A simple efficient method of nanofilm-on-bulk-substrate thermal conductivity measurement using Raman thermometry
•First Raman thermometric measurement of thermal conductivity of films on bulk substrate.•A simple efficient method: a dozen of films on quartz can be examined in one hour.•The method works for any film with thickness h > Λ (phonon-mean-free path).•For h < Λ, this method works when the in-plan...
Uloženo v:
| Vydáno v: | International journal of heat and mass transfer Ročník 123; s. 137 - 142 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.08.2018
Elsevier BV |
| Témata: | |
| ISSN: | 0017-9310, 1879-2189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •First Raman thermometric measurement of thermal conductivity of films on bulk substrate.•A simple efficient method: a dozen of films on quartz can be examined in one hour.•The method works for any film with thickness h > Λ (phonon-mean-free path).•For h < Λ, this method works when the in-plane diffusive phonon transport dominates.
In contrast to known Raman-thermometric measurements of thermal conductivity (k) of suspended Si nano-membranes, here we apply Raman thermometry for k measurement of mono- and nano-crystalline Si films on quartz, which is important for applications in thermoelectricity and nanoelectronics. Experimentally, we measure linear dependence of the laser-induced Raman band downshift, which is proportional to the moderate heating ΔT, on the laser power P. Then we convert the downshift to ΔT and determine the ratio ΔT/P. The actual power absorbed by the film is calculated theoretically and controlled experimentally by the reflection/transmission measurement. Then we calculate ΔTcalc/P for arbitrary film k assuming diffusive phonon transport (DPT). Film k is determined from the condition ΔT/P = ΔTcalc/P. We show that this method works well for films with thickness h > Λ, where Λ is phonon-mean-free path, even for low-k films like nano-crystalline Si and SiGe. For h < Λ, despite ballistic phonon transport contribution, this approach works when the in-plane DPT dominates, e.g. in Si films on quartz with h ≥ 60 nm. We also show that the influence of thermal boundary resistance on the determined k is negligible at this condition. The proposed method is simple and time efficient, as dozen of films can be examined in one hour. |
|---|---|
| AbstractList | In contrast to known Raman-thermometric measurements of thermal conductivity (k) of suspended Si nano-membranes, here we apply Raman thermometry for k measurement of mono- and nano-crystalline Si films on quartz, which is important for applications in thermoelectricity and nanoelectronics. Experimentally, we measure linear dependence of the laser-induced Raman band downshift, which is proportional to the moderate heating ΔT, on the laser power P. Then we convert the downshift to ΔT and determine the ratio ΔT/P. The actual power absorbed by the film is calculated theoretically and controlled experimentally by the reflection/transmission measurement. Then we calculate ΔTcalc/P for arbitrary film k assuming diffusive phonon transport (DPT). Film k is determined from the condition ΔT/P = ΔTcalc/P. We show that this method works well for films with thickness h > Λ, where Λ is phonon-mean-free path, even for low-k films like nano-crystalline Si and SiGe. For h < Λ, despite ballistic phonon transport contribution, this approach works when the in-plane DPT dominates, e.g. in Si films on quartz with h ≥ 60 nm. We also show that the influence of thermal boundary resistance on the determined k is negligible at this condition. The proposed method is simple and time efficient, as dozen of films can be examined in one hour. •First Raman thermometric measurement of thermal conductivity of films on bulk substrate.•A simple efficient method: a dozen of films on quartz can be examined in one hour.•The method works for any film with thickness h > Λ (phonon-mean-free path).•For h < Λ, this method works when the in-plane diffusive phonon transport dominates. In contrast to known Raman-thermometric measurements of thermal conductivity (k) of suspended Si nano-membranes, here we apply Raman thermometry for k measurement of mono- and nano-crystalline Si films on quartz, which is important for applications in thermoelectricity and nanoelectronics. Experimentally, we measure linear dependence of the laser-induced Raman band downshift, which is proportional to the moderate heating ΔT, on the laser power P. Then we convert the downshift to ΔT and determine the ratio ΔT/P. The actual power absorbed by the film is calculated theoretically and controlled experimentally by the reflection/transmission measurement. Then we calculate ΔTcalc/P for arbitrary film k assuming diffusive phonon transport (DPT). Film k is determined from the condition ΔT/P = ΔTcalc/P. We show that this method works well for films with thickness h > Λ, where Λ is phonon-mean-free path, even for low-k films like nano-crystalline Si and SiGe. For h < Λ, despite ballistic phonon transport contribution, this approach works when the in-plane DPT dominates, e.g. in Si films on quartz with h ≥ 60 nm. We also show that the influence of thermal boundary resistance on the determined k is negligible at this condition. The proposed method is simple and time efficient, as dozen of films can be examined in one hour. |
| Author | Uchida, Noriyuki Volkov, Alexey Tada, Tetsuya Utegulov, Zhandos N. Poborchii, Vladimir Geshev, Pavel I. Miyazaki, Yoshinobu |
| Author_xml | – sequence: 1 givenname: Vladimir surname: Poborchii fullname: Poborchii, Vladimir email: Vladimir.p@aist.go.jp organization: Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, AIST Central-5, Tsukuba 305-8565, Japan – sequence: 2 givenname: Noriyuki surname: Uchida fullname: Uchida, Noriyuki organization: Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, AIST Central-5, Tsukuba 305-8565, Japan – sequence: 3 givenname: Yoshinobu surname: Miyazaki fullname: Miyazaki, Yoshinobu organization: Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, AIST Central-5, Tsukuba 305-8565, Japan – sequence: 4 givenname: Tetsuya surname: Tada fullname: Tada, Tetsuya organization: Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, AIST Central-5, Tsukuba 305-8565, Japan – sequence: 5 givenname: Pavel I. surname: Geshev fullname: Geshev, Pavel I. organization: Institute of Thermophysics of the Russian Academy of Sciences, Lavrentyev Ave. 1, Russia – sequence: 6 givenname: Zhandos N. surname: Utegulov fullname: Utegulov, Zhandos N. organization: Department of Physics, School of Science and Technology, Nazarbayev University, 53 Kabanbai Batyr Ave., Astana 010000, Kazakhstan – sequence: 7 givenname: Alexey surname: Volkov fullname: Volkov, Alexey organization: Interdisciplinary Instrumentation Center, National Laboratory Astana, Nazarbayev University, 53 Kabanbai Batyr Ave., Astana 010000, Kazakhstan |
| BookMark | eNqVkU1PxCAQhonRxPXjPzTx4qUVaC1w0xg_Y2Ji9ExYOrjUFlagJvvvpVlPetETgXl5JvPMAdp13gFCpwRXBJP2rK9svwKVRhVjCspFA6GimPAK0wqzZgctCGeipISLXbTAmLBS1ATvo4MY-_mKm3aB1pdFtON6gAKMsdqCS8UIaeW7wpvCKeeNHcbSu3I5De9lnJZztwRFWkEY1VBo77pJJ_tp0yb_VHEKMM6UKVr3VjyrUblt2Gdu2ByhPaOGCMff5yF6vbl-uborH59u768uH0vdUJ7KVkBNMTet5uQcNyAYI6IBQtl5ftDADG0p0QZ3ZmlUTYlacsWAKsFVUzOoD9HJlrsO_mOCmGTvp-ByS0kxa4ngLRY5dbNN6eBjDGCktkkl612e0g6SYDnblr38bVvOtiWmMtvOoIsfoHWwowqb_yAetgjIWj5trsZ5Hxo6G0An2Xn7d9gX3hGwcg |
| CitedBy_id | crossref_primary_10_1063_5_0271003 crossref_primary_10_1063_5_0205455 crossref_primary_10_1063_5_0206189 crossref_primary_10_1016_j_matpr_2019_11_333 crossref_primary_10_1063_1_5125415 crossref_primary_10_1051_e3sconf_202336504016 crossref_primary_10_1364_AO_57_007910 crossref_primary_10_1016_j_jnucmat_2024_155543 crossref_primary_10_3390_nano11092379 |
| Cites_doi | 10.1063/1.3583603 10.1016/j.ijheatmasstransfer.2015.09.068 10.1038/nature06458 10.1063/1.4754513 10.1021/nn102915x 10.1021/nl1045395 10.1016/S0017-9310(02)00304-6 10.1038/nature06381 10.1063/1.3532848 10.1063/1.4710993 10.1063/1.123994 10.1016/j.jallcom.2012.12.088 10.1021/nl0731872 10.1063/1.4757598 10.1063/1.4823814 10.1088/0268-1242/29/12/124005 10.1063/1.1616981 10.1038/s41467-017-00115-4 10.1063/1.4867166 10.1063/1.3615709 10.1063/1.4965302 10.1063/1.2829864 10.1021/nn1012429 10.1021/acs.nanolett.5b00708 10.1063/1.4918623 10.1021/nl9041966 10.1063/1.4832615 10.1364/OE.23.010040 10.1016/j.applthermaleng.2017.11.033 10.1103/PhysRevB.58.1544 10.1063/1.1904157 10.1103/PhysRevB.80.073306 10.1103/PhysRevB.91.115308 10.1063/1.2149497 10.1021/nl101671r 10.1063/1.4861796 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Aug 2018 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2018 |
| DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatmasstransfer.2018.02.074 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1879-2189 |
| EndPage | 142 |
| ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2018_02_074 S001793101734560X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGCQF AGRNS FR3 H8D KR7 L7M SSH |
| ID | FETCH-LOGICAL-c428t-69e3208f6c81504e977194e1275815ce7f2621cf0dfbfa321ab8a7e2a98a437e3 |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434887000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-9310 |
| IngestDate | Fri Jul 25 05:50:40 EDT 2025 Sat Nov 29 07:00:06 EST 2025 Tue Nov 18 22:36:37 EST 2025 Fri Feb 23 02:50:24 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c428t-69e3208f6c81504e977194e1275815ce7f2621cf0dfbfa321ab8a7e2a98a437e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S001793101734560X?via%3Dihub |
| PQID | 2076198609 |
| PQPubID | 2045464 |
| PageCount | 6 |
| ParticipantIDs | proquest_journals_2076198609 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_02_074 crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_074 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_02_074 |
| PublicationCentury | 2000 |
| PublicationDate | August 2018 2018-08-00 20180801 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | International journal of heat and mass transfer |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Chen, Moore, Cai, Suk, An, Mishra, Amos, Magnuson, Kang, Shi, Ruoff (b0090) 2010; 5 Tian, Esfarjani, Shiomi, Henry, Chen (b0015) 2011; 99 Boukai, Bunimovich, Tahir-Kheli, Yu, Goddard, Heath (b0010) 2008; 451 Doerk, Carraro, Maboudian (b0060) 2009; 80 Li, Wu, Kim, Shi, Yang, Majumdar (b0005) 2003; 83 Beechem, Yates, Graham (b0180) 2015; 86 Liu, Asheghi (b0175) 2005; 98 Hochbaum, Chen, Delgado, Liang, Garnett, Najarian, Majumdar, Yang (b0030) 2008; 451 Xu, Wang, Hurley, Yue, Wang (b0135) 2015; 23 Cahill, Braun, Chen, Clarke, Fan, Goodson, Keblinski, King, Mahan, Majumdar, Maris, Phillpot, Pop, Shi (b0045) 2014; 1 Stoib, Filser, Stötzel, Greppmair, Petermann, Wiggers, Schierning, Stutzmann, Brandt (b0070) 2014; 29 Liu, Wu, Renc (b0100) 2011; 98 Jeong, Datta, Lundstrom (b0170) 2012; 111 Brockmann, Dickmann, Geshev, Matthes (b0160) 2003; 46 Soini, Zardo, Uccelli, Funk, Koblmüller, Fontcuberta i Morral, Abstreiter (b0125) 2010; 97 Hsu, Kumar, Bushmaker, Cronin, Pettes, Shi, Brintlinger, Fuhrer, Cumings (b0120) 2008; 92 Jaramillo-Fernandez, Chavez-Angel, Sotomayor-Torres (b0075) 2018; 130 Hua, Cao (b0150) 2016; 92 Wang, Alaniz, Jang, Garay, Dames (b0185) 2011; 11 Graczykowski, El Sachat, Reparaz, Sledzinska, Wagner, Chavez-Angel, Wu, Volz, Wu, Alzina, Sotomayor Torres (b0110) 2017; 8 Doerk, Carraro, Maboudian (b0115) 2010; 4 Novikov, Burkov, Schumann (b0050) 2013; 557 Poborchii, Tada, Morita, Migita, Kanayama, Geshev (b0145) 2012; 112 Poborchii, Tada, Kanayama (b0065) 2005; 97 Balandin, Ghosh, Bao, Calizo, Teweldebrhan, Miao, Lau (b0085) 2008; 8 Zushi, Ohmori, Yamada, Watanabe (b0040) 2015; 91 Chávez-Ángel, Reparaz, Gomis-Bresco, Wagner, Cuffe, Graczykowski, Shchepetov, Jiang, Prunnila, Ahopelto, Alzina, Sotomayor Torres (b0080) 2014; 2 Poborchii, Morita, Hattori, Tada, Geshev (b0130) 2016; 120 Uchida, Tada, Ohishi, Miyazaki, Kurosaki, Yamanaka (b0055) 2013; 114 Mukherjee, Givan, Senz, Bergeron, Francoeur, de la Mata, Arbiol, Sekiguchi, Itoh, Isheim, Seidman, Moutanabbir (b0035) 2015; 15 Cai, Moore, Zhu, Li, Chen, Shi, Ruoff (b0095) 2010; 10 Landau, Lifshitz (b0140) 1984 Ju, Goodson (b0165) 1999; 74 Balandin, Wang (b0020) 1998; 58 Reparaz, Chavez-Angel, Wagner, Graczykowski, Gomis-Bresco, Alzina, Sotomayor Torres (b0105) 2014; 85 Hippalgaonkar, Huang, Chen, Sawyer, Ercius, Majumdar (b0025) 2010; 10 Chen, Zhang, Li (b0155) 2012; 112 Ju (10.1016/j.ijheatmasstransfer.2018.02.074_b0165) 1999; 74 Chen (10.1016/j.ijheatmasstransfer.2018.02.074_b0090) 2010; 5 Brockmann (10.1016/j.ijheatmasstransfer.2018.02.074_b0160) 2003; 46 Tian (10.1016/j.ijheatmasstransfer.2018.02.074_b0015) 2011; 99 Uchida (10.1016/j.ijheatmasstransfer.2018.02.074_b0055) 2013; 114 Landau (10.1016/j.ijheatmasstransfer.2018.02.074_b0140) 1984 Hua (10.1016/j.ijheatmasstransfer.2018.02.074_b0150) 2016; 92 Cahill (10.1016/j.ijheatmasstransfer.2018.02.074_b0045) 2014; 1 Mukherjee (10.1016/j.ijheatmasstransfer.2018.02.074_b0035) 2015; 15 Novikov (10.1016/j.ijheatmasstransfer.2018.02.074_b0050) 2013; 557 Chávez-Ángel (10.1016/j.ijheatmasstransfer.2018.02.074_b0080) 2014; 2 Balandin (10.1016/j.ijheatmasstransfer.2018.02.074_b0085) 2008; 8 Poborchii (10.1016/j.ijheatmasstransfer.2018.02.074_b0130) 2016; 120 Balandin (10.1016/j.ijheatmasstransfer.2018.02.074_b0020) 1998; 58 Xu (10.1016/j.ijheatmasstransfer.2018.02.074_b0135) 2015; 23 Chen (10.1016/j.ijheatmasstransfer.2018.02.074_b0155) 2012; 112 Liu (10.1016/j.ijheatmasstransfer.2018.02.074_b0100) 2011; 98 Doerk (10.1016/j.ijheatmasstransfer.2018.02.074_b0115) 2010; 4 Li (10.1016/j.ijheatmasstransfer.2018.02.074_b0005) 2003; 83 Graczykowski (10.1016/j.ijheatmasstransfer.2018.02.074_b0110) 2017; 8 Boukai (10.1016/j.ijheatmasstransfer.2018.02.074_b0010) 2008; 451 Cai (10.1016/j.ijheatmasstransfer.2018.02.074_b0095) 2010; 10 Soini (10.1016/j.ijheatmasstransfer.2018.02.074_b0125) 2010; 97 Liu (10.1016/j.ijheatmasstransfer.2018.02.074_b0175) 2005; 98 Jeong (10.1016/j.ijheatmasstransfer.2018.02.074_b0170) 2012; 111 Wang (10.1016/j.ijheatmasstransfer.2018.02.074_b0185) 2011; 11 Hsu (10.1016/j.ijheatmasstransfer.2018.02.074_b0120) 2008; 92 Hochbaum (10.1016/j.ijheatmasstransfer.2018.02.074_b0030) 2008; 451 Zushi (10.1016/j.ijheatmasstransfer.2018.02.074_b0040) 2015; 91 Doerk (10.1016/j.ijheatmasstransfer.2018.02.074_b0060) 2009; 80 Poborchii (10.1016/j.ijheatmasstransfer.2018.02.074_b0065) 2005; 97 Reparaz (10.1016/j.ijheatmasstransfer.2018.02.074_b0105) 2014; 85 Hippalgaonkar (10.1016/j.ijheatmasstransfer.2018.02.074_b0025) 2010; 10 Jaramillo-Fernandez (10.1016/j.ijheatmasstransfer.2018.02.074_b0075) 2018; 130 Beechem (10.1016/j.ijheatmasstransfer.2018.02.074_b0180) 2015; 86 Stoib (10.1016/j.ijheatmasstransfer.2018.02.074_b0070) 2014; 29 Poborchii (10.1016/j.ijheatmasstransfer.2018.02.074_b0145) 2012; 112 |
| References_xml | – volume: 2 start-page: 012113 year: 2014 ident: b0080 article-title: Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry publication-title: APL Mater. – volume: 97 start-page: 263107 year: 2010 ident: b0125 article-title: Thermal conductivity of GaAs nanowires studied by micro-Raman spectroscopy combined with laser heating publication-title: Appl. Phys. Lett. – start-page: 273 year: 1984 ident: b0140 article-title: Electrodynamics of Continuous Media – volume: 5 start-page: 321 year: 2010 end-page: 328 ident: b0090 article-title: Raman measurement of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments publication-title: ACS Nano – volume: 557 start-page: 239 year: 2013 end-page: 243 ident: b0050 article-title: Enhancement of thermoelectric properties in nanocrystalline M-Si thin film composites (M = Cr, Mn) publication-title: J. Alloys Comp. – volume: 86 start-page: 041101 year: 2015 ident: b0180 article-title: Error and uncertainty in Raman thermal conductivity measurements publication-title: Rev. Sci. Instrum. – volume: 451 start-page: 168 year: 2008 end-page: 171 ident: b0010 article-title: Si nanowires as efficient thermoelectric materials publication-title: Nature – volume: 91 start-page: 115308 year: 2015 ident: b0040 article-title: Effect of a SiO publication-title: Phys. Rev. B – volume: 92 start-page: 063119 year: 2008 ident: b0120 article-title: Optical measurement of thermal transport in suspended carbon nanotubes publication-title: Appl. Phys. Lett. – volume: 8 start-page: 902 year: 2008 end-page: 907 ident: b0085 article-title: Superior thermal conductivity of single layer graphene publication-title: Nano Lett. – volume: 85 start-page: 034901 year: 2014 ident: b0105 article-title: A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry publication-title: Rev. Sci. Instrum. – volume: 120 start-page: 154304 year: 2016 ident: b0130 article-title: Corrugated Si nanowires with reduced thermal conductivity for wide-temperature-range thermoelectricity publication-title: J. Appl. Phys. – volume: 112 start-page: 064319 year: 2012 ident: b0155 article-title: Thermal contact resistance across nanoscale silicon dioxide and silicon interface publication-title: J. Appl. Phys. – volume: 4 start-page: 4908 year: 2010 end-page: 4914 ident: b0115 article-title: Single nanowire thermal conductivity measurements by Raman thermography publication-title: ACS Nano – volume: 83 start-page: 2934 year: 2003 end-page: 2936 ident: b0005 article-title: Thermal conductivity of individual silicon nanowires publication-title: Appl. Phys. Lett. – volume: 80 start-page: 073306 year: 2009 ident: b0060 article-title: Temperature dependence of Raman spectra for individual silicon nanowires publication-title: Phys Rev. B – volume: 10 start-page: 4341 year: 2010 end-page: 4348 ident: b0025 article-title: Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport publication-title: NANO Lett. – volume: 10 start-page: 1645 year: 2010 end-page: 1651 ident: b0095 article-title: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition publication-title: Nano Lett. – volume: 8 start-page: 415 year: 2017 ident: b0110 article-title: Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures publication-title: Nat. Commun. – volume: 112 start-page: 074317 year: 2012 ident: b0145 article-title: Enhancement of the ultraviolet absorption and Raman efficiencies of a few nanometer thick Si-on-insulator publication-title: J. Appl. Phys. – volume: 111 start-page: 093708 year: 2012 ident: b0170 article-title: Thermal conductivity of bulk and thin-film silicon: a Landauer approach publication-title: J. Appl. Phys – volume: 46 start-page: 717 year: 2003 end-page: 723 ident: b0160 article-title: Calculation of temperature field in a thin moving sheet heated with laser beam publication-title: Int. J. Heat Mass Transfer – volume: 98 start-page: 174104 year: 2011 ident: b0100 article-title: and noncontact measurement of silicon membrane thermal conductivity publication-title: Appl. Phys. Lett. – volume: 58 start-page: 1544 year: 1998 end-page: 1549 ident: b0020 article-title: Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well publication-title: Phys. Rev. B – volume: 114 start-page: 134311 year: 2013 ident: b0055 article-title: Heavily doped silicon and nickel silicide nanocrystal composite films with enhanced thermoelectric efficiency publication-title: J. Appl. Phys. – volume: 130 start-page: 1175 year: 2018 end-page: 1181 ident: b0075 article-title: Raman thermometry analysis: modelling assumptions Revisited publication-title: Appl. Therm. Eng. – volume: 92 start-page: 995 year: 2016 end-page: 1003 ident: b0150 article-title: The effective thermal conductivity of ballistic–diffusive heat conduction in nanostructures with internal heat source publication-title: Int. J. Heat Mass Transfer – volume: 74 start-page: 3005 year: 1999 end-page: 3007 ident: b0165 article-title: Phonon scattering in silicon films with thickness of order 100 nm publication-title: Appl. Phys. Lett. – volume: 98 start-page: 123523 year: 2005 ident: b0175 publication-title: J. Appl. Phys. – volume: 99 start-page: 053122 year: 2011 ident: b0015 article-title: On the importance of optical phonons to thermal conductivity in nanostructures publication-title: Appl. Phys. Lett. – volume: 29 start-page: 124005 year: 2014 ident: b0070 article-title: Spatially resolved determination of thermal conductivity by Raman spectroscopy publication-title: Semicond. Sci. Technol. – volume: 23 start-page: 10040 year: 2015 end-page: 10056 ident: b0135 article-title: Development of time-domain differential Raman for transient thermal probing of materials publication-title: Opt. Express – volume: 11 start-page: 2206 year: 2011 end-page: 2213 ident: b0185 article-title: Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths publication-title: NANO Lett. – volume: 15 start-page: 3885 year: 2015 end-page: 3893 ident: b0035 article-title: Phonon engineering in isotopically disordered silicon nanowires publication-title: NANO Lett. – volume: 1 start-page: 011305 year: 2014 ident: b0045 article-title: Nanoscale thermal transport II 2003–2012 publication-title: Appl. Phys. Rev. – volume: 451 start-page: 163 year: 2008 end-page: 167 ident: b0030 article-title: Enhanced thermoelectric performance of rough silicon nanowires publication-title: Nature – volume: 97 start-page: 104323 year: 2005 ident: b0065 article-title: Giant heating of Si nanoparticles by weak laser light: optical micro-spectroscopic study and application to particle modification publication-title: J. Appl. Phys. – volume: 98 start-page: 174104 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0100 article-title: In situ and noncontact measurement of silicon membrane thermal conductivity publication-title: Appl. Phys. Lett. doi: 10.1063/1.3583603 – volume: 92 start-page: 995 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0150 article-title: The effective thermal conductivity of ballistic–diffusive heat conduction in nanostructures with internal heat source publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.09.068 – volume: 451 start-page: 168 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0010 article-title: Si nanowires as efficient thermoelectric materials publication-title: Nature doi: 10.1038/nature06458 – volume: 112 start-page: 064319 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0155 article-title: Thermal contact resistance across nanoscale silicon dioxide and silicon interface publication-title: J. Appl. Phys. doi: 10.1063/1.4754513 – volume: 5 start-page: 321 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0090 article-title: Raman measurement of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments publication-title: ACS Nano doi: 10.1021/nn102915x – volume: 11 start-page: 2206 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0185 article-title: Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths publication-title: NANO Lett. doi: 10.1021/nl1045395 – volume: 46 start-page: 717 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0160 article-title: Calculation of temperature field in a thin moving sheet heated with laser beam publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(02)00304-6 – volume: 451 start-page: 163 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0030 article-title: Enhanced thermoelectric performance of rough silicon nanowires publication-title: Nature doi: 10.1038/nature06381 – volume: 97 start-page: 263107 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0125 article-title: Thermal conductivity of GaAs nanowires studied by micro-Raman spectroscopy combined with laser heating publication-title: Appl. Phys. Lett. doi: 10.1063/1.3532848 – volume: 111 start-page: 093708 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0170 article-title: Thermal conductivity of bulk and thin-film silicon: a Landauer approach publication-title: J. Appl. Phys doi: 10.1063/1.4710993 – volume: 74 start-page: 3005 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0165 article-title: Phonon scattering in silicon films with thickness of order 100 nm publication-title: Appl. Phys. Lett. doi: 10.1063/1.123994 – volume: 557 start-page: 239 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0050 article-title: Enhancement of thermoelectric properties in nanocrystalline M-Si thin film composites (M = Cr, Mn) publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2012.12.088 – volume: 8 start-page: 902 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0085 article-title: Superior thermal conductivity of single layer graphene publication-title: Nano Lett. doi: 10.1021/nl0731872 – start-page: 273 year: 1984 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0140 – volume: 112 start-page: 074317 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0145 article-title: Enhancement of the ultraviolet absorption and Raman efficiencies of a few nanometer thick Si-on-insulator publication-title: J. Appl. Phys. doi: 10.1063/1.4757598 – volume: 114 start-page: 134311 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0055 article-title: Heavily doped silicon and nickel silicide nanocrystal composite films with enhanced thermoelectric efficiency publication-title: J. Appl. Phys. doi: 10.1063/1.4823814 – volume: 29 start-page: 124005 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0070 article-title: Spatially resolved determination of thermal conductivity by Raman spectroscopy publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/29/12/124005 – volume: 83 start-page: 2934 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0005 article-title: Thermal conductivity of individual silicon nanowires publication-title: Appl. Phys. Lett. doi: 10.1063/1.1616981 – volume: 8 start-page: 415 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0110 article-title: Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures publication-title: Nat. Commun. doi: 10.1038/s41467-017-00115-4 – volume: 85 start-page: 034901 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0105 article-title: A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4867166 – volume: 99 start-page: 053122 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0015 article-title: On the importance of optical phonons to thermal conductivity in nanostructures publication-title: Appl. Phys. Lett. doi: 10.1063/1.3615709 – volume: 120 start-page: 154304 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0130 article-title: Corrugated Si nanowires with reduced thermal conductivity for wide-temperature-range thermoelectricity publication-title: J. Appl. Phys. doi: 10.1063/1.4965302 – volume: 92 start-page: 063119 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0120 article-title: Optical measurement of thermal transport in suspended carbon nanotubes publication-title: Appl. Phys. Lett. doi: 10.1063/1.2829864 – volume: 4 start-page: 4908 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0115 article-title: Single nanowire thermal conductivity measurements by Raman thermography publication-title: ACS Nano doi: 10.1021/nn1012429 – volume: 15 start-page: 3885 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0035 article-title: Phonon engineering in isotopically disordered silicon nanowires publication-title: NANO Lett. doi: 10.1021/acs.nanolett.5b00708 – volume: 86 start-page: 041101 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0180 article-title: Error and uncertainty in Raman thermal conductivity measurements publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4918623 – volume: 10 start-page: 1645 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0095 article-title: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition publication-title: Nano Lett. doi: 10.1021/nl9041966 – volume: 1 start-page: 011305 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0045 article-title: Nanoscale thermal transport II 2003–2012 publication-title: Appl. Phys. Rev. doi: 10.1063/1.4832615 – volume: 23 start-page: 10040 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0135 article-title: Development of time-domain differential Raman for transient thermal probing of materials publication-title: Opt. Express doi: 10.1364/OE.23.010040 – volume: 130 start-page: 1175 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0075 article-title: Raman thermometry analysis: modelling assumptions Revisited publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.11.033 – volume: 58 start-page: 1544 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0020 article-title: Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.1544 – volume: 97 start-page: 104323 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0065 article-title: Giant heating of Si nanoparticles by weak laser light: optical micro-spectroscopic study and application to particle modification publication-title: J. Appl. Phys. doi: 10.1063/1.1904157 – volume: 80 start-page: 073306 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0060 article-title: Temperature dependence of Raman spectra for individual silicon nanowires publication-title: Phys Rev. B doi: 10.1103/PhysRevB.80.073306 – volume: 91 start-page: 115308 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0040 article-title: Effect of a SiO2 layer on the thermal transport properties of (100) Si nanowires: a molecular dynamics study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.115308 – volume: 98 start-page: 123523 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0175 publication-title: J. Appl. Phys. doi: 10.1063/1.2149497 – volume: 10 start-page: 4341 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0025 article-title: Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport publication-title: NANO Lett. doi: 10.1021/nl101671r – volume: 2 start-page: 012113 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0080 article-title: Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry publication-title: APL Mater. doi: 10.1063/1.4861796 |
| SSID | ssj0017046 |
| Score | 2.3247511 |
| Snippet | •First Raman thermometric measurement of thermal conductivity of films on bulk substrate.•A simple efficient method: a dozen of films on quartz can be examined... In contrast to known Raman-thermometric measurements of thermal conductivity (k) of suspended Si nano-membranes, here we apply Raman thermometry for k... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 137 |
| SubjectTerms | Boundary layer Crystal structure Crystallinity Dependence Heat conductivity Heat transfer Laser beam heating Mathematical analysis Nanocrystals Nanoelectronics Polycrystals Quartz Silicon films Substrates Thermal conductivity Thermal resistance Thermometry Thickness Transport |
| Title | A simple efficient method of nanofilm-on-bulk-substrate thermal conductivity measurement using Raman thermometry |
| URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.02.074 https://www.proquest.com/docview/2076198609 |
| Volume | 123 |
| WOSCitedRecordID | wos000434887000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017046 issn: 0017-9310 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBogXxKcYDOQHhJCmoOajif2EqqkToKpMqK3KU-QkjkjXJmVpppU_k7-IO9tJU6ZN7IGXqLIbq_X9crk73_2OkLddX4IdgCeMHncsL457FvdcYSVgHjAWpU6kyKqnw2A0YrMZP-10fte1MBeLIM_Z5SVf_VdRwxgIG0tnbyHuZlEYgM8gdLiC2OH6T4LvH5UZUv5iqkamyh1Nm2iVsyFy7NG9tIrciqrFmVWC4lAEtWiBgpJGtpAcOWB1U4nlNoR4VKmwwjeBUX_15QLW3a2o3o0vtlgpUOWrc4olGOvYlwKs5W1e8GkBSIx_ZCqzYLoQSbbMmskJTCTCnDFlm-osa0CSbcQvoftufy8wllZE1TYUoW8ay3VZbUQ7umGzJrfOhNyasptpW4vDm5W7Jh1WasXNAm6BucJ3NLvjtnSzrdllrrwzdPhi_iGb417gNtS7gJl_TFG66k5Cu3Tdo6_hyWQ4DMeD2fjd6qeFnczwxN-0dblD9p2gx0HT7vc_D2ZfmrOtoKvLx-p_cZ-832Yd3vwjrjOe_jIjlG00fkQeGqeG9jUYH5OOzJ-Qeyq5OC6fklWfakjSBpJUQ5IWKb0ektRAkrYhSVuQpAqSVEGStiD5jExOBuPjT5bp9GHF4P6uLZ9L1-my1I8ZOCieBKfE5p7E5gMwEMsgdXzHjtNukkapcB1bREwE0hGcCc8NpPuc7OVFLl8QKnjSA68xiaSXIM2DSP3UxnQE7ieSx_yAfKy3MIwNDT52Y1mEdb7jPLwqhBCFEHadEIRwQHizwkpTwtzi3uNaaqExcbXpGgIab7HKYS3w0DzKJcxjRJL5Xf7y5ulX5MH2STske-vzSr4md-OLdVaevzFo_QOQGOGI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+efficient+method+of+nanofilm-on-bulk-substrate+thermal+conductivity+measurement+using+Raman+thermometry&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Poborchii%2C+Vladimir&rft.au=Uchida%2C+Noriyuki&rft.au=Miyazaki%2C+Yoshinobu&rft.au=Tada%2C+Tetsuya&rft.date=2018-08-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=123&rft.spage=137&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.02.074&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |