A Simple Asymptotically F-Distributed Portmanteau Test for Diagnostic Checking of Time Series Models With Uncorrelated Innovations

We propose a simple asymptotically F-distributed portmanteau test for diagnostically checking whether the innovations in a parametric time series model are uncorrelated while allowing them to exhibit higher-order dependence of unknown forms. A transform of sample residual autocovariances removing th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of business & economic statistics Vol. 40; no. 2; pp. 505 - 521
Main Authors: Wang, Xuexin, Sun, Yixiao
Format: Journal Article
Language:English
Published: Alexandria Taylor & Francis 03.04.2022
Taylor & Francis Ltd
Subjects:
ISSN:0735-0015, 1537-2707
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We propose a simple asymptotically F-distributed portmanteau test for diagnostically checking whether the innovations in a parametric time series model are uncorrelated while allowing them to exhibit higher-order dependence of unknown forms. A transform of sample residual autocovariances removing the influence of parameter estimation uncertainty makes the test simple. Further, by employing the orthonormal series variance estimator, a special sample autocovariances estimator that is asymptotically invariant to parameter estimation uncertainty, we show that the proposed test statistic is asymptotically F-distributed under fixed-smoothing asymptotics. The asymptotic F-theory accounts for the estimation error of the variance estimator that the asymptotic chi-squared theory ignores. Moreover, an extensive Monte Carlo study demonstrates that the F-test has more accurate finite sample size than existing tests with virtually no power loss. An application to S&P 500 returns illustrates the merits of the proposed methodology.
AbstractList We propose a simple asymptotically F-distributed portmanteau test for diagnostically checking whether the innovations in a parametric time series model are uncorrelated while allowing them to exhibit higher-order dependence of unknown forms. A transform of sample residual autocovariances removing the influence of parameter estimation uncertainty makes the test simple. Further, by employing the orthonormal series variance estimator, a special sample autocovariances estimator that is asymptotically invariant to parameter estimation uncertainty, we show that the proposed test statistic is asymptotically F-distributed under fixed-smoothing asymptotics. The asymptotic F-theory accounts for the estimation error of the variance estimator that the asymptotic chi-squared theory ignores. Moreover, an extensive Monte Carlo study demonstrates that the F-test has more accurate finite sample size than existing tests with virtually no power loss. An application to S&P 500 returns illustrates the merits of the proposed methodology.
Author Wang, Xuexin
Sun, Yixiao
Author_xml – sequence: 1
  givenname: Xuexin
  surname: Wang
  fullname: Wang, Xuexin
  organization: MOE Key Laboratory of Econometrics, The Wang Yanan Institute for Studies in Economics, Department of Statistics, School of Economics, Fujian Key Lab of Statistics, Xiamen University
– sequence: 2
  givenname: Yixiao
  surname: Sun
  fullname: Sun, Yixiao
  organization: Department of Economics, UC San Diego
BookMark eNqFkE1PAyEURYnRxPrxE0xIXI8yTJlh4samfiYaTVrjklDmoSgDFaimW3-5M7ZuXCibl5Bz7oO7gzadd4DQQU6OcsLJMakKRkjOjiih3RUvKCNsAw1yVlQZrUi1iQY9k_XQNtqJ8YV0h7NygD5HeGLauQU8ist2nnwySlq7xBfZmYkpmNkiQYPvfUitdAnkAk8hJqx9wGdGPjkfOwOPn0G9GveEvcZT0wKeQDAQ8a1vwEb8aNIzfnDKhwBW9oHXzvl3mYx3cQ9taWkj7K_nLnq4OJ-Or7Kbu8vr8egmU0PKU1bVQ655MyuB5gB1yQBKonk91DMyU4oUlazLpqE1SD2UOfCeK5ucU0ZrxaDYRYer3Hnwb4vuE-LFL4LrVgrKSdFXWbKOOllRKvgYA2ihTPp-aArSWJET0ZPip3TRly7WpXc2-2XPg2llWP7rna4847pmW_nhg21Ekkvrgw7SKRNF8XfEF6cQnHQ
CitedBy_id crossref_primary_10_1016_j_jedc_2024_105032
crossref_primary_10_1007_s10260_023_00720_2
Cites_doi 10.1214/13-AOS1113
10.1111/1468-0262.00128
10.1016/j.jeconom.2013.10.001
10.1111/j.1467-9892.2007.00559.x
10.1093/biomet/65.2.297
10.1016/j.jeconom.2005.06.014
10.1016/j.jeconom.2019.02.003
10.1198/016214501753208726
10.1093/biomet/48.3-4.419
10.3982/ECTA11684
10.1111/rssb.12112
10.1016/S0304-405X(02)00128-9
10.1017/S0266466602183083
10.1108/S0731-905320140000033002
10.1111/jtsa.12520
10.2307/2297912
10.1111/j.1368-423X.2012.00390.x
10.1080/07350015.1989.10509739
10.1007/978-3-7908-2084-3_12
10.1080/01621459.1970.10481180
10.1080/01621459.2017.1380030
10.1080/01621459.2015.1050493
10.1017/S0266466605050085
10.1137/0117004
10.1017/S0266466600012780
10.1198/016214504000001510
10.1016/j.jeconom.2011.06.017
10.1080/07350015.2018.1506926
10.1111/j.0012-9682.2008.00822.x
10.1016/j.jeconom.2007.01.019
10.1198/jasa.2011.tm10226
10.1111/j.1467-9868.2009.00737.x
10.1109/PROC.1982.12433
ContentType Journal Article
Copyright 2020 American Statistical Association 2020
2020 American Statistical Association
Copyright_xml – notice: 2020 American Statistical Association 2020
– notice: 2020 American Statistical Association
DBID AAYXX
CITATION
DOI 10.1080/07350015.2020.1832505
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1537-2707
EndPage 521
ExternalDocumentID 10_1080_07350015_2020_1832505
1832505
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29K
30N
4.4
5GY
7WY
85S
8FL
AAENE
AAGDL
AAHIA
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABKVW
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYRZ
ABYWD
ABYYQ
ACGFO
ACGFS
ACHQT
ACMTB
ACNCT
ACTIO
ACTMH
ACVFL
ADCVX
ADGTB
ADMHG
ADXHL
AEISY
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHAJD
AHDZW
AHQJS
AIJEM
AIYEW
AKBRZ
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BKOMP
BLEHA
CCCUG
CS3
D-I
D0L
DGEBU
DKSSO
DU5
EBS
EBU
EOH
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
JST
K60
K6~
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UT5
UU3
WZA
YK4
YQT
ZCA
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c428t-7948f8db6e21ee965ee60f894fb0bcc037a96dd29eaf4a1e8e21e6d182529c5e3
IEDL.DBID TFW
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000592298500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0735-0015
IngestDate Sun Nov 09 07:35:12 EST 2025
Sat Nov 29 04:12:54 EST 2025
Tue Nov 18 21:35:39 EST 2025
Mon Oct 20 23:46:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-7948f8db6e21ee965ee60f894fb0bcc037a96dd29eaf4a1e8e21e6d182529c5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2803108065
PQPubID 3244
PageCount 17
ParticipantIDs informaworld_taylorfrancis_310_1080_07350015_2020_1832505
proquest_journals_2803108065
crossref_citationtrail_10_1080_07350015_2020_1832505
crossref_primary_10_1080_07350015_2020_1832505
PublicationCentury 2000
PublicationDate 2022-04-03
PublicationDateYYYYMMDD 2022-04-03
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-03
  day: 03
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of business & economic statistics
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Bilodeau M. (CIT0003) 1999
CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
Lazarus E. (CIT0013) 2016
CIT0033
CIT0014
CIT0036
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0019
CIT0021
CIT0001
CIT0023
CIT0022
Den Haan W. J. (CIT0006) 1997; 15
Mcleod A. I. (CIT0020) 1978; 40
Stoica P. (CIT0028) 2005
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0009
CIT0008
References_xml – ident: CIT0037
  doi: 10.1214/13-AOS1113
– volume-title: Working Paper, Department of Economics
  year: 2016
  ident: CIT0013
– ident: CIT0012
  doi: 10.1111/1468-0262.00128
– ident: CIT0031
  doi: 10.1016/j.jeconom.2013.10.001
– ident: CIT0011
  doi: 10.1111/j.1467-9892.2007.00559.x
– ident: CIT0016
  doi: 10.1093/biomet/65.2.297
– ident: CIT0009
  doi: 10.1016/j.jeconom.2005.06.014
– ident: CIT0015
  doi: 10.1016/j.jeconom.2019.02.003
– volume-title: Spectral Analysis of Signals
  year: 2005
  ident: CIT0028
– ident: CIT0017
  doi: 10.1198/016214501753208726
– ident: CIT0010
  doi: 10.1093/biomet/48.3-4.419
– volume-title: Theory of Multivariate Statistics
  year: 1999
  ident: CIT0003
– ident: CIT0032
  doi: 10.3982/ECTA11684
– ident: CIT0038
  doi: 10.1111/rssb.12112
– ident: CIT0024
  doi: 10.1016/S0304-405X(02)00128-9
– ident: CIT0018
  doi: 10.1017/S0266466602183083
– volume: 40
  start-page: 296
  year: 1978
  ident: CIT0020
  publication-title: Journal of Royal Statistical Society, Series B
– ident: CIT0033
  doi: 10.1108/S0731-905320140000033002
– ident: CIT0036
  doi: 10.1111/jtsa.12520
– ident: CIT0022
  doi: 10.2307/2297912
– ident: CIT0030
  doi: 10.1111/j.1368-423X.2012.00390.x
– ident: CIT0002
  doi: 10.1080/07350015.1989.10509739
– ident: CIT0007
  doi: 10.1007/978-3-7908-2084-3_12
– ident: CIT0004
  doi: 10.1080/01621459.1970.10481180
– ident: CIT0019
  doi: 10.1080/01621459.2017.1380030
– ident: CIT0026
  doi: 10.1080/01621459.2015.1050493
– ident: CIT0023
  doi: 10.1017/S0266466605050085
– ident: CIT0027
  doi: 10.1137/0117004
– ident: CIT0001
  doi: 10.1017/S0266466600012780
– ident: CIT0008
  doi: 10.1198/016214504000001510
– ident: CIT0029
  doi: 10.1016/j.jeconom.2011.06.017
– volume: 15
  start-page: 291
  volume-title: Handbook of Statistics
  year: 1997
  ident: CIT0006
– ident: CIT0014
  doi: 10.1080/07350015.2018.1506926
– ident: CIT0034
  doi: 10.1111/j.0012-9682.2008.00822.x
– ident: CIT0021
  doi: 10.1016/j.jeconom.2007.01.019
– ident: CIT0005
  doi: 10.1198/jasa.2011.tm10226
– ident: CIT0025
  doi: 10.1111/j.1467-9868.2009.00737.x
– ident: CIT0035
  doi: 10.1109/PROC.1982.12433
SSID ssj0000856
Score 2.3464239
Snippet We propose a simple asymptotically F-distributed portmanteau test for diagnostically checking whether the innovations in a parametric time series model are...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 505
SubjectTerms F-distribution
Fixed-smoothing asymptotics
Model diagnostics
Orthonormal series variance estimator
Parameter estimation uncertainty
Uncorrelated innovations
Title A Simple Asymptotically F-Distributed Portmanteau Test for Diagnostic Checking of Time Series Models With Uncorrelated Innovations
URI https://www.tandfonline.com/doi/abs/10.1080/07350015.2020.1832505
https://www.proquest.com/docview/2803108065
Volume 40
WOSCitedRecordID wos000592298500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000856
  issn: 0735-0015
  databaseCode: TFW
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-wwEA8iwtPD0-cHfj5y8BrdTTdpclzWt-jhieCK3kqaTlBYd8VWYa_vL3cmbVflIR70UmjphCadmWSGmd-PsUOlnZNglQBtnOhBkQgnUyW6riODDTlefSSbSM_Pzc2NvWiqCcumrJJi6FADRURfTcbt8rKtiDtGrVS012N0J_ER6qSKKKa49ZNpjobXr77YRP5WkhAk0vbwfDTKu93pHXbpf746bkDD1W_49DX2szl98n6tLr_YAkzW2Y-2OblcZyt_5zCueLdMR9EayXmD_evzyzvCEub9cnb_UE1jFnw840NxQui7RJwFBafS1Hv6Xe6Jj3AaHCfHT-qCPpTgg1vwlJ7n08Cp_4RTfg5KTqRs45Jf31W3_IrANWOXDQ54NudtLTfZ1fDPaHAqGgYH4TGsqQQauwmmyDXILoDVCkB3grE9VILc-06SOquLQlpwoee6YOg9XWDMo6T1CpIttjiZTmCbcVAmeDzddQJB_jtrvMy1wXjLpj51SbrDeu2fy3wDb04sG-Os26KgNmuf0dpnzdrvsKO52EON7_GZgH2rFlkVEyuhZkHJkk9k91sdyhpXUWZED0YiWu1-Yeg9tiypMYNqipJ9tlg9PsEBW_LPqCWPv6NRvACy8wey
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYQrQQ9tOWlUmjxgavbxBt77WNEGoGa5EIQ3CzHOxZIIUHsgsSVX96ZfQQihDjQy0q72rHW3vGMZzTzfYwdKu29BKsEaONFB7JEeJkq0fYtGW2c4DWUZBPpaGQuLuzzXhgqq6QYOlZAEaWtps1NyeimJO43qqUiZ4_hncRHqJSKYEw_KPS1hJ8_7p8_WWNTMriSiCCZpovntWGW_NMSeukLa126oP6X__HxX9nn-gDKu5XGbLAVmG2ytaY_Od9kn4YLJFe8W6fTaAXmvMUeu_z0iuCEeTd_uL4p5mUifPrA-6JHALzEnQUZp-rUa_pj_o6PcR4cZ8d7VU0fSvCjSwiUoefzyKkFhVOKDnJOvGzTnJ9fFZf8jPA1y0YbHPBkQd2ab7Oz_p_x0bGoSRxEwMimELjfTTTZRINsA1itAHQrGttBPZiE0EpSb3WWSQs-dnwbDL2nMwx7lLRBQbLDVmfzGXxjHJSJAQ94rUio_96aICfaYMhl05D6JN1lnebXuVAjnBPRxtS1GyDUeu0drb2r136X_VqI3VQQH28J2Od64YoytxIrIhSXvCG73yiRq61F7oghjES0-v6OoQ_Y2vF4OHCDk9HfPbYuqU-DSoySfbZa3N7BD_Yx3KPG3P4sd8g_Zv8L3A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbQhmB7GDCG6BjgB14NrVM79mO1LmICqkm02t4s1zlrk7q2WjKkvvKX7y4_CtM09QFeIiXKWbFzPt-d7r6PsU9Key_BKgHaeNGHPBFepkr0fFdGG6d4DRXZRDoamYsLe9ZUExZNWSXF0LEGiqhsNW3uZR7birgvqJWKznqM7iQ-Qp1UhGK6ja6zJiUfZ-d_jLGpCFxJRJBM28Tz2DD3jqd74KUPjHV1AmUv_sO3v2R7jfvJB7W-vGJPYL7PnrfdycU-2_2xxnHFux3yRWso59fs94D_vCIwYT4oVtfLclGlwWcrnokhwe8ScxbknGpTr-l_-Vs-xmlwnBwf1hV9KMGPLyFQfp4vIqcGFE4JOig4sbLNCn5-VV7yCaFrVm02OODpmri1OGCT7GR8_FU0FA4iYFxTCtztJpp8qkH2AKxWALobje2jFkxD6CaptzrPpQUf-74Hht7TOQY9StqgIHnDtuaLObxlHJSJAd27biTMf29NkFNtMOCyaUh9knZYv_1zLjT45kSzMXO9Fga1WXtHa--ate-wz2uxZQ3wsUnA_q0WrqwyK7GmQXHJBtmjVodcYysKR_xgJKLV4T8M_ZE9Oxtm7vvp6Ns7tiOpSYPqi5IjtlXe3MJ79jT8QoW5-VDtjzst-gqO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple+Asymptotically+F-Distributed+Portmanteau+Test+for+Diagnostic+Checking+of+Time+Series+Models+With+Uncorrelated+Innovations&rft.jtitle=Journal+of+business+%26+economic+statistics&rft.au=Wang%2C+Xuexin&rft.au=Sun%2C+Yixiao&rft.date=2022-04-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0735-0015&rft.eissn=1537-2707&rft.volume=40&rft.issue=2&rft.spage=505&rft.epage=521&rft_id=info:doi/10.1080%2F07350015.2020.1832505&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-0015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-0015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-0015&client=summon