Algorithms comparison on intraday index return prediction:evidence from China

We introduce the fading memory recursive least squares (FM-RLS) and rolling window ordinary least squares (RW-OLS) methods to predict CSI 300 intraday index return in Chinese stock market. Empirical results show that the performances are better than that of same sign method. The additional profit is...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied economics letters Ročník 28; číslo 12; s. 995 - 999
Hlavní autori: Li, Xiang, Yuan, Xianghui, Yuan, Jin, Xu, Hailun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Routledge 12.07.2021
Taylor & Francis LLC
Predmet:
ISSN:1350-4851, 1466-4291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We introduce the fading memory recursive least squares (FM-RLS) and rolling window ordinary least squares (RW-OLS) methods to predict CSI 300 intraday index return in Chinese stock market. Empirical results show that the performances are better than that of same sign method. The additional profit is mainly from two conflict signals, with one amplitude far greater than the other.
AbstractList We introduce the fading memory recursive least squares (FM-RLS) and rolling window ordinary least squares (RW-OLS) methods to predict CSI 300 intraday index return in Chinese stock market. Empirical results show that the performances are better than that of same sign method. The additional profit is mainly from two conflict signals, with one amplitude far greater than the other.
Author Yuan, Xianghui
Li, Xiang
Yuan, Jin
Xu, Hailun
Author_xml – sequence: 1
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Xianghui
  surname: Yuan
  fullname: Yuan, Xianghui
  email: xhyuan@mail.xjtu.edu.cn
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Jin
  orcidid: 0000-0001-6509-988X
  surname: Yuan
  fullname: Yuan, Jin
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Hailun
  surname: Xu
  fullname: Xu, Hailun
  organization: Xi'an Jiaotong University
BookMark eNqFkMtKAzEUhoNUsK0-gjDgemqSSaYZ3FiKNyh0o-uQycWmzCQ1map9FZ_Fd_IVzNC6caFw4BwO_38u3wgMnHcagHMEJwgyeIkKCgmjaIIhTq1plaI4AkNEyjInuEKDVCdN3otOwCjGNYSwZFU5BMtZ8-yD7VZtzKRvNyLY6F2WwrouCCV2qVD6PQu62waXbYJWVnbWu6_PD_1qlXZSZyb4NpuvrBOn4NiIJuqzQx6Dp9ubx_l9vljePcxni1wSzLq8lHVBJUJCQKYMNoSpsoYCIQw1ZTUlWkJUEUNZYYwgipnKaCQoYjWDFUbFGFzs526Cf9nq2PG1T_ellRxTAiEqWTFNKrpXyeBjDNrwTbCtCDuOIO_Z8R92vGfHD-yS7-qXT9pO9F8nJrb51329d1tnfGjFmw-N4p3YNT6YIJy0kRd_j_gGX0uLZQ
CitedBy_id crossref_primary_10_15240_tul_001_2021_4_008
crossref_primary_10_1016_j_jhydrol_2022_128394
crossref_primary_10_1016_j_physa_2022_127508
Cites_doi 10.1016/j.jeconom.2006.05.023
10.1093/rfs/hhm014
10.1002/for.2417
10.1109/LSP.2008.2001559
10.1016/j.frl.2019.04.002
10.1016/j.econmod.2018.08.009
10.1080/14697688.2019.1571682
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
8BJ
FQK
JBE
DOI 10.1080/13504851.2020.1791793
DatabaseName CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)

DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1466-4291
EndPage 999
ExternalDocumentID 10_1080_13504851_2020_1791793
1791793
Genre Research Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -~X
.7I
.QK
0BK
0R~
23M
2DF
3R3
4.4
5GY
5VS
8VB
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABJNI
ABLIJ
ABLJU
ABPEM
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACHQT
ACNCT
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
ADLRE
ADXPE
AECIN
AEFOU
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
COF
CQ1
CS3
DGFLZ
DKSSO
EBE
EBO
EBR
EBS
EBU
EMK
EOH
EPL
E~B
E~C
F5P
G-F
GTTXZ
H13
HF~
HZ~
H~9
IPNFZ
J.O
K1G
KYCEM
LJTGL
M4Z
NA5
NW~
O9-
OFU
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEK
TFH
TFL
TFW
TH9
TN5
TNTFI
TRJHH
TUROJ
UT5
UT9
VAE
WH7
ZL0
~01
~S~
AAYXX
CITATION
8BJ
FQK
JBE
ID FETCH-LOGICAL-c428t-6cb35c11aa08df2f48d6b0a1120e58b54ec0194f583ffa4d8f9fe1a518b809213
IEDL.DBID TFW
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000547684000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1350-4851
IngestDate Mon Nov 10 01:12:17 EST 2025
Sat Nov 29 06:28:58 EST 2025
Tue Nov 18 20:38:50 EST 2025
Mon Oct 20 23:48:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-6cb35c11aa08df2f48d6b0a1120e58b54ec0194f583ffa4d8f9fe1a518b809213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6509-988X
PQID 2540016837
PQPubID 46498
PageCount 5
ParticipantIDs crossref_primary_10_1080_13504851_2020_1791793
proquest_journals_2540016837
crossref_citationtrail_10_1080_13504851_2020_1791793
informaworld_taylorfrancis_310_1080_13504851_2020_1791793
PublicationCentury 2000
PublicationDate 2021-07-12
PublicationDateYYYYMMDD 2021-07-12
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Applied economics letters
PublicationYear 2021
Publisher Routledge
Taylor & Francis LLC
Publisher_xml – name: Routledge
– name: Taylor & Francis LLC
References cit0001
cit0010
Gao L. (cit0003) 2018; 129
Haykin S. O. (cit0004) 2008
Jung S. M. (cit0006) 2012; 49
cit0008
cit0009
cit0007
cit0005
cit0002
References_xml – ident: cit0002
  doi: 10.1016/j.jeconom.2006.05.023
– volume: 129
  start-page: 394
  issue: 2
  year: 2018
  ident: cit0003
  publication-title: Journal of Financial
– volume-title: Neural Networks and Learning Machines
  year: 2008
  ident: cit0004
– ident: cit0009
  doi: 10.1093/rfs/hhm014
– volume: 49
  start-page: 170
  year: 2012
  ident: cit0006
  publication-title: International Conference on Electronics Engineering and Informatics, ICEEI
– ident: cit0008
  doi: 10.1002/for.2417
– ident: cit0007
  doi: 10.1109/LSP.2008.2001559
– ident: cit0001
  doi: 10.1016/j.frl.2019.04.002
– ident: cit0010
  doi: 10.1016/j.econmod.2018.08.009
– ident: cit0005
  doi: 10.1080/14697688.2019.1571682
SSID ssj0006896
Score 2.2665634
Snippet We introduce the fading memory recursive least squares (FM-RLS) and rolling window ordinary least squares (RW-OLS) methods to predict CSI 300 intraday index...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 995
SubjectTerms Economic analysis
Economic theory
Economics
fading memory recursive least squares model
Indexes
Least squares model
predictability
Recursion
rolling window ordinary least squares model
same sign model
Securities markets
Stock exchanges
Title Algorithms comparison on intraday index return prediction:evidence from China
URI https://www.tandfonline.com/doi/abs/10.1080/13504851.2020.1791793
https://www.proquest.com/docview/2540016837
Volume 28
WOSCitedRecordID wos000547684000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1466-4291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006896
  issn: 1350-4851
  databaseCode: TFW
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSgMxEA5SBL34L1ar5OB1df-ymxyLWDxI9VC1tyXJJlqobdldBV_FZ_GdfAUz2WyxiPSgsKeFCctkMvNNduYbhE5N0sOSUCZeKtPUixOSetxEWi8UOQDgWKf2vuP-Ou336XDIbl01YenKKiGH1jVRhPXVcLi5KJuKuPMgIsbuCGR3oXmVMjAy44UNsoeivkHvYe6LE2ondIGEByJND89vqyxEpwXu0h--2gag3uY_fPoW2nDoE3drc9lGK2qyg9aa5uRyF910x4_TYlQ9PZdYzkcUYvOM4BY452_Y8iviQplYNcGzAn70wOZ-frwrN6EUQ88KtpO599Bd73JwceW5mQueNIlI5SVSREQGAec-zXWoY5onwucGlfmKUEFiJQ0ojDWhkdY8zqlmWgWcBFRQn4VBtI9ak-lEHSCcSylUxIQ2CDNOci18zRgngucqCqSSbRQ3us6kIySHuRjjLHC8pY22MtBW5rTVRmdzsVnNyLFMgH3fyKyyVyG6nluSRUtkO82uZ-5wl5nJqQEpm9T-8A9LH6H1EOpjgKQz7KBWVbyoY7QqX6tRWZxYM_4CIfTuXg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSgMxEA5ahXrxX6xWzcHr6v5lNzkWsVSs9VK1t5BkEy3UtmxXwVfxWXwnX8HMdre0iHhQ2NPChGUyyfzszPchdGqTHhb5KnJiFcdOGJHYEdbTOr5MIAAOTZzXO-7bcadDez02PwsDbZWQQ5spUER-V8PhhmJ02RJ37gXEGh6B9M63r2IGVraMVoCdDhKwbvNhdhtHNOfoAhEHZMopnp-WWfBPC-il327r3AU1N_7j4zfRehGA4sbUYrbQkh5uo2o5nzzZQbeNweMo7WdPzxOsZiyF2D59KAQn4g3nEIs41dZdDfE4hX89sL-fH--6ICnFMLaCc3LuXXTXvOxetJyCdsFRNhfJnEjJgCjPE8KlifFNSJNIusIGZq4mVJJQKxsXhobQwBgRJtQwoz1BPCqpy3wv2EOV4Wio9xFOlJI6YNLYIDOMEiNdw5ggUiQ68JRWNRSWyuaqwCQHaowB9wro0lJbHLTFC23V0NlMbDwF5fhNgM3vJM_yaoiZUpfw4BfZerntvDjfE27TagiWbXZ_8IelT1C11b1p8_ZV5_oQrfnQLgOYnX4dVbL0RR-hVfWa9SfpcW7TXy0Q8oE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JSgQxEA1uqBd3cTcHr629pTs5ijooyujB7Ray6sA4Dt2t4K_4Lf6Tv2CqJz0oIh4U-tRQoalUUq_SlfcQ2nFFD8tilQW5yvMgzUgeCJdpg1hqAMCpzevzjuuzvN2mt7fswncTlr6tEmpoOyCKqPdqWNx9bZuOuL0oIS7uCFR3sXuVMwiyUTTuoDOBwL5s3Qw344zWEl1gEoBNc4nnp2G-pKcv5KXfNus6A7Vm_-Hb59CMh594fxAv82jE9BbQVHM7uVxE5_vdu8eiU90_lFgNNQqxezpwDKzFC64JFnFhXLLq4X4Bf3pgdt_fXo2XKMVwaQXX0txL6Kp1dHlwHHjRhUC5SqQKMiUToqJIiJBqG9uU6kyGwsGy0BAqSWqUQ4WpJTSxVqSaWmZNJEhEJQ1ZHCXLaKz32DMrCGulpEmYtA5ippm2MrSMCSKFNkmkjFpFaeNrrjwjOQhjdHnkiUsbb3HwFvfeWkW7Q7P-gJLjNwP2eSJ5VZ-F2IFwCU9-sd1oZp371V1yV1QDVHa1_dofht5GkxeHLX520j5dR9Mx9MoAYWe8gcaq4slsogn1XHXKYquO6A9Zu_Ez
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithms+comparison+on+intraday+index+return+prediction%EF%BC%9Aevidence+from+China&rft.jtitle=Applied+economics+letters&rft.au=Li%2C+Xiang&rft.au=Xianghui+Yuan&rft.au=Yuan%2C+Jin&rft.au=Xu%2C+Hailun&rft.date=2021-07-12&rft.pub=Taylor+%26+Francis+LLC&rft.issn=1350-4851&rft.eissn=1466-4291&rft.volume=28&rft.issue=12&rft.spage=995&rft.epage=999&rft_id=info:doi/10.1080%2F13504851.2020.1791793&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4851&client=summon