Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation

Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: endocrinology and metabolism Jg. 299; H. 6; S. E1016
Hauptverfasser: Spencer, Michael, Yao-Borengasser, Aiwei, Unal, Resat, Rasouli, Neda, Gurley, Catherine M, Zhu, Beibei, Peterson, Charlotte A, Kern, Philip A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.12.2010
Schlagworte:
ISSN:1522-1555, 1522-1555
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.
AbstractList Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.
Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.
Author Unal, Resat
Yao-Borengasser, Aiwei
Gurley, Catherine M
Rasouli, Neda
Kern, Philip A
Zhu, Beibei
Peterson, Charlotte A
Spencer, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Spencer
  fullname: Spencer, Michael
  organization: Division of Endocrinology, CTW 521, Univ. of Kentucky, Lexington, KY 40536, USA
– sequence: 2
  givenname: Aiwei
  surname: Yao-Borengasser
  fullname: Yao-Borengasser, Aiwei
– sequence: 3
  givenname: Resat
  surname: Unal
  fullname: Unal, Resat
– sequence: 4
  givenname: Neda
  surname: Rasouli
  fullname: Rasouli, Neda
– sequence: 5
  givenname: Catherine M
  surname: Gurley
  fullname: Gurley, Catherine M
– sequence: 6
  givenname: Beibei
  surname: Zhu
  fullname: Zhu, Beibei
– sequence: 7
  givenname: Charlotte A
  surname: Peterson
  fullname: Peterson, Charlotte A
– sequence: 8
  givenname: Philip A
  surname: Kern
  fullname: Kern, Philip A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20841504$$D View this record in MEDLINE/PubMed
BookMark eNpNUMtKBDEQDKKoq_6AB8nN06xJZrKTPS6LLxC8qNclj143y0wypjOK_-BHG18gNFQ1XVU0NSG7IQYg5JSzKedSXOjtAMHFKWO1mE8F42yHHJaDqLiUcvcfPyATxC1jrJWN2CcHgqmGS9Ycko-F80NEoNkjjkB7bVMcNvoZkPpQBsfOhyoBesw6ZIqj2YLNSHUCqhGj9TqDo28-b6iNXVesgT7dUh0cXXuTYnF-Lw76GDCnIqe6y5CCzv61cFug0BiOyd5adwgnv3hEHq8uH5Y31d399e1ycVfZRqhcqTWbgaqFUsAbWys-F7xpjQbHoVbMmRpm3LK5axmztjUzA-CkFLWBmWG2FUfk_Cd3SPFlBMyr3qOF8nuAOOJKfXXGZdMU5dmvcjQ9uNWQfK_T--qvQPEJgEF5kw
CitedBy_id crossref_primary_10_3390_nu10040399
crossref_primary_10_1007_s12170_014_0379_4
crossref_primary_10_1146_annurev_physiol_060721_092930
crossref_primary_10_1016_j_expneurol_2023_114371
crossref_primary_10_1002_smll_202203725
crossref_primary_10_1007_s10555_022_10063_1
crossref_primary_10_1093_cvr_cvac175
crossref_primary_10_20900_immunometab20200034
crossref_primary_10_3389_fphys_2021_785117
crossref_primary_10_1097_PRS_0000000000011606
crossref_primary_10_1210_jc_2013_4381
crossref_primary_10_1530_JOE_13_0010
crossref_primary_10_1016_j_cancergen_2019_07_003
crossref_primary_10_1016_j_molmet_2020_101010
crossref_primary_10_1088_1748_605X_ac956c
crossref_primary_10_1210_me_2013_1293
crossref_primary_10_1111_sji_12314
crossref_primary_10_3390_cancers14225684
crossref_primary_10_1016_j_molimm_2017_05_027
crossref_primary_10_1097_PHM_0000000000001930
crossref_primary_10_1016_j_bbalip_2013_10_003
crossref_primary_10_1016_j_molmed_2013_04_001
crossref_primary_10_1189_jlb_3A0115_009R
crossref_primary_10_1002_oby_20341
crossref_primary_10_1111_imr_12853
crossref_primary_10_1002_oby_23734
crossref_primary_10_1016_j_ejcb_2022_151221
crossref_primary_10_1038_s41419_021_03519_9
crossref_primary_10_1002_ajum_12100
crossref_primary_10_1038_s41467_022_32348_3
crossref_primary_10_3389_fimmu_2023_1153915
crossref_primary_10_1002_jbt_23707
crossref_primary_10_1038_s41598_020_77498_w
crossref_primary_10_1210_jc_2016_2390
crossref_primary_10_1007_s13340_023_00624_2
crossref_primary_10_1155_2018_4395137
crossref_primary_10_1016_S0001_4079_19_30458_3
crossref_primary_10_1038_s41430_021_00914_5
crossref_primary_10_1245_s10434_023_13943_0
crossref_primary_10_3389_fphar_2021_812166
crossref_primary_10_1007_s13340_016_0290_y
crossref_primary_10_3390_ijms24108509
crossref_primary_10_1002_JLB_3HI1017_422R
crossref_primary_10_3390_healthcare13020103
crossref_primary_10_1016_j_bcp_2024_116324
crossref_primary_10_1002_JLB_3MR0722_201R
crossref_primary_10_1186_s12889_023_17381_1
crossref_primary_10_1016_j_jnutbio_2016_01_006
crossref_primary_10_1017_S0007114515002962
crossref_primary_10_1093_toxsci_kfv315
crossref_primary_10_1016_j_diabet_2016_10_004
crossref_primary_10_1093_infdis_jiy064
crossref_primary_10_3389_fcell_2021_767362
crossref_primary_10_1097_MCO_0b013e328347970b
crossref_primary_10_3892_mmr_2018_8590
crossref_primary_10_1016_j_bbadis_2023_166853
crossref_primary_10_1038_s41366_022_01192_2
crossref_primary_10_1146_annurev_pathol_042220_023633
crossref_primary_10_3389_fendo_2019_00840
crossref_primary_10_1002_path_4301
crossref_primary_10_1016_j_cbi_2017_12_004
crossref_primary_10_1002_mnfr_201700731
crossref_primary_10_3390_ijms222413639
crossref_primary_10_1016_j_bcp_2022_115305
crossref_primary_10_1080_08820139_2020_1828911
crossref_primary_10_1515_CCLM_2011_697
crossref_primary_10_1016_j_lfs_2023_121478
crossref_primary_10_1093_rheumatology_ket287
crossref_primary_10_2147_OTT_S256654
crossref_primary_10_1371_journal_pone_0060795
crossref_primary_10_1016_j_bbadis_2018_01_025
crossref_primary_10_1016_j_bbagen_2017_11_012
crossref_primary_10_1007_s00401_014_1369_9
crossref_primary_10_1002_oby_20034
crossref_primary_10_3390_cancers15112929
crossref_primary_10_1016_j_bbrc_2013_10_004
crossref_primary_10_3389_fimmu_2020_02195
crossref_primary_10_1111_acel_12263
crossref_primary_10_1096_fj_202302090R
crossref_primary_10_1016_j_ghir_2017_12_010
crossref_primary_10_1038_nutd_2011_10
crossref_primary_10_1016_j_bcp_2021_114723
crossref_primary_10_3109_13813455_2012_685745
crossref_primary_10_1210_endocr_bqac124
crossref_primary_10_1016_j_metabol_2017_10_002
crossref_primary_10_1089_met_2011_0121
crossref_primary_10_1016_j_bbrc_2022_03_078
crossref_primary_10_1016_j_immuni_2023_05_001
crossref_primary_10_2337_db24_0721
crossref_primary_10_3389_fnut_2021_625331
crossref_primary_10_1007_s00125_013_2931_z
crossref_primary_10_1172_JCI128687
crossref_primary_10_1007_s00281_017_0668_3
crossref_primary_10_2217_dmt_11_22
crossref_primary_10_3389_fimmu_2015_00637
crossref_primary_10_1116_6_0000363
crossref_primary_10_3390_jcm14093071
crossref_primary_10_1016_j_mam_2012_10_002
crossref_primary_10_1016_j_molmet_2017_07_008
crossref_primary_10_1016_j_trsl_2016_01_002
crossref_primary_10_2337_db14_0744
crossref_primary_10_1016_j_mam_2012_10_004
crossref_primary_10_1016_j_ebiom_2024_105127
crossref_primary_10_1080_14779072_2022_2111301
crossref_primary_10_1002_eji_201847570
crossref_primary_10_1111_febs_16039
crossref_primary_10_1177_03946320221092188
crossref_primary_10_1007_s40200_023_01221_5
crossref_primary_10_1038_s12276_019_0258_7
crossref_primary_10_3390_ijms21165738
crossref_primary_10_1210_jc_2017_02301
crossref_primary_10_1016_j_bcp_2022_115357
crossref_primary_10_1007_s10555_020_09935_1
crossref_primary_10_1038_s41598_020_77406_2
crossref_primary_10_1038_s41598_022_13324_9
crossref_primary_10_2174_1874467214666210906122054
crossref_primary_10_1016_j_it_2011_04_008
crossref_primary_10_1016_j_jnutbio_2013_01_007
crossref_primary_10_1007_s11626_020_00482_1
crossref_primary_10_1016_j_biopha_2018_05_110
crossref_primary_10_1111_apt_13819
crossref_primary_10_1371_journal_pone_0189977
crossref_primary_10_1016_j_ejphar_2017_10_005
crossref_primary_10_1038_ncomms4485
crossref_primary_10_1002_path_4347
crossref_primary_10_1016_j_bbadis_2013_05_011
crossref_primary_10_1111_jth_15622
crossref_primary_10_1007_s12020_016_1089_0
crossref_primary_10_1136_jim_2021_001778
crossref_primary_10_1007_s00018_023_04887_5
crossref_primary_10_1210_jc_2017_00138
crossref_primary_10_1016_j_atherosclerosis_2011_09_003
crossref_primary_10_1038_s41598_019_51648_1
crossref_primary_10_1097_PRS_0000000000006175
crossref_primary_10_1002_pros_22662
crossref_primary_10_1016_j_archger_2013_06_001
crossref_primary_10_3892_mmr_2016_4820
crossref_primary_10_1172_JCI129192
crossref_primary_10_3389_fonc_2020_615375
crossref_primary_10_1007_s11033_020_05912_7
crossref_primary_10_4110_in_2025_25_e12
crossref_primary_10_3389_fimmu_2022_935275
crossref_primary_10_1096_fj_14_253831
crossref_primary_10_1002_oby_20758
crossref_primary_10_1007_s00125_013_2897_x
crossref_primary_10_1089_ten_tec_2013_0431
crossref_primary_10_1016_j_molmet_2020_101095
crossref_primary_10_3389_fimmu_2022_922654
crossref_primary_10_1111_aji_12477
crossref_primary_10_1016_j_cmet_2017_01_010
crossref_primary_10_1371_journal_pone_0106214
crossref_primary_10_1016_j_diabet_2011_03_002
crossref_primary_10_3389_fmicb_2019_02837
crossref_primary_10_1016_j_bbrc_2017_06_078
crossref_primary_10_1111_imr_12218
crossref_primary_10_1253_circj_CJ_14_0343
crossref_primary_10_1097_BCR_0000000000000292
crossref_primary_10_1093_lifemeta_load021
crossref_primary_10_1038_nutd_2015_22
crossref_primary_10_3389_fimmu_2023_1223264
crossref_primary_10_1016_j_jbc_2022_102322
crossref_primary_10_1530_JOE_18_0182
crossref_primary_10_3233_BIR_190234
crossref_primary_10_1038_s42255_022_00580_2
crossref_primary_10_1155_2017_8162421
crossref_primary_10_1038_s41598_018_37501_x
crossref_primary_10_1016_j_metabol_2017_04_005
crossref_primary_10_3390_nu9121289
crossref_primary_10_1016_j_bone_2021_116320
crossref_primary_10_1161_ATVBAHA_112_248732
crossref_primary_10_1016_j_biomaterials_2015_01_079
crossref_primary_10_1007_s11892_017_0917_9
crossref_primary_10_1016_j_bcp_2024_116043
crossref_primary_10_1002_path_4253
crossref_primary_10_2337_db16_1057
crossref_primary_10_1002_oby_20730
crossref_primary_10_1172_JCI123069
crossref_primary_10_1210_js_2017_00202
crossref_primary_10_1002_j_2040_4603_2018_tb00006_x
crossref_primary_10_1007_s13410_019_00780_9
crossref_primary_10_1155_2014_309548
crossref_primary_10_18585_inabj_v3i3_148
crossref_primary_10_3389_fphys_2019_00459
crossref_primary_10_1371_journal_pone_0105262
crossref_primary_10_3390_biomedicines13040935
crossref_primary_10_3389_fimmu_2017_01129
crossref_primary_10_3389_fimmu_2014_00462
crossref_primary_10_1016_j_lfs_2019_01_037
crossref_primary_10_1080_15592294_2021_2003043
crossref_primary_10_1146_annurev_nutr_071812_161113
crossref_primary_10_1194_jlr_R085993
crossref_primary_10_1002_hep_25742
crossref_primary_10_1093_lifemeta_loac032
crossref_primary_10_1002_oby_21135
crossref_primary_10_1002_oby_21377
crossref_primary_10_1038_srep12214
crossref_primary_10_1371_journal_pone_0031274
crossref_primary_10_1007_s00125_016_3933_4
crossref_primary_10_1038_ijo_2016_173
crossref_primary_10_1016_j_bcp_2022_114976
crossref_primary_10_1111_obr_13691
crossref_primary_10_1111_j_1365_2710_2012_01347_x
crossref_primary_10_1186_s12885_017_3178_8
crossref_primary_10_3390_ijms24065672
crossref_primary_10_1172_JCI88883
crossref_primary_10_3389_fcell_2021_651360
crossref_primary_10_1210_er_2010_0030
crossref_primary_10_1007_s00018_019_03371_3
crossref_primary_10_2337_db12_1042
crossref_primary_10_1007_s11739_012_0826_5
crossref_primary_10_1210_en_2018_00701
crossref_primary_10_1002_j_2040_4603_2023_tb00254_x
crossref_primary_10_1038_s42255_024_01103_x
crossref_primary_10_26599_FSHW_2024_9250121
crossref_primary_10_1002_ar_23330
crossref_primary_10_1210_jc_2013_3253
crossref_primary_10_3389_fcell_2020_607483
crossref_primary_10_1111_acel_14287
crossref_primary_10_3390_biomedicines11051412
crossref_primary_10_1161_CIRCRESAHA_111_262493
crossref_primary_10_1073_pnas_2313185121
crossref_primary_10_3390_ijms232112954
crossref_primary_10_1002_ijc_28983
crossref_primary_10_1111_obr_13956
crossref_primary_10_1186_s12944_023_01967_0
crossref_primary_10_1111_dom_15615
crossref_primary_10_1136_jim_2016_000106
crossref_primary_10_3389_fnagi_2017_00268
crossref_primary_10_12688_f1000research_11653_1
crossref_primary_10_3390_ijms23010520
crossref_primary_10_1016_j_biomaterials_2015_12_017
crossref_primary_10_1189_jlb_1012512
crossref_primary_10_1186_ar3796
crossref_primary_10_1097_MOL_0b013e32834a77b4
crossref_primary_10_3923_ijp_2020_164_180
crossref_primary_10_1007_s11033_013_2623_2
crossref_primary_10_1096_fj_12_208249
crossref_primary_10_1210_clinem_dgac067
crossref_primary_10_1038_s41598_019_56242_z
crossref_primary_10_1038_pr_2014_202
crossref_primary_10_1016_j_cmet_2017_12_005
crossref_primary_10_1016_j_cardfail_2014_11_004
crossref_primary_10_1016_j_mce_2021_111195
crossref_primary_10_1371_journal_pone_0102190
crossref_primary_10_3390_cells7080103
crossref_primary_10_1074_jbc_M116_771428
crossref_primary_10_1016_j_placenta_2016_09_004
crossref_primary_10_1007_s00125_016_4074_5
crossref_primary_10_1016_j_intimp_2014_08_002
crossref_primary_10_1096_fj_202200037R
crossref_primary_10_1139_apnm_2021_0284
crossref_primary_10_1172_JCI63930
crossref_primary_10_1002_jcp_31008
crossref_primary_10_20900_immunometab20200022
crossref_primary_10_1016_j_coph_2013_05_011
crossref_primary_10_14814_phy2_13019
crossref_primary_10_3390_ijms241210237
crossref_primary_10_1016_j_bbamcr_2023_119626
crossref_primary_10_1007_s00125_018_4777_x
crossref_primary_10_1111_sji_12747
crossref_primary_10_1159_000327347
crossref_primary_10_4239_wjd_v16_i9_110515
crossref_primary_10_3390_ijms22031359
crossref_primary_10_1172_JCI57132
crossref_primary_10_1016_j_trsl_2014_05_008
crossref_primary_10_1038_s41598_024_51906_x
crossref_primary_10_1586_14789450_2014_903158
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/ajpendo.00329.2010
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1555
ExternalDocumentID 20841504
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK080327
– fundername: NCATS NIH HHS
  grantid: UL1 TR001998
– fundername: NCRR NIH HHS
  grantid: P20 RR021954
– fundername: NIA NIH HHS
  grantid: R01 AG020941
– fundername: NIDDK NIH HHS
  grantid: R01 DK071349
– fundername: NIDDK NIH HHS
  grantid: DK-80327
– fundername: NIDDK NIH HHS
  grantid: DK-39176
– fundername: NIA NIH HHS
  grantid: AG-20941
– fundername: NIDDK NIH HHS
  grantid: DK-71349
– fundername: NCRR NIH HHS
  grantid: RR-14288
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
6J9
8M5
ABJNI
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
C1A
CGR
CUY
CVF
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
NPM
OK1
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
W8F
WH7
WOQ
XSW
YSK
7X8
ID FETCH-LOGICAL-c428t-8f06e83288e14c38192147baed1e380db3e61c09d700cc7b6beed5523be6b0c72
IEDL.DBID 7X8
ISICitedReferencesCount 346
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285710400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1522-1555
IngestDate Fri Jul 11 13:27:36 EDT 2025
Mon Jul 21 06:01:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-8f06e83288e14c38192147baed1e380db3e61c09d700cc7b6beed5523be6b0c72
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3006260
PMID 20841504
PQID 815551544
PQPubID 23479
ParticipantIDs proquest_miscellaneous_815551544
pubmed_primary_20841504
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of physiology: endocrinology and metabolism
PublicationTitleAlternate Am J Physiol Endocrinol Metab
PublicationYear 2010
SSID ssj0007542
Score 2.5047717
Snippet Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage E1016
SubjectTerms Adipose Tissue - metabolism
Adipose Tissue - pathology
Adult
Cell Line
Cells, Cultured
Coculture Techniques
Collagen Type VI - genetics
Collagen Type VI - metabolism
Cytokines - genetics
Cytokines - metabolism
Female
Fibrosis - genetics
Fibrosis - metabolism
Fibrosis - pathology
Fluorescent Antibody Technique
Glucose Intolerance - genetics
Glucose Intolerance - metabolism
Glucose Intolerance - pathology
Humans
Inflammation - genetics
Inflammation - metabolism
Inflammation - pathology
Insulin - genetics
Insulin - metabolism
Insulin Resistance - physiology
Macrophages - metabolism
Macrophages - pathology
Male
Middle Aged
Obesity - genetics
Obesity - metabolism
Obesity - pathology
Reverse Transcriptase Polymerase Chain Reaction
Title Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation
URI https://www.ncbi.nlm.nih.gov/pubmed/20841504
https://www.proquest.com/docview/815551544
Volume 299
WOSCitedRecordID wos000285710400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBZtXUIufTjPJilzKL1to31KOhUTapKDjQ9t8W3RyzQBa52sU8h_yI_OjHbtnkIOvSzsQSCk0Wgen76PsS_o4awwRiWaiwwTlLRIlOEusSk3WittXNmJTYjpVM7natZjc9oeVrnxidFRu8ZSjfxc4sVXEnXM99VtQqJR1FztFTRes0GOkQydSzH_RxZO4q6RLhXzLRq9eTNTZuf6hhRmm29o05mKAK_nI8x404zf_-ccP7B3fYgJo84mPrJXPgzZ3ihger18gK8QQZ-xmj5kO5O-t77HHkfuetW0HtZxL2CpSd3rD_qbFq4D9KD1BNNzCjnDGtp7Q0WcFvSdB91vs3dApV2I9oXGCb-vQAcHC0zLGxwZf5xfUlhKLBUQ2_Uh0o8DPbLoSsT77Nf4x8-Ly6TXakgsJjDrRC545dE7SOnTwnY0a4Uw2rvU55I7k_sqtVw5wblF66gMXs4lZsHGV4ZbkR2wN6EJ_ogBAXOMyIzSVV6UKleykjp1XnuxcGUhjhlsVr_Gs0ANDh18c9_W2_U_ZofdDtarjrOjzrjEUIUXn14efMJ2sy1m5ZQNFugH_Bl7a__i-t99jjaG3-ls8gQHdt96
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adipose+tissue+macrophages+in+insulin-resistant+subjects+are+associated+with+collagen+VI+and+fibrosis+and+demonstrate+alternative+activation&rft.jtitle=American+journal+of+physiology%3A+endocrinology+and+metabolism&rft.au=Spencer%2C+Michael&rft.au=Yao-Borengasser%2C+Aiwei&rft.au=Unal%2C+Resat&rft.au=Rasouli%2C+Neda&rft.date=2010-12-01&rft.issn=1522-1555&rft.eissn=1522-1555&rft.volume=299&rft.issue=6&rft.spage=E1016&rft_id=info:doi/10.1152%2Fajpendo.00329.2010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-1555&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-1555&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-1555&client=summon