L1-norm vs. L2-norm fitting in optimizing focal multi-channel tES stimulation: linear and semidefinite programming vs. weighted least squares

•Comparative results using L1-norm regularized L1-norm fitting (L1L1) against L1-norm regularized L2-norm fitting (L1L2) and Tikhonov’s regularized least-squares (TLS) methods for the calculations.•Examination of state-of-the-art 8 and 20 active electrode channel montage for Multi-Channel Transcrani...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods and programs in biomedicine Ročník 226; s. 107084
Hlavní autoři: Galaz Prieto, Fernando, Rezaei, Atena, Samavaki, Maryam, Pursiainen, Sampsa
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2022
Témata:
ISSN:0169-2607, 1872-7565, 1872-7565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Comparative results using L1-norm regularized L1-norm fitting (L1L1) against L1-norm regularized L2-norm fitting (L1L2) and Tikhonov’s regularized least-squares (TLS) methods for the calculations.•Examination of state-of-the-art 8 and 20 active electrode channel montage for Multi-Channel Transcranial Electrical Stimulation (MC-TES) exercise, i.e., applying more than two electrodes during brain stimulation session.•Analysis of reconstructions, electric fields, current distribution and montage using different number of active electrodes available and applied through a two-stage metaheuristic-based constraints on different regions of the brain. Background and Objective: This study focuses on Multi-Channel Transcranial Electrical Stimulation, a non-invasive brain method for stimulating neuronal activity under the influence of low-intensity currents. We introduce a mathematical formulation for finding a current pattern that optimizes an L1-norm fit between a given focal target distribution and volumetric current density inside the brain. L1-norm is well-known to favor well-localized or sparse distributions compared to L2-norm (least-squares) fitted estimates. Methods: We present a linear programming approach that performs L1-norm fitting and penalization of the current pattern (L1L1) to control the number of non-zero currents. The optimizer filters a large set of candidate solutions using a two-stage metaheuristic search from a pre-filtered set of candidates. Results: The numerical simulation results obtained with both 8- and 20-channel electrode montages suggest that our hypothesis on the benefits of L1-norm data fitting is valid. Compared to an L1-norm regularized L2-norm fitting (L1L2) via semidefinite programming and weighted Tikhonov least-squares method (TLS), the L1L1 results were overall preferable for maximizing the focused current density at the target position, and the ratio between focused and nuisance current magnitudes. Conclusions: We propose the metaheuristic L1L1 optimization approach as a potential technique to obtain a well-localized stimulus with a controllable magnitude at a given target position. L1L1 finds a current pattern with a steep contrast between the anodal and cathodal electrodes while suppressing the nuisance currents in the brain, hence, providing a potential alternative to modulate the effects of the stimulation, e.g., the sensation experienced by the subject.
AbstractList •Comparative results using L1-norm regularized L1-norm fitting (L1L1) against L1-norm regularized L2-norm fitting (L1L2) and Tikhonov’s regularized least-squares (TLS) methods for the calculations.•Examination of state-of-the-art 8 and 20 active electrode channel montage for Multi-Channel Transcranial Electrical Stimulation (MC-TES) exercise, i.e., applying more than two electrodes during brain stimulation session.•Analysis of reconstructions, electric fields, current distribution and montage using different number of active electrodes available and applied through a two-stage metaheuristic-based constraints on different regions of the brain. Background and Objective: This study focuses on Multi-Channel Transcranial Electrical Stimulation, a non-invasive brain method for stimulating neuronal activity under the influence of low-intensity currents. We introduce a mathematical formulation for finding a current pattern that optimizes an L1-norm fit between a given focal target distribution and volumetric current density inside the brain. L1-norm is well-known to favor well-localized or sparse distributions compared to L2-norm (least-squares) fitted estimates. Methods: We present a linear programming approach that performs L1-norm fitting and penalization of the current pattern (L1L1) to control the number of non-zero currents. The optimizer filters a large set of candidate solutions using a two-stage metaheuristic search from a pre-filtered set of candidates. Results: The numerical simulation results obtained with both 8- and 20-channel electrode montages suggest that our hypothesis on the benefits of L1-norm data fitting is valid. Compared to an L1-norm regularized L2-norm fitting (L1L2) via semidefinite programming and weighted Tikhonov least-squares method (TLS), the L1L1 results were overall preferable for maximizing the focused current density at the target position, and the ratio between focused and nuisance current magnitudes. Conclusions: We propose the metaheuristic L1L1 optimization approach as a potential technique to obtain a well-localized stimulus with a controllable magnitude at a given target position. L1L1 finds a current pattern with a steep contrast between the anodal and cathodal electrodes while suppressing the nuisance currents in the brain, hence, providing a potential alternative to modulate the effects of the stimulation, e.g., the sensation experienced by the subject.
This study focuses on Multi-Channel Transcranial Electrical Stimulation, a non-invasive brain method for stimulating neuronal activity under the influence of low-intensity currents. We introduce a mathematical formulation for finding a current pattern that optimizes an L1-norm fit between a given focal target distribution and volumetric current density inside the brain. L1-norm is well-known to favor well-localized or sparse distributions compared to L2-norm (least-squares) fitted estimates.BACKGROUND AND OBJECTIVEThis study focuses on Multi-Channel Transcranial Electrical Stimulation, a non-invasive brain method for stimulating neuronal activity under the influence of low-intensity currents. We introduce a mathematical formulation for finding a current pattern that optimizes an L1-norm fit between a given focal target distribution and volumetric current density inside the brain. L1-norm is well-known to favor well-localized or sparse distributions compared to L2-norm (least-squares) fitted estimates.We present a linear programming approach that performs L1-norm fitting and penalization of the current pattern (L1L1) to control the number of non-zero currents. The optimizer filters a large set of candidate solutions using a two-stage metaheuristic search from a pre-filtered set of candidates.METHODSWe present a linear programming approach that performs L1-norm fitting and penalization of the current pattern (L1L1) to control the number of non-zero currents. The optimizer filters a large set of candidate solutions using a two-stage metaheuristic search from a pre-filtered set of candidates.The numerical simulation results obtained with both 8- and 20-channel electrode montages suggest that our hypothesis on the benefits of L1-norm data fitting is valid. Compared to an L1-norm regularized L2-norm fitting (L1L2) via semidefinite programming and weighted Tikhonov least-squares method (TLS), the L1L1 results were overall preferable for maximizing the focused current density at the target position, and the ratio between focused and nuisance current magnitudes.RESULTSThe numerical simulation results obtained with both 8- and 20-channel electrode montages suggest that our hypothesis on the benefits of L1-norm data fitting is valid. Compared to an L1-norm regularized L2-norm fitting (L1L2) via semidefinite programming and weighted Tikhonov least-squares method (TLS), the L1L1 results were overall preferable for maximizing the focused current density at the target position, and the ratio between focused and nuisance current magnitudes.We propose the metaheuristic L1L1 optimization approach as a potential technique to obtain a well-localized stimulus with a controllable magnitude at a given target position. L1L1 finds a current pattern with a steep contrast between the anodal and cathodal electrodes while suppressing the nuisance currents in the brain, hence, providing a potential alternative to modulate the effects of the stimulation, e.g., the sensation experienced by the subject.CONCLUSIONSWe propose the metaheuristic L1L1 optimization approach as a potential technique to obtain a well-localized stimulus with a controllable magnitude at a given target position. L1L1 finds a current pattern with a steep contrast between the anodal and cathodal electrodes while suppressing the nuisance currents in the brain, hence, providing a potential alternative to modulate the effects of the stimulation, e.g., the sensation experienced by the subject.
ArticleNumber 107084
Author Rezaei, Atena
Pursiainen, Sampsa
Samavaki, Maryam
Galaz Prieto, Fernando
Author_xml – sequence: 1
  givenname: Fernando
  surname: Galaz Prieto
  fullname: Galaz Prieto, Fernando
  email: fernando.galazprieto@tuni.fi
– sequence: 2
  givenname: Atena
  surname: Rezaei
  fullname: Rezaei, Atena
– sequence: 3
  givenname: Maryam
  surname: Samavaki
  fullname: Samavaki, Maryam
– sequence: 4
  givenname: Sampsa
  surname: Pursiainen
  fullname: Pursiainen, Sampsa
BookMark eNqFkc9uFSEUh4mpibfVF3DF0s3cAvMHpnFjmlpNbuJCXRMuc-b2XBm4BaamvoPvLOO46qKu4JDfd4DvnJMzHzwQ8pazLWe8uzxu7XTabwUTohxIppoXZMOVFJVsu_aMbEqor0TH5CtyntKRMSbattuQ3zte-RAn-pC2dCfW_Yg5oz9Q9DScMk74a6nGYI2j0-wyVvbOeA-O5puvNJXE7EzG4K-oQw8mUuMHmmDCAUb0mIGeYjhEM01Lo-Wqn4CHuwwDdWBSpul-NhHSa_JyNC7Bm3_rBfn-8ebb9adq9-X28_WHXWUboXKl-B54PRjLe1OrZmjsXrJWjdYyw4zgjYC-FHJgwoq2r20va6mg6SUMFsy-viDv1r7lWfczpKwnTBacMx7CnLSQvKlVr-quRMUatTGkFGHUp4iTiY-aM72410e9uNeLe726L5B6AlnMfw3laNA9j75fUSj_f0CIOlkEb2HACDbrIeDz-NUT3JaRYJncD3j8H_wHL2q3uw
CitedBy_id crossref_primary_10_1109_TBME_2024_3509539
crossref_primary_10_3390_jcm13113084
crossref_primary_10_1109_TIM_2024_3383498
crossref_primary_10_3389_fnhum_2024_1201574
crossref_primary_10_1016_j_bspc_2023_105695
Cites_doi 10.3390/e23081030
10.1002/hbm.21114
10.1016/j.neuroimage.2017.05.059
10.1016/j.drugalcdep.2007.06.011
10.1088/1741-2560/8/4/046011
10.1137/15M1026481
10.1016/j.brs.2011.10.001
10.1007/s10548-013-0313-y
10.1192/bjp.186.5.446
10.1016/j.neuroimage.2021.118726
10.1111/j.1399-5618.2006.00291.x
10.1016/j.expneurol.2009.03.038
10.1016/j.neuroimage.2006.09.024
10.1002/bem.10036
10.1016/j.neuroimage.2008.09.009
10.1007/s10107-002-0347-5
10.1016/j.brs.2010.11.001
10.1088/0031-9155/57/4/999
10.1109/10.554766
10.1002/mds.21012
10.1002/art.22195
10.1136/jnnp.2009.202556
10.1136/jnnp.2005.069849
10.1007/s00221-003-1459-8
10.1016/j.neuroimage.2015.02.003
10.1016/0014-4886(62)90056-0
10.1111/j.1469-7793.2000.t01-1-00633.x
10.4249/scholarpedia.6532
10.1016/j.brs.2019.07.027
10.1016/j.neuroimage.2018.08.054
10.1016/j.jad.2006.10.026
10.1016/j.clinph.2021.10.016
10.1212/WNL.0b013e318202013a
10.1016/j.brs.2018.12.571
10.1113/jphysiol.2002.027094
10.3389/fnhum.2013.00279
10.1016/j.neuroimage.2019.116403
10.3389/fpsyt.2012.00083
10.1109/TNSRE.2017.2748930
10.1111/j.1528-1167.2006.00426.x
10.1016/j.jns.2006.05.062
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOI 10.1016/j.cmpb.2022.107084
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 10_1016_j_cmpb_2022_107084
S0169260722004655
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c428t-81be13dac19a384d4cb7058fcc0a0a2142e9fcc7d02c2593c97378e497edceab3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000865439300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-2607
1872-7565
IngestDate Sat Sep 27 22:03:20 EDT 2025
Sat Nov 29 07:22:20 EST 2025
Tue Nov 18 22:08:41 EST 2025
Fri Feb 23 02:38:06 EST 2024
Tue Oct 14 19:31:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Linear programming
Semidefinite programming
Transcranial electrical stimulation (tES)
Metaheuristics
Non-Invasive brain stimulation
Least squares
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-81be13dac19a384d4cb7058fcc0a0a2142e9fcc7d02c2593c97378e497edceab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.cmpb.2022.107084
PQID 2714389836
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2714389836
crossref_primary_10_1016_j_cmpb_2022_107084
crossref_citationtrail_10_1016_j_cmpb_2022_107084
elsevier_sciencedirect_doi_10_1016_j_cmpb_2022_107084
elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_107084
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Computer methods and programs in biomedicine
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Antal, Kincses, Nitsche, Paulus (bib0020) 2003; 150
Jurcak, Tsuzuki, Dan (bib0048) 2007; 34
Kaipio, Somersalo (bib0026) 2006; vol. 160
Roy, Boroda, Waldron, Lim, Henry (bib0040) 2019; 12
Wagner, Burger, Wolters (bib0024) 2016; 76
Glover, Sörensen (bib0039) 2015; 10
Pursiainen, Lucka, Wolters (bib0032) 2012; 57
Peterchev, Wagner, Miranda, Nitsche, Paulus, Lisanby, Pascual-Leone, Bikson (bib0004) 2012; 5
Fregni, Boggio, Santos, Lima, Vieira, Rigonatti, Silva, Barbosa, Nitsche, Pascual-Leone (bib0015) 2006; 21
Miinalainen, Rezaei, Us, Nüßing, Engwer, Wolters, Pursiainen (bib0031) 2019; 184
Benninger, Lomarev, Lopez, Wassermann, Li, Considine, Hallett (bib0013) 2010; 81
Järvenpää (bib0050) 2020
Boggio, Bermpohl, Vergara, Muniz, Nahas, Leme, Rigonatti, Fregni (bib0016) 2007; 101
Boggio, Sultani, Fecteau, Merabet, Mecca, Pascual-Leone, Basaglia, Fregni (bib0021) 2008; 92
Khadka, Borges, Paneri, Kaufman, Nassis, Zannou, Shin, Choi, Kim, Lee, Bikson (bib0006) 2020; 13
Dannhauer, Lanfer, Wolters, Knösche (bib0047) 2011; 32
Khan, Antonakakis, Vogenauer, Haueisen, Wolters (bib0025) 2022; 134
Nitsche, Paulus (bib0003) 2000; 527
Fregni, Boggio, Nitsche, Pascual-Leone (bib0005) 2005; 186
Murakami, Okada (bib0035) 2015; 111
Kowalski, Silny, Buchner (bib0034) 2002; 23
Nitsche, Boggio, Fregni, Pascual-Leone (bib0018) 2009; 219
Montes-Restrepo, Van Mierlo, Strobbe, Staelens, Vandenberghe, Hallez (bib0046) 2014; 27
Rullmann, Anwander, Dannhauer, Warfield, Duffy, Wolters (bib0045) 2009; 44
Fregni, Boggio, Nitsche, Marcolin, Rigonatti, Pascual-Leone (bib0017) 2006; 8
Boyd, Vandenberghe (bib0037) 2004
Boggio, Ferrucci, Rigonatti, Covre, Nitsche, Pascual-Leone, Fregni (bib0012) 2006; 249
Fernandez-Corazza, Turovets, Muravchik (bib0002) 2020; 209
Grant, Boyd, Ye (bib0028) 2009
Fregni, Thome-Souza, Nitsche, Freedman, Valente, Pascual-Leone (bib0011) 2006; 47
Pursiainen, Agsten, Wagner, Wolters (bib0033) 2017; 26
Bertero, Boccacci (bib0027) 2020
Creutzfeldt, Fromm, Kapp (bib0043) 1962; 5
Fregni, Simon, Wu, Pascual-Leone (bib0014) 2005; 76
Datta, Baker, Bikson, Fridriksson (bib0008) 2011; 4
Rezaei, Lahtinen, Neugebauer, Antonakakis, Piastra, Koulouri, Wolters, Pursiainen (bib0030) 2021; 245
Malmivuo, Suihko, Eskola (bib0044) 1997; 44
Neuling, Wagner, Wolters, Zaehle, Herrmann (bib0009) 2012; 3
Lindenberg, Renga, Zhu, Nair, Schlaug (bib0010) 2010; 75
Dmochowski, Koessler, Norcia, Bikson, Parra (bib0023) 2017; 157
Tost, Migliorelli, Bachiller, Medina-Rivera, Romero, García-Cazorla, Mañanas (bib0041) 2021; 23
Herrmann, Rach, Neuling, Strüber (bib0001) 2013; 7
Fregni, Gimenes, Valle, Ferreira, Rocha, Natalle, Bravo, Rigonatti, Freedman, Nitsche, Pascual-Leone, Boggio (bib0019) 2006; 54
Moreno-Duarte, Gebodh, Schestatsky, Guleyupoglu, Reato, Bikson, Fregni (bib0007) 2014
Brodmann (bib0042) 2007
Dmochowski, Datta, Bikson, Su, Parra (bib0022) 2011; 8
Murakami, Zhang, Hirose, Okada (bib0036) 2002; 544
He, Rezaei, Pursiainen (bib0029) 2019
Tütüncü, Toh, Todd (bib0038) 2003; 95
Sauer (bib0049) 2018
Dmochowski (10.1016/j.cmpb.2022.107084_bib0022) 2011; 8
Lindenberg (10.1016/j.cmpb.2022.107084_bib0010) 2010; 75
Jurcak (10.1016/j.cmpb.2022.107084_bib0048) 2007; 34
Roy (10.1016/j.cmpb.2022.107084_bib0040) 2019; 12
Fregni (10.1016/j.cmpb.2022.107084_bib0015) 2006; 21
Bertero (10.1016/j.cmpb.2022.107084_bib0027) 2020
Miinalainen (10.1016/j.cmpb.2022.107084_bib0031) 2019; 184
Khadka (10.1016/j.cmpb.2022.107084_bib0006) 2020; 13
Rezaei (10.1016/j.cmpb.2022.107084_bib0030) 2021; 245
Peterchev (10.1016/j.cmpb.2022.107084_bib0004) 2012; 5
Murakami (10.1016/j.cmpb.2022.107084_bib0036) 2002; 544
He (10.1016/j.cmpb.2022.107084_bib0029) 2019
Fregni (10.1016/j.cmpb.2022.107084_bib0005) 2005; 186
Malmivuo (10.1016/j.cmpb.2022.107084_bib0044) 1997; 44
Brodmann (10.1016/j.cmpb.2022.107084_bib0042) 2007
Murakami (10.1016/j.cmpb.2022.107084_bib0035) 2015; 111
Creutzfeldt (10.1016/j.cmpb.2022.107084_bib0043) 1962; 5
Montes-Restrepo (10.1016/j.cmpb.2022.107084_bib0046) 2014; 27
Neuling (10.1016/j.cmpb.2022.107084_bib0009) 2012; 3
Moreno-Duarte (10.1016/j.cmpb.2022.107084_bib0007) 2014
Datta (10.1016/j.cmpb.2022.107084_bib0008) 2011; 4
Khan (10.1016/j.cmpb.2022.107084_bib0025) 2022; 134
Pursiainen (10.1016/j.cmpb.2022.107084_bib0033) 2017; 26
Boyd (10.1016/j.cmpb.2022.107084_sbref0037) 2004
Antal (10.1016/j.cmpb.2022.107084_bib0020) 2003; 150
Boggio (10.1016/j.cmpb.2022.107084_bib0016) 2007; 101
Fregni (10.1016/j.cmpb.2022.107084_bib0011) 2006; 47
Fregni (10.1016/j.cmpb.2022.107084_bib0019) 2006; 54
Grant (10.1016/j.cmpb.2022.107084_bib0028) 2009
Rullmann (10.1016/j.cmpb.2022.107084_bib0045) 2009; 44
Dannhauer (10.1016/j.cmpb.2022.107084_bib0047) 2011; 32
Fregni (10.1016/j.cmpb.2022.107084_bib0014) 2005; 76
Tost (10.1016/j.cmpb.2022.107084_bib0041) 2021; 23
Fernandez-Corazza (10.1016/j.cmpb.2022.107084_bib0002) 2020; 209
Benninger (10.1016/j.cmpb.2022.107084_bib0013) 2010; 81
Nitsche (10.1016/j.cmpb.2022.107084_bib0003) 2000; 527
Pursiainen (10.1016/j.cmpb.2022.107084_bib0032) 2012; 57
Boggio (10.1016/j.cmpb.2022.107084_sbref0012) 2006; 249
Järvenpää (10.1016/j.cmpb.2022.107084_bib0050) 2020
Sauer (10.1016/j.cmpb.2022.107084_sbref0049) 2018
Tütüncü (10.1016/j.cmpb.2022.107084_bib0038) 2003; 95
Kaipio (10.1016/j.cmpb.2022.107084_bib0026) 2006; vol. 160
Boggio (10.1016/j.cmpb.2022.107084_bib0021) 2008; 92
Wagner (10.1016/j.cmpb.2022.107084_bib0024) 2016; 76
Kowalski (10.1016/j.cmpb.2022.107084_bib0034) 2002; 23
Fregni (10.1016/j.cmpb.2022.107084_bib0017) 2006; 8
Glover (10.1016/j.cmpb.2022.107084_bib0039) 2015; 10
Dmochowski (10.1016/j.cmpb.2022.107084_bib0023) 2017; 157
Herrmann (10.1016/j.cmpb.2022.107084_bib0001) 2013; 7
Nitsche (10.1016/j.cmpb.2022.107084_sbref0018) 2009; 219
References_xml – volume: 23
  start-page: 1030
  year: 2021
  ident: bib0041
  article-title: Choosing strategies to deal with artifactual EEG data in children with cognitive impairment
  publication-title: Entropy
– volume: 5
  start-page: 435
  year: 2012
  end-page: 453
  ident: bib0004
  article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices
  publication-title: Brain. Stimul.
– volume: 527
  start-page: 633
  year: 2000
  end-page: 639
  ident: bib0003
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J. Physiol.
– volume: 23
  start-page: 421
  year: 2002
  end-page: 428
  ident: bib0034
  article-title: Current density threshold for the stimulation of neurons in the motor cortex area
  publication-title: Bioelectromagnetics
– volume: 101
  start-page: 91
  year: 2007
  end-page: 98
  ident: bib0016
  article-title: Go-no-go task performance improvement after anodal transcranial DC stimulation of the left dorsolateral prefrontal cortex in major depression
  publication-title: J. Affect. Disord.
– volume: 54
  start-page: 3988
  year: 2006
  end-page: 3998
  ident: bib0019
  article-title: A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia
  publication-title: Arthritis Rheumatism
– volume: 92
  start-page: 55
  year: 2008
  end-page: 60
  ident: bib0021
  article-title: Prefrontal cortex modulation using transcranial dc stimulation reduces alcohol craving: a double-blind, sham-controlled study
  publication-title: Drug Alcohol. Depend.
– volume: 184
  start-page: 56
  year: 2019
  end-page: 67
  ident: bib0031
  article-title: A realistic, accurate and fast source modeling approach for the eeg forward problem
  publication-title: Neuroimage
– year: 2007
  ident: bib0042
  article-title: Brodmann’s: Localisation in the Cerebral Cortex
– volume: 26
  start-page: 37
  year: 2017
  end-page: 44
  ident: bib0033
  article-title: Advanced boundary electrode modeling for tES and parallel tES/EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 1
  year: 2019
  end-page: 14
  ident: bib0029
  article-title: Zeffiro user interface for electromagnetic brain imaging: a GPU accelerated FEM tool for forward and inverse computations in Matlab
  publication-title: Neuroinformatics
– volume: 21
  start-page: 1693
  year: 2006
  end-page: 1702
  ident: bib0015
  article-title: Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease
  publication-title: Movement Disorders
– volume: 10
  start-page: 6532
  year: 2015
  ident: bib0039
  article-title: Metaheuristics
  publication-title: Scholarpedia
– volume: 5
  start-page: 436
  year: 1962
  end-page: 452
  ident: bib0043
  article-title: Influence of transcortical dc currents on cortical neuronal activity
  publication-title: Exp. Neurol.
– volume: 157
  start-page: 69
  year: 2017
  end-page: 80
  ident: bib0023
  article-title: Optimal use of eeg recordings to target active brain areas with transcranial electrical stimulation
  publication-title: Neuroimage
– volume: 134
  start-page: 9
  year: 2022
  end-page: 26
  ident: bib0025
  article-title: Individually optimized multi-channel tDCS for targeting somatosensory cortex
  publication-title: Clin. Neurophysiol.
– volume: 219
  start-page: 14
  year: 2009
  end-page: 19
  ident: bib0018
  article-title: Treatment of depression with transcranial direct current stimulation (tDCS): a review
  publication-title: Exp. Neurol.
– volume: 34
  start-page: 1600
  year: 2007
  end-page: 1611
  ident: bib0048
  article-title: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems
  publication-title: Neuroimage
– volume: 186
  start-page: 446
  year: 2005
  end-page: 447
  ident: bib0005
  article-title: Transcranial direct current stimulation
  publication-title: Br. J. Psychiatry
– volume: 3
  start-page: 83
  year: 2012
  ident: bib0009
  article-title: Finite-element model predicts current density distribution for clinical applications of tDCS and tACS
  publication-title: Front. Psychiatry
– volume: 75
  start-page: 2176
  year: 2010
  end-page: 2184
  ident: bib0010
  article-title: Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients
  publication-title: Neurology
– year: 2020
  ident: bib0050
  publication-title: Optimization of deep brain stimulation of the anterior nucleus of thalamus for refractory epilepsy
– volume: 76
  start-page: 2154
  year: 2016
  end-page: 2174
  ident: bib0024
  article-title: An optimization approach for well-targeted transcranial direct current stimulation
  publication-title: SIAM J. Appl. Math.
– volume: 209
  start-page: 116403
  year: 2020
  ident: bib0002
  article-title: Unification of optimal targeting methods in transcranial electrical stimulation
  publication-title: Neuroimage
– volume: 150
  start-page: 375
  year: 2003
  end-page: 378
  ident: bib0020
  article-title: Manipulation of phosphene thresholds by transcranial direct current stimulation in man
  publication-title: Exp. Brain Res.
– volume: 111
  start-page: 49
  year: 2015
  end-page: 58
  ident: bib0035
  article-title: Invariance in current dipole moment density across brain structures and species: physiological constraint for neuroimaging
  publication-title: Neuroimage
– year: 2020
  ident: bib0027
  article-title: Introduction to Inverse Problems in Imaging
– volume: 95
  start-page: 189
  year: 2003
  end-page: 217
  ident: bib0038
  article-title: Solving semidefinite-quadratic-linear programs using SDPT3
  publication-title: Math. Program.
– volume: vol. 160
  year: 2006
  ident: bib0026
  article-title: Statistical and Computational Inverse Problems
– volume: 27
  start-page: 95
  year: 2014
  end-page: 111
  ident: bib0046
  article-title: Influence of skull modeling approaches on eeg source localization
  publication-title: Brain Topogr.
– volume: 8
  start-page: 046011
  year: 2011
  ident: bib0022
  article-title: Optimized multi-electrode stimulation increases focality and intensity at target
  publication-title: J. Neural Eng.
– volume: 13
  start-page: 69
  year: 2020
  end-page: 79
  ident: bib0006
  article-title: Adaptive current tDCS up to 4 mA
  publication-title: Brain Stimul.
– start-page: 35
  year: 2014
  end-page: 59
  ident: bib0007
  article-title: Chapter 2 - transcranial electrical stimulation: transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial pulsed current stimulation (tPCS), and transcranial random noise stimulation (tRNS)
  publication-title: The Stimulated Brain
– volume: 544
  start-page: 237
  year: 2002
  end-page: 251
  ident: bib0036
  article-title: Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea-pig CA3 hippocampal slices
  publication-title: J. Physiol.
– volume: 47
  start-page: 335
  year: 2006
  end-page: 342
  ident: bib0011
  article-title: A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy
  publication-title: Epilepsia
– volume: 44
  start-page: 196
  year: 1997
  end-page: 208
  ident: bib0044
  article-title: Sensitivity distributions of eeg and meg measurements
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 76
  start-page: 1614
  year: 2005
  end-page: 1623
  ident: bib0014
  article-title: Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 8
  start-page: 203
  year: 2006
  end-page: 204
  ident: bib0017
  article-title: Treatment of major depression with transcranial direct current stimulation
  publication-title: Bipolar Disord.
– volume: 44
  start-page: 399
  year: 2009
  end-page: 410
  ident: bib0045
  article-title: Eeg source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model
  publication-title: Neuroimage
– volume: 12
  start-page: 481
  year: 2019
  ident: bib0040
  article-title: Integration of prefrontal transcranial direct current stimulation with cognitive training for treatment of memory dysfunction in epilepsy
  publication-title: Brain Stimul.
– year: 2018
  ident: bib0049
  article-title: Numerical Analysis
– volume: 81
  start-page: 1105
  year: 2010
  end-page: 1111
  ident: bib0013
  article-title: Transcranial direct current stimulation for the treatment of Parkinson’s disease
  publication-title: J. Neurol. Neurosur. Psychiatry
– start-page: 711
  year: 2009
  ident: bib0028
  article-title: Cvx users’ guide
  publication-title: Tech. Rep. Build
– volume: 57
  start-page: 999
  year: 2012
  end-page: 1017
  ident: bib0032
  article-title: Complete electrode model in EEG: relationship and differences to the point electrode model
  publication-title: Phys. Med. Biol.
– volume: 32
  start-page: 1383
  year: 2011
  end-page: 1399
  ident: bib0047
  article-title: Modeling of the human skull in EEG source analysis
  publication-title: Hum. Brain Mapp.
– volume: 245
  start-page: 118726
  year: 2021
  ident: bib0030
  article-title: Reconstructing subcortical and cortical somatosensory activity via the RAMUS inverse source analysis technique using median nerve SEP data
  publication-title: Neuroimage
– volume: 249
  start-page: 31
  year: 2006
  end-page: 38
  ident: bib0012
  article-title: Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease
  publication-title: J. Neurol. Sci.
– year: 2004
  ident: bib0037
  article-title: Convex Optimization
– volume: 7
  start-page: 279
  year: 2013
  ident: bib0001
  article-title: Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes
  publication-title: Front. Hum. Neurosci.
– volume: 4
  start-page: 169
  year: 2011
  end-page: 174
  ident: bib0008
  article-title: Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient
  publication-title: Brain Stimul.
– volume: 23
  start-page: 1030
  issue: 8
  year: 2021
  ident: 10.1016/j.cmpb.2022.107084_bib0041
  article-title: Choosing strategies to deal with artifactual EEG data in children with cognitive impairment
  publication-title: Entropy
  doi: 10.3390/e23081030
– volume: 32
  start-page: 1383
  issue: 9
  year: 2011
  ident: 10.1016/j.cmpb.2022.107084_bib0047
  article-title: Modeling of the human skull in EEG source analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21114
– volume: 157
  start-page: 69
  year: 2017
  ident: 10.1016/j.cmpb.2022.107084_bib0023
  article-title: Optimal use of eeg recordings to target active brain areas with transcranial electrical stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.05.059
– start-page: 1
  year: 2019
  ident: 10.1016/j.cmpb.2022.107084_bib0029
  article-title: Zeffiro user interface for electromagnetic brain imaging: a GPU accelerated FEM tool for forward and inverse computations in Matlab
  publication-title: Neuroinformatics
– volume: 92
  start-page: 55
  issue: 1
  year: 2008
  ident: 10.1016/j.cmpb.2022.107084_bib0021
  article-title: Prefrontal cortex modulation using transcranial dc stimulation reduces alcohol craving: a double-blind, sham-controlled study
  publication-title: Drug Alcohol. Depend.
  doi: 10.1016/j.drugalcdep.2007.06.011
– year: 2020
  ident: 10.1016/j.cmpb.2022.107084_bib0050
– start-page: 35
  year: 2014
  ident: 10.1016/j.cmpb.2022.107084_bib0007
  article-title: Chapter 2 - transcranial electrical stimulation: transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial pulsed current stimulation (tPCS), and transcranial random noise stimulation (tRNS)
– volume: 8
  start-page: 046011
  issue: 4
  year: 2011
  ident: 10.1016/j.cmpb.2022.107084_bib0022
  article-title: Optimized multi-electrode stimulation increases focality and intensity at target
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/4/046011
– volume: 76
  start-page: 2154
  issue: 6
  year: 2016
  ident: 10.1016/j.cmpb.2022.107084_bib0024
  article-title: An optimization approach for well-targeted transcranial direct current stimulation
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/15M1026481
– volume: 5
  start-page: 435
  issue: 4
  year: 2012
  ident: 10.1016/j.cmpb.2022.107084_bib0004
  article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices
  publication-title: Brain. Stimul.
  doi: 10.1016/j.brs.2011.10.001
– volume: 27
  start-page: 95
  year: 2014
  ident: 10.1016/j.cmpb.2022.107084_bib0046
  article-title: Influence of skull modeling approaches on eeg source localization
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-013-0313-y
– volume: 186
  start-page: 446
  issue: 5
  year: 2005
  ident: 10.1016/j.cmpb.2022.107084_bib0005
  article-title: Transcranial direct current stimulation
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.186.5.446
– volume: 245
  start-page: 118726
  year: 2021
  ident: 10.1016/j.cmpb.2022.107084_bib0030
  article-title: Reconstructing subcortical and cortical somatosensory activity via the RAMUS inverse source analysis technique using median nerve SEP data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118726
– volume: 8
  start-page: 203
  issue: 2
  year: 2006
  ident: 10.1016/j.cmpb.2022.107084_bib0017
  article-title: Treatment of major depression with transcranial direct current stimulation
  publication-title: Bipolar Disord.
  doi: 10.1111/j.1399-5618.2006.00291.x
– volume: 219
  start-page: 14
  issue: 1
  year: 2009
  ident: 10.1016/j.cmpb.2022.107084_sbref0018
  article-title: Treatment of depression with transcranial direct current stimulation (tDCS): a review
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2009.03.038
– volume: 34
  start-page: 1600
  issue: 4
  year: 2007
  ident: 10.1016/j.cmpb.2022.107084_bib0048
  article-title: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.024
– year: 2007
  ident: 10.1016/j.cmpb.2022.107084_bib0042
– year: 2004
  ident: 10.1016/j.cmpb.2022.107084_sbref0037
– year: 2018
  ident: 10.1016/j.cmpb.2022.107084_sbref0049
– volume: 23
  start-page: 421
  issue: 6
  year: 2002
  ident: 10.1016/j.cmpb.2022.107084_bib0034
  article-title: Current density threshold for the stimulation of neurons in the motor cortex area
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.10036
– volume: 44
  start-page: 399
  issue: 2
  year: 2009
  ident: 10.1016/j.cmpb.2022.107084_bib0045
  article-title: Eeg source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.09.009
– year: 2020
  ident: 10.1016/j.cmpb.2022.107084_bib0027
– volume: 95
  start-page: 189
  issue: 2
  year: 2003
  ident: 10.1016/j.cmpb.2022.107084_bib0038
  article-title: Solving semidefinite-quadratic-linear programs using SDPT3
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0347-5
– volume: 4
  start-page: 169
  issue: 3
  year: 2011
  ident: 10.1016/j.cmpb.2022.107084_bib0008
  article-title: Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2010.11.001
– volume: 57
  start-page: 999
  issue: 4
  year: 2012
  ident: 10.1016/j.cmpb.2022.107084_bib0032
  article-title: Complete electrode model in EEG: relationship and differences to the point electrode model
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/4/999
– start-page: 711
  year: 2009
  ident: 10.1016/j.cmpb.2022.107084_bib0028
  article-title: Cvx users’ guide
– volume: 44
  start-page: 196
  year: 1997
  ident: 10.1016/j.cmpb.2022.107084_bib0044
  article-title: Sensitivity distributions of eeg and meg measurements
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.554766
– volume: 21
  start-page: 1693
  issue: 10
  year: 2006
  ident: 10.1016/j.cmpb.2022.107084_bib0015
  article-title: Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease
  publication-title: Movement Disorders
  doi: 10.1002/mds.21012
– volume: 54
  start-page: 3988
  issue: 12
  year: 2006
  ident: 10.1016/j.cmpb.2022.107084_bib0019
  article-title: A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia
  publication-title: Arthritis Rheumatism
  doi: 10.1002/art.22195
– volume: 81
  start-page: 1105
  issue: 10
  year: 2010
  ident: 10.1016/j.cmpb.2022.107084_bib0013
  article-title: Transcranial direct current stimulation for the treatment of Parkinson’s disease
  publication-title: J. Neurol. Neurosur. Psychiatry
  doi: 10.1136/jnnp.2009.202556
– volume: 76
  start-page: 1614
  issue: 12
  year: 2005
  ident: 10.1016/j.cmpb.2022.107084_bib0014
  article-title: Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2005.069849
– volume: 150
  start-page: 375
  issue: 3
  year: 2003
  ident: 10.1016/j.cmpb.2022.107084_bib0020
  article-title: Manipulation of phosphene thresholds by transcranial direct current stimulation in man
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-003-1459-8
– volume: 111
  start-page: 49
  year: 2015
  ident: 10.1016/j.cmpb.2022.107084_bib0035
  article-title: Invariance in current dipole moment density across brain structures and species: physiological constraint for neuroimaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.003
– volume: 5
  start-page: 436
  issue: 6
  year: 1962
  ident: 10.1016/j.cmpb.2022.107084_bib0043
  article-title: Influence of transcortical dc currents on cortical neuronal activity
  publication-title: Exp. Neurol.
  doi: 10.1016/0014-4886(62)90056-0
– volume: 527
  start-page: 633
  issue: 3
  year: 2000
  ident: 10.1016/j.cmpb.2022.107084_bib0003
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– volume: vol. 160
  year: 2006
  ident: 10.1016/j.cmpb.2022.107084_bib0026
– volume: 10
  start-page: 6532
  issue: 4
  year: 2015
  ident: 10.1016/j.cmpb.2022.107084_bib0039
  article-title: Metaheuristics
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.6532
– volume: 13
  start-page: 69
  issue: 1
  year: 2020
  ident: 10.1016/j.cmpb.2022.107084_bib0006
  article-title: Adaptive current tDCS up to 4 mA
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.07.027
– volume: 184
  start-page: 56
  year: 2019
  ident: 10.1016/j.cmpb.2022.107084_bib0031
  article-title: A realistic, accurate and fast source modeling approach for the eeg forward problem
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.08.054
– volume: 101
  start-page: 91
  issue: 1
  year: 2007
  ident: 10.1016/j.cmpb.2022.107084_bib0016
  article-title: Go-no-go task performance improvement after anodal transcranial DC stimulation of the left dorsolateral prefrontal cortex in major depression
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2006.10.026
– volume: 134
  start-page: 9
  year: 2022
  ident: 10.1016/j.cmpb.2022.107084_bib0025
  article-title: Individually optimized multi-channel tDCS for targeting somatosensory cortex
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2021.10.016
– volume: 75
  start-page: 2176
  issue: 24
  year: 2010
  ident: 10.1016/j.cmpb.2022.107084_bib0010
  article-title: Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318202013a
– volume: 12
  start-page: 481
  issue: 2
  year: 2019
  ident: 10.1016/j.cmpb.2022.107084_bib0040
  article-title: Integration of prefrontal transcranial direct current stimulation with cognitive training for treatment of memory dysfunction in epilepsy
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.12.571
– volume: 544
  start-page: 237
  issue: 1
  year: 2002
  ident: 10.1016/j.cmpb.2022.107084_bib0036
  article-title: Physiological origins of evoked magnetic fields and extracellular field potentials produced by guinea-pig CA3 hippocampal slices
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2002.027094
– volume: 7
  start-page: 279
  year: 2013
  ident: 10.1016/j.cmpb.2022.107084_bib0001
  article-title: Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00279
– volume: 209
  start-page: 116403
  year: 2020
  ident: 10.1016/j.cmpb.2022.107084_bib0002
  article-title: Unification of optimal targeting methods in transcranial electrical stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116403
– volume: 3
  start-page: 83
  year: 2012
  ident: 10.1016/j.cmpb.2022.107084_bib0009
  article-title: Finite-element model predicts current density distribution for clinical applications of tDCS and tACS
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2012.00083
– volume: 26
  start-page: 37
  issue: 1
  year: 2017
  ident: 10.1016/j.cmpb.2022.107084_bib0033
  article-title: Advanced boundary electrode modeling for tES and parallel tES/EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2748930
– volume: 47
  start-page: 335
  issue: 2
  year: 2006
  ident: 10.1016/j.cmpb.2022.107084_bib0011
  article-title: A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2006.00426.x
– volume: 249
  start-page: 31
  issue: 1
  year: 2006
  ident: 10.1016/j.cmpb.2022.107084_sbref0012
  article-title: Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2006.05.062
SSID ssj0002556
Score 2.3873496
Snippet •Comparative results using L1-norm regularized L1-norm fitting (L1L1) against L1-norm regularized L2-norm fitting (L1L2) and Tikhonov’s regularized...
This study focuses on Multi-Channel Transcranial Electrical Stimulation, a non-invasive brain method for stimulating neuronal activity under the influence of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107084
SubjectTerms Least squares
Linear programming
Metaheuristics
Non-Invasive brain stimulation
Semidefinite programming
Transcranial electrical stimulation (tES)
Title L1-norm vs. L2-norm fitting in optimizing focal multi-channel tES stimulation: linear and semidefinite programming vs. weighted least squares
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722004655
https://dx.doi.org/10.1016/j.cmpb.2022.107084
https://www.proquest.com/docview/2714389836
Volume 226
WOSCitedRecordID wos000865439300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpOsZexq60uxQN9mYcfItl9S2M7EZbCu0gb-ZElsEldrI4ydr8h_23_aQdWbLjZLRbH_ZiHGMdiZzP0neOjs4h5H2QROAHktuyz8d2kEjHhlCC7SVMBVUBS1Ooik2ws7NoNOLnnc6v-izMasKKIrq-5rP_qmp8hspWR2fvoe5GKD7Ae1Q6XlHteP0nxZ-4doFE1FqVPevE0_dppsObMySHOEfk2VoHUCoFVSGFtjoAXMiJtRheWPjV56aql3IYKCIKOtSylHmWyDRTRLUO7cqVKNXZj8rLigR2ouoBWeX3pTrb1Ga_dQkJU7e6NFkKKjFVXK5OBrC12f8JJrC2ztGirwo-WcbxPW12iuQaZBWSMED63ywyF5DDCnRN7lOY30DeLALKPwLYg_b8Qj4roe37QLPZbXwfxh0achstMtaezz2vPSOjeevoInR_LBbab3HVE_ls3FPie5uXtzNz76yYTRxjHSJ3FSsZsZIRaxl7ZN9jfR51yf7gy3D0tWEHKuWbzjevR24OcumYw92R3EaWdmhDxYUun5DHxoihAw2-p6Qji2fk4anR3HPy02CQIiyowSA1GKRZQTcYpBUG6RYGKWKQtjB4TDUCKaqdthFIWwisuqoRSCsEUoPAF-Tbx-Hlh8-2qfthCzSGFzZaUtL1ExAuBz8KkkCMmdOPUiEccEDlCJQcf7DE8QRa777gzGeRDDhTIc0w9l-SbjEt5AGhjIf91HXSUEgRJOMgUrmPAGcgGXKWABwSt_6DY2GS4qvaLJP4dtUeEqtpM9MpYe5826_1FteHnXF5jhGEd7bqN60MFdYU96_t3tXQiHGdUJt_UMjpsow9hpZRxCM_fHWv8b8mjzZf3hvSXcyX8i15IFaLrJwfkT02io4Mxn8D9dHo-g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L1-norm+vs.+L2-norm+fitting+in+optimizing+focal+multi-channel+tES+stimulation%3A+linear+and+semidefinite+programming+vs.+weighted+least+squares&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Galaz+Prieto%2C+Fernando&rft.au=Rezaei%2C+Atena&rft.au=Samavaki%2C+Maryam&rft.au=Pursiainen%2C+Sampsa&rft.date=2022-11-01&rft.issn=0169-2607&rft.volume=226&rft.spage=107084&rft_id=info:doi/10.1016%2Fj.cmpb.2022.107084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2022_107084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon