip A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20841504$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUMtKBDEQDKKoq_6AB8nN06xJZrKTPS6LLxC8qNclj143y0wypjOK_-BHG18gNFQ1XVU0NSG7IQYg5JSzKedSXOjtAMHFKWO1mE8F42yHHJaDqLiUcvcfPyATxC1jrJWN2CcHgqmGS9Ycko-F80NEoNkjjkB7bVMcNvoZkPpQBsfOhyoBesw6ZIqj2YLNSHUCqhGj9TqDo28-b6iNXVesgT7dUh0cXXuTYnF-Lw76GDCnIqe6y5CCzv61cFug0BiOyd5adwgnv3hEHq8uH5Y31d399e1ycVfZRqhcqTWbgaqFUsAbWys-F7xpjQbHoVbMmRpm3LK5axmztjUzA-CkFLWBmWG2FUfk_Cd3SPFlBMyr3qOF8nuAOOJKfXXGZdMU5dmvcjQ9uNWQfK_T--qvQPEJgEF5kw |
| CitedBy_id | crossref_primary_10_3390_nu10040399 crossref_primary_10_1007_s12170_014_0379_4 crossref_primary_10_1146_annurev_physiol_060721_092930 crossref_primary_10_1016_j_expneurol_2023_114371 crossref_primary_10_1002_smll_202203725 crossref_primary_10_1007_s10555_022_10063_1 crossref_primary_10_1093_cvr_cvac175 crossref_primary_10_20900_immunometab20200034 crossref_primary_10_3389_fphys_2021_785117 crossref_primary_10_1097_PRS_0000000000011606 crossref_primary_10_1210_jc_2013_4381 crossref_primary_10_1530_JOE_13_0010 crossref_primary_10_1016_j_cancergen_2019_07_003 crossref_primary_10_1016_j_molmet_2020_101010 crossref_primary_10_1088_1748_605X_ac956c crossref_primary_10_1210_me_2013_1293 crossref_primary_10_1111_sji_12314 crossref_primary_10_3390_cancers14225684 crossref_primary_10_1016_j_molimm_2017_05_027 crossref_primary_10_1097_PHM_0000000000001930 crossref_primary_10_1016_j_bbalip_2013_10_003 crossref_primary_10_1016_j_molmed_2013_04_001 crossref_primary_10_1189_jlb_3A0115_009R crossref_primary_10_1002_oby_20341 crossref_primary_10_1111_imr_12853 crossref_primary_10_1002_oby_23734 crossref_primary_10_1016_j_ejcb_2022_151221 crossref_primary_10_1038_s41419_021_03519_9 crossref_primary_10_1002_ajum_12100 crossref_primary_10_1038_s41467_022_32348_3 crossref_primary_10_3389_fimmu_2023_1153915 crossref_primary_10_1002_jbt_23707 crossref_primary_10_1038_s41598_020_77498_w crossref_primary_10_1210_jc_2016_2390 crossref_primary_10_1007_s13340_023_00624_2 crossref_primary_10_1155_2018_4395137 crossref_primary_10_1016_S0001_4079_19_30458_3 crossref_primary_10_1038_s41430_021_00914_5 crossref_primary_10_1245_s10434_023_13943_0 crossref_primary_10_3389_fphar_2021_812166 crossref_primary_10_1007_s13340_016_0290_y crossref_primary_10_3390_ijms24108509 crossref_primary_10_1002_JLB_3HI1017_422R crossref_primary_10_3390_healthcare13020103 crossref_primary_10_1016_j_bcp_2024_116324 crossref_primary_10_1002_JLB_3MR0722_201R crossref_primary_10_1186_s12889_023_17381_1 crossref_primary_10_1016_j_jnutbio_2016_01_006 crossref_primary_10_1017_S0007114515002962 crossref_primary_10_1093_toxsci_kfv315 crossref_primary_10_1016_j_diabet_2016_10_004 crossref_primary_10_1093_infdis_jiy064 crossref_primary_10_3389_fcell_2021_767362 crossref_primary_10_1097_MCO_0b013e328347970b crossref_primary_10_3892_mmr_2018_8590 crossref_primary_10_1016_j_bbadis_2023_166853 crossref_primary_10_1038_s41366_022_01192_2 crossref_primary_10_1146_annurev_pathol_042220_023633 crossref_primary_10_3389_fendo_2019_00840 crossref_primary_10_1002_path_4301 crossref_primary_10_1016_j_cbi_2017_12_004 crossref_primary_10_1002_mnfr_201700731 crossref_primary_10_3390_ijms222413639 crossref_primary_10_1016_j_bcp_2022_115305 crossref_primary_10_1080_08820139_2020_1828911 crossref_primary_10_1515_CCLM_2011_697 crossref_primary_10_1016_j_lfs_2023_121478 crossref_primary_10_1093_rheumatology_ket287 crossref_primary_10_2147_OTT_S256654 crossref_primary_10_1371_journal_pone_0060795 crossref_primary_10_1016_j_bbadis_2018_01_025 crossref_primary_10_1016_j_bbagen_2017_11_012 crossref_primary_10_1007_s00401_014_1369_9 crossref_primary_10_1002_oby_20034 crossref_primary_10_3390_cancers15112929 crossref_primary_10_1016_j_bbrc_2013_10_004 crossref_primary_10_3389_fimmu_2020_02195 crossref_primary_10_1111_acel_12263 crossref_primary_10_1096_fj_202302090R crossref_primary_10_1016_j_ghir_2017_12_010 crossref_primary_10_1038_nutd_2011_10 crossref_primary_10_1016_j_bcp_2021_114723 crossref_primary_10_3109_13813455_2012_685745 crossref_primary_10_1210_endocr_bqac124 crossref_primary_10_1016_j_metabol_2017_10_002 crossref_primary_10_1089_met_2011_0121 crossref_primary_10_1016_j_bbrc_2022_03_078 crossref_primary_10_1016_j_immuni_2023_05_001 crossref_primary_10_2337_db24_0721 crossref_primary_10_3389_fnut_2021_625331 crossref_primary_10_1007_s00125_013_2931_z crossref_primary_10_1172_JCI128687 crossref_primary_10_1007_s00281_017_0668_3 crossref_primary_10_2217_dmt_11_22 crossref_primary_10_3389_fimmu_2015_00637 crossref_primary_10_1116_6_0000363 crossref_primary_10_3390_jcm14093071 crossref_primary_10_1016_j_mam_2012_10_002 crossref_primary_10_1016_j_molmet_2017_07_008 crossref_primary_10_1016_j_trsl_2016_01_002 crossref_primary_10_2337_db14_0744 crossref_primary_10_1016_j_mam_2012_10_004 crossref_primary_10_1016_j_ebiom_2024_105127 crossref_primary_10_1080_14779072_2022_2111301 crossref_primary_10_1002_eji_201847570 crossref_primary_10_1111_febs_16039 crossref_primary_10_1177_03946320221092188 crossref_primary_10_1007_s40200_023_01221_5 crossref_primary_10_1038_s12276_019_0258_7 crossref_primary_10_3390_ijms21165738 crossref_primary_10_1210_jc_2017_02301 crossref_primary_10_1016_j_bcp_2022_115357 crossref_primary_10_1007_s10555_020_09935_1 crossref_primary_10_1038_s41598_020_77406_2 crossref_primary_10_1038_s41598_022_13324_9 crossref_primary_10_2174_1874467214666210906122054 crossref_primary_10_1016_j_it_2011_04_008 crossref_primary_10_1016_j_jnutbio_2013_01_007 crossref_primary_10_1007_s11626_020_00482_1 crossref_primary_10_1016_j_biopha_2018_05_110 crossref_primary_10_1111_apt_13819 crossref_primary_10_1371_journal_pone_0189977 crossref_primary_10_1016_j_ejphar_2017_10_005 crossref_primary_10_1038_ncomms4485 crossref_primary_10_1002_path_4347 crossref_primary_10_1016_j_bbadis_2013_05_011 crossref_primary_10_1111_jth_15622 crossref_primary_10_1007_s12020_016_1089_0 crossref_primary_10_1136_jim_2021_001778 crossref_primary_10_1007_s00018_023_04887_5 crossref_primary_10_1210_jc_2017_00138 crossref_primary_10_1016_j_atherosclerosis_2011_09_003 crossref_primary_10_1038_s41598_019_51648_1 crossref_primary_10_1097_PRS_0000000000006175 crossref_primary_10_1002_pros_22662 crossref_primary_10_1016_j_archger_2013_06_001 crossref_primary_10_3892_mmr_2016_4820 crossref_primary_10_1172_JCI129192 crossref_primary_10_3389_fonc_2020_615375 crossref_primary_10_1007_s11033_020_05912_7 crossref_primary_10_4110_in_2025_25_e12 crossref_primary_10_3389_fimmu_2022_935275 crossref_primary_10_1096_fj_14_253831 crossref_primary_10_1002_oby_20758 crossref_primary_10_1007_s00125_013_2897_x crossref_primary_10_1089_ten_tec_2013_0431 crossref_primary_10_1016_j_molmet_2020_101095 crossref_primary_10_3389_fimmu_2022_922654 crossref_primary_10_1111_aji_12477 crossref_primary_10_1016_j_cmet_2017_01_010 crossref_primary_10_1371_journal_pone_0106214 crossref_primary_10_1016_j_diabet_2011_03_002 crossref_primary_10_3389_fmicb_2019_02837 crossref_primary_10_1016_j_bbrc_2017_06_078 crossref_primary_10_1111_imr_12218 crossref_primary_10_1253_circj_CJ_14_0343 crossref_primary_10_1097_BCR_0000000000000292 crossref_primary_10_1093_lifemeta_load021 crossref_primary_10_1038_nutd_2015_22 crossref_primary_10_3389_fimmu_2023_1223264 crossref_primary_10_1016_j_jbc_2022_102322 crossref_primary_10_1530_JOE_18_0182 crossref_primary_10_3233_BIR_190234 crossref_primary_10_1038_s42255_022_00580_2 crossref_primary_10_1155_2017_8162421 crossref_primary_10_1038_s41598_018_37501_x crossref_primary_10_1016_j_metabol_2017_04_005 crossref_primary_10_3390_nu9121289 crossref_primary_10_1016_j_bone_2021_116320 crossref_primary_10_1161_ATVBAHA_112_248732 crossref_primary_10_1016_j_biomaterials_2015_01_079 crossref_primary_10_1007_s11892_017_0917_9 crossref_primary_10_1016_j_bcp_2024_116043 crossref_primary_10_1002_path_4253 crossref_primary_10_2337_db16_1057 crossref_primary_10_1002_oby_20730 crossref_primary_10_1172_JCI123069 crossref_primary_10_1210_js_2017_00202 crossref_primary_10_1002_j_2040_4603_2018_tb00006_x crossref_primary_10_1007_s13410_019_00780_9 crossref_primary_10_1155_2014_309548 crossref_primary_10_18585_inabj_v3i3_148 crossref_primary_10_3389_fphys_2019_00459 crossref_primary_10_1371_journal_pone_0105262 crossref_primary_10_3390_biomedicines13040935 crossref_primary_10_3389_fimmu_2017_01129 crossref_primary_10_3389_fimmu_2014_00462 crossref_primary_10_1016_j_lfs_2019_01_037 crossref_primary_10_1080_15592294_2021_2003043 crossref_primary_10_1146_annurev_nutr_071812_161113 crossref_primary_10_1194_jlr_R085993 crossref_primary_10_1002_hep_25742 crossref_primary_10_1093_lifemeta_loac032 crossref_primary_10_1002_oby_21135 crossref_primary_10_1002_oby_21377 crossref_primary_10_1038_srep12214 crossref_primary_10_1371_journal_pone_0031274 crossref_primary_10_1007_s00125_016_3933_4 crossref_primary_10_1038_ijo_2016_173 crossref_primary_10_1016_j_bcp_2022_114976 crossref_primary_10_1111_obr_13691 crossref_primary_10_1111_j_1365_2710_2012_01347_x crossref_primary_10_1186_s12885_017_3178_8 crossref_primary_10_3390_ijms24065672 crossref_primary_10_1172_JCI88883 crossref_primary_10_3389_fcell_2021_651360 crossref_primary_10_1210_er_2010_0030 crossref_primary_10_1007_s00018_019_03371_3 crossref_primary_10_2337_db12_1042 crossref_primary_10_1007_s11739_012_0826_5 crossref_primary_10_1210_en_2018_00701 crossref_primary_10_1002_j_2040_4603_2023_tb00254_x crossref_primary_10_1038_s42255_024_01103_x crossref_primary_10_26599_FSHW_2024_9250121 crossref_primary_10_1002_ar_23330 crossref_primary_10_1210_jc_2013_3253 crossref_primary_10_3389_fcell_2020_607483 crossref_primary_10_1111_acel_14287 crossref_primary_10_3390_biomedicines11051412 crossref_primary_10_1161_CIRCRESAHA_111_262493 crossref_primary_10_1073_pnas_2313185121 crossref_primary_10_3390_ijms232112954 crossref_primary_10_1002_ijc_28983 crossref_primary_10_1111_obr_13956 crossref_primary_10_1186_s12944_023_01967_0 crossref_primary_10_1111_dom_15615 crossref_primary_10_1136_jim_2016_000106 crossref_primary_10_3389_fnagi_2017_00268 crossref_primary_10_12688_f1000research_11653_1 crossref_primary_10_3390_ijms23010520 crossref_primary_10_1016_j_biomaterials_2015_12_017 crossref_primary_10_1189_jlb_1012512 crossref_primary_10_1186_ar3796 crossref_primary_10_1097_MOL_0b013e32834a77b4 crossref_primary_10_3923_ijp_2020_164_180 crossref_primary_10_1007_s11033_013_2623_2 crossref_primary_10_1096_fj_12_208249 crossref_primary_10_1210_clinem_dgac067 crossref_primary_10_1038_s41598_019_56242_z crossref_primary_10_1038_pr_2014_202 crossref_primary_10_1016_j_cmet_2017_12_005 crossref_primary_10_1016_j_cardfail_2014_11_004 crossref_primary_10_1016_j_mce_2021_111195 crossref_primary_10_1371_journal_pone_0102190 crossref_primary_10_3390_cells7080103 crossref_primary_10_1074_jbc_M116_771428 crossref_primary_10_1016_j_placenta_2016_09_004 crossref_primary_10_1007_s00125_016_4074_5 crossref_primary_10_1016_j_intimp_2014_08_002 crossref_primary_10_1096_fj_202200037R crossref_primary_10_1139_apnm_2021_0284 crossref_primary_10_1172_JCI63930 crossref_primary_10_1002_jcp_31008 crossref_primary_10_20900_immunometab20200022 crossref_primary_10_1016_j_coph_2013_05_011 crossref_primary_10_14814_phy2_13019 crossref_primary_10_3390_ijms241210237 crossref_primary_10_1016_j_bbamcr_2023_119626 crossref_primary_10_1007_s00125_018_4777_x crossref_primary_10_1111_sji_12747 crossref_primary_10_1159_000327347 crossref_primary_10_4239_wjd_v16_i9_110515 crossref_primary_10_3390_ijms22031359 crossref_primary_10_1172_JCI57132 crossref_primary_10_1016_j_trsl_2014_05_008 crossref_primary_10_1038_s41598_024_51906_x crossref_primary_10_1586_14789450_2014_903158 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1152/ajpendo.00329.2010 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1522-1555 |
| ExternalDocumentID | 20841504 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK080327 – fundername: NCATS NIH HHS grantid: UL1 TR001998 – fundername: NCRR NIH HHS grantid: P20 RR021954 – fundername: NIA NIH HHS grantid: R01 AG020941 – fundername: NIDDK NIH HHS grantid: R01 DK071349 – fundername: NIDDK NIH HHS grantid: DK-80327 – fundername: NIDDK NIH HHS grantid: DK-39176 – fundername: NIA NIH HHS grantid: AG-20941 – fundername: NIDDK NIH HHS grantid: DK-71349 – fundername: NCRR NIH HHS grantid: RR-14288 |
| GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 8M5 ABJNI ACPRK ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP BTFSW C1A CGR CUY CVF E3Z EBS ECM EIF EJD EMOBN F5P GX1 H13 ITBOX KQ8 NPM OK1 P2P P6G PQQKQ RAP RHI RPL RPRKH TR2 W8F WH7 WOQ XSW YSK 7X8 |
| ID | FETCH-LOGICAL-c428t-8f06e83288e14c38192147baed1e380db3e61c09d700cc7b6beed5523be6b0c72 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 346 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285710400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1522-1555 |
| IngestDate | Fri Jul 11 13:27:36 EDT 2025 Mon Jul 21 06:01:18 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c428t-8f06e83288e14c38192147baed1e380db3e61c09d700cc7b6beed5523be6b0c72 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3006260 |
| PMID | 20841504 |
| PQID | 815551544 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_815551544 pubmed_primary_20841504 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-12-01 |
| PublicationDateYYYYMMDD | 2010-12-01 |
| PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | American journal of physiology: endocrinology and metabolism |
| PublicationTitleAlternate | Am J Physiol Endocrinol Metab |
| PublicationYear | 2010 |
| SSID | ssj0007542 |
| Score | 2.5047717 |
| Snippet | Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | E1016 |
| SubjectTerms | Adipose Tissue - metabolism Adipose Tissue - pathology Adult Cell Line Cells, Cultured Coculture Techniques Collagen Type VI - genetics Collagen Type VI - metabolism Cytokines - genetics Cytokines - metabolism Female Fibrosis - genetics Fibrosis - metabolism Fibrosis - pathology Fluorescent Antibody Technique Glucose Intolerance - genetics Glucose Intolerance - metabolism Glucose Intolerance - pathology Humans Inflammation - genetics Inflammation - metabolism Inflammation - pathology Insulin - genetics Insulin - metabolism Insulin Resistance - physiology Macrophages - metabolism Macrophages - pathology Male Middle Aged Obesity - genetics Obesity - metabolism Obesity - pathology Reverse Transcriptase Polymerase Chain Reaction |
| Title | Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/20841504 https://www.proquest.com/docview/815551544 |
| Volume | 299 |
| WOSCitedRecordID | wos000285710400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBZtXUIufTjPJilzKL1to31KOhUTapKDjQ9t8W3RyzQBa52sU8h_yI_OjHbtnkIOvSzsQSCk0Wgen76PsS_o4awwRiWaiwwTlLRIlOEusSk3WittXNmJTYjpVM7natZjc9oeVrnxidFRu8ZSjfxc4sVXEnXM99VtQqJR1FztFTRes0GOkQydSzH_RxZO4q6RLhXzLRq9eTNTZuf6hhRmm29o05mKAK_nI8x404zf_-ccP7B3fYgJo84mPrJXPgzZ3ihger18gK8QQZ-xmj5kO5O-t77HHkfuetW0HtZxL2CpSd3rD_qbFq4D9KD1BNNzCjnDGtp7Q0WcFvSdB91vs3dApV2I9oXGCb-vQAcHC0zLGxwZf5xfUlhKLBUQ2_Uh0o8DPbLoSsT77Nf4x8-Ly6TXakgsJjDrRC545dE7SOnTwnY0a4Uw2rvU55I7k_sqtVw5wblF66gMXs4lZsHGV4ZbkR2wN6EJ_ogBAXOMyIzSVV6UKleykjp1XnuxcGUhjhlsVr_Gs0ANDh18c9_W2_U_ZofdDtarjrOjzrjEUIUXn14efMJ2sy1m5ZQNFugH_Bl7a__i-t99jjaG3-ls8gQHdt96 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adipose+tissue+macrophages+in+insulin-resistant+subjects+are+associated+with+collagen+VI+and+fibrosis+and+demonstrate+alternative+activation&rft.jtitle=American+journal+of+physiology%3A+endocrinology+and+metabolism&rft.au=Spencer%2C+Michael&rft.au=Yao-Borengasser%2C+Aiwei&rft.au=Unal%2C+Resat&rft.au=Rasouli%2C+Neda&rft.date=2010-12-01&rft.issn=1522-1555&rft.eissn=1522-1555&rft.volume=299&rft.issue=6&rft.spage=E1016&rft_id=info:doi/10.1152%2Fajpendo.00329.2010&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-1555&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-1555&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-1555&client=summon |