A simple efficient method of nanofilm-on-bulk-substrate thermal conductivity measurement using Raman thermometry

•First Raman thermometric measurement of thermal conductivity of films on bulk substrate.•A simple efficient method: a dozen of films on quartz can be examined in one hour.•The method works for any film with thickness h > Λ (phonon-mean-free path).•For h < Λ, this method works when the in-plan...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of heat and mass transfer Ročník 123; s. 137 - 142
Hlavní autoři: Poborchii, Vladimir, Uchida, Noriyuki, Miyazaki, Yoshinobu, Tada, Tetsuya, Geshev, Pavel I., Utegulov, Zhandos N., Volkov, Alexey
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.08.2018
Elsevier BV
Témata:
ISSN:0017-9310, 1879-2189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •First Raman thermometric measurement of thermal conductivity of films on bulk substrate.•A simple efficient method: a dozen of films on quartz can be examined in one hour.•The method works for any film with thickness h > Λ (phonon-mean-free path).•For h < Λ, this method works when the in-plane diffusive phonon transport dominates. In contrast to known Raman-thermometric measurements of thermal conductivity (k) of suspended Si nano-membranes, here we apply Raman thermometry for k measurement of mono- and nano-crystalline Si films on quartz, which is important for applications in thermoelectricity and nanoelectronics. Experimentally, we measure linear dependence of the laser-induced Raman band downshift, which is proportional to the moderate heating ΔT, on the laser power P. Then we convert the downshift to ΔT and determine the ratio ΔT/P. The actual power absorbed by the film is calculated theoretically and controlled experimentally by the reflection/transmission measurement. Then we calculate ΔTcalc/P for arbitrary film k assuming diffusive phonon transport (DPT). Film k is determined from the condition ΔT/P = ΔTcalc/P. We show that this method works well for films with thickness h > Λ, where Λ is phonon-mean-free path, even for low-k films like nano-crystalline Si and SiGe. For h < Λ, despite ballistic phonon transport contribution, this approach works when the in-plane DPT dominates, e.g. in Si films on quartz with h ≥ 60 nm. We also show that the influence of thermal boundary resistance on the determined k is negligible at this condition. The proposed method is simple and time efficient, as dozen of films can be examined in one hour.
AbstractList In contrast to known Raman-thermometric measurements of thermal conductivity (k) of suspended Si nano-membranes, here we apply Raman thermometry for k measurement of mono- and nano-crystalline Si films on quartz, which is important for applications in thermoelectricity and nanoelectronics. Experimentally, we measure linear dependence of the laser-induced Raman band downshift, which is proportional to the moderate heating ΔT, on the laser power P. Then we convert the downshift to ΔT and determine the ratio ΔT/P. The actual power absorbed by the film is calculated theoretically and controlled experimentally by the reflection/transmission measurement. Then we calculate ΔTcalc/P for arbitrary film k assuming diffusive phonon transport (DPT). Film k is determined from the condition ΔT/P = ΔTcalc/P. We show that this method works well for films with thickness h > Λ, where Λ is phonon-mean-free path, even for low-k films like nano-crystalline Si and SiGe. For h < Λ, despite ballistic phonon transport contribution, this approach works when the in-plane DPT dominates, e.g. in Si films on quartz with h ≥ 60 nm. We also show that the influence of thermal boundary resistance on the determined k is negligible at this condition. The proposed method is simple and time efficient, as dozen of films can be examined in one hour.
•First Raman thermometric measurement of thermal conductivity of films on bulk substrate.•A simple efficient method: a dozen of films on quartz can be examined in one hour.•The method works for any film with thickness h > Λ (phonon-mean-free path).•For h < Λ, this method works when the in-plane diffusive phonon transport dominates. In contrast to known Raman-thermometric measurements of thermal conductivity (k) of suspended Si nano-membranes, here we apply Raman thermometry for k measurement of mono- and nano-crystalline Si films on quartz, which is important for applications in thermoelectricity and nanoelectronics. Experimentally, we measure linear dependence of the laser-induced Raman band downshift, which is proportional to the moderate heating ΔT, on the laser power P. Then we convert the downshift to ΔT and determine the ratio ΔT/P. The actual power absorbed by the film is calculated theoretically and controlled experimentally by the reflection/transmission measurement. Then we calculate ΔTcalc/P for arbitrary film k assuming diffusive phonon transport (DPT). Film k is determined from the condition ΔT/P = ΔTcalc/P. We show that this method works well for films with thickness h > Λ, where Λ is phonon-mean-free path, even for low-k films like nano-crystalline Si and SiGe. For h < Λ, despite ballistic phonon transport contribution, this approach works when the in-plane DPT dominates, e.g. in Si films on quartz with h ≥ 60 nm. We also show that the influence of thermal boundary resistance on the determined k is negligible at this condition. The proposed method is simple and time efficient, as dozen of films can be examined in one hour.
Author Uchida, Noriyuki
Volkov, Alexey
Tada, Tetsuya
Utegulov, Zhandos N.
Poborchii, Vladimir
Geshev, Pavel I.
Miyazaki, Yoshinobu
Author_xml – sequence: 1
  givenname: Vladimir
  surname: Poborchii
  fullname: Poborchii, Vladimir
  email: Vladimir.p@aist.go.jp
  organization: Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, AIST Central-5, Tsukuba 305-8565, Japan
– sequence: 2
  givenname: Noriyuki
  surname: Uchida
  fullname: Uchida, Noriyuki
  organization: Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, AIST Central-5, Tsukuba 305-8565, Japan
– sequence: 3
  givenname: Yoshinobu
  surname: Miyazaki
  fullname: Miyazaki, Yoshinobu
  organization: Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, AIST Central-5, Tsukuba 305-8565, Japan
– sequence: 4
  givenname: Tetsuya
  surname: Tada
  fullname: Tada, Tetsuya
  organization: Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, AIST Central-5, Tsukuba 305-8565, Japan
– sequence: 5
  givenname: Pavel I.
  surname: Geshev
  fullname: Geshev, Pavel I.
  organization: Institute of Thermophysics of the Russian Academy of Sciences, Lavrentyev Ave. 1, Russia
– sequence: 6
  givenname: Zhandos N.
  surname: Utegulov
  fullname: Utegulov, Zhandos N.
  organization: Department of Physics, School of Science and Technology, Nazarbayev University, 53 Kabanbai Batyr Ave., Astana 010000, Kazakhstan
– sequence: 7
  givenname: Alexey
  surname: Volkov
  fullname: Volkov, Alexey
  organization: Interdisciplinary Instrumentation Center, National Laboratory Astana, Nazarbayev University, 53 Kabanbai Batyr Ave., Astana 010000, Kazakhstan
BookMark eNqVkU1PxCAQhonRxPXjPzTx4qUVaC1w0xg_Y2Ji9ExYOrjUFlagJvvvpVlPetETgXl5JvPMAdp13gFCpwRXBJP2rK9svwKVRhVjCspFA6GimPAK0wqzZgctCGeipISLXbTAmLBS1ATvo4MY-_mKm3aB1pdFtON6gAKMsdqCS8UIaeW7wpvCKeeNHcbSu3I5De9lnJZztwRFWkEY1VBo77pJJ_tp0yb_VHEKMM6UKVr3VjyrUblt2Gdu2ByhPaOGCMff5yF6vbl-uborH59u768uH0vdUJ7KVkBNMTet5uQcNyAYI6IBQtl5ftDADG0p0QZ3ZmlUTYlacsWAKsFVUzOoD9HJlrsO_mOCmGTvp-ByS0kxa4ngLRY5dbNN6eBjDGCktkkl612e0g6SYDnblr38bVvOtiWmMtvOoIsfoHWwowqb_yAetgjIWj5trsZ5Hxo6G0An2Xn7d9gX3hGwcg
CitedBy_id crossref_primary_10_1063_5_0271003
crossref_primary_10_1063_5_0205455
crossref_primary_10_1063_5_0206189
crossref_primary_10_1016_j_matpr_2019_11_333
crossref_primary_10_1063_1_5125415
crossref_primary_10_1051_e3sconf_202336504016
crossref_primary_10_1364_AO_57_007910
crossref_primary_10_1016_j_jnucmat_2024_155543
crossref_primary_10_3390_nano11092379
Cites_doi 10.1063/1.3583603
10.1016/j.ijheatmasstransfer.2015.09.068
10.1038/nature06458
10.1063/1.4754513
10.1021/nn102915x
10.1021/nl1045395
10.1016/S0017-9310(02)00304-6
10.1038/nature06381
10.1063/1.3532848
10.1063/1.4710993
10.1063/1.123994
10.1016/j.jallcom.2012.12.088
10.1021/nl0731872
10.1063/1.4757598
10.1063/1.4823814
10.1088/0268-1242/29/12/124005
10.1063/1.1616981
10.1038/s41467-017-00115-4
10.1063/1.4867166
10.1063/1.3615709
10.1063/1.4965302
10.1063/1.2829864
10.1021/nn1012429
10.1021/acs.nanolett.5b00708
10.1063/1.4918623
10.1021/nl9041966
10.1063/1.4832615
10.1364/OE.23.010040
10.1016/j.applthermaleng.2017.11.033
10.1103/PhysRevB.58.1544
10.1063/1.1904157
10.1103/PhysRevB.80.073306
10.1103/PhysRevB.91.115308
10.1063/1.2149497
10.1021/nl101671r
10.1063/1.4861796
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Aug 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2018
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2018.02.074
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 142
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2018_02_074
S001793101734560X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
H8D
KR7
L7M
SSH
ID FETCH-LOGICAL-c428t-69e3208f6c81504e977194e1275815ce7f2621cf0dfbfa321ab8a7e2a98a437e3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434887000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-9310
IngestDate Fri Jul 25 05:50:40 EDT 2025
Sat Nov 29 07:00:06 EST 2025
Tue Nov 18 22:36:37 EST 2025
Fri Feb 23 02:50:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-69e3208f6c81504e977194e1275815ce7f2621cf0dfbfa321ab8a7e2a98a437e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S001793101734560X?via%3Dihub
PQID 2076198609
PQPubID 2045464
PageCount 6
ParticipantIDs proquest_journals_2076198609
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2018_02_074
crossref_primary_10_1016_j_ijheatmasstransfer_2018_02_074
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2018_02_074
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chen, Moore, Cai, Suk, An, Mishra, Amos, Magnuson, Kang, Shi, Ruoff (b0090) 2010; 5
Tian, Esfarjani, Shiomi, Henry, Chen (b0015) 2011; 99
Boukai, Bunimovich, Tahir-Kheli, Yu, Goddard, Heath (b0010) 2008; 451
Doerk, Carraro, Maboudian (b0060) 2009; 80
Li, Wu, Kim, Shi, Yang, Majumdar (b0005) 2003; 83
Beechem, Yates, Graham (b0180) 2015; 86
Liu, Asheghi (b0175) 2005; 98
Hochbaum, Chen, Delgado, Liang, Garnett, Najarian, Majumdar, Yang (b0030) 2008; 451
Xu, Wang, Hurley, Yue, Wang (b0135) 2015; 23
Cahill, Braun, Chen, Clarke, Fan, Goodson, Keblinski, King, Mahan, Majumdar, Maris, Phillpot, Pop, Shi (b0045) 2014; 1
Stoib, Filser, Stötzel, Greppmair, Petermann, Wiggers, Schierning, Stutzmann, Brandt (b0070) 2014; 29
Liu, Wu, Renc (b0100) 2011; 98
Jeong, Datta, Lundstrom (b0170) 2012; 111
Brockmann, Dickmann, Geshev, Matthes (b0160) 2003; 46
Soini, Zardo, Uccelli, Funk, Koblmüller, Fontcuberta i Morral, Abstreiter (b0125) 2010; 97
Hsu, Kumar, Bushmaker, Cronin, Pettes, Shi, Brintlinger, Fuhrer, Cumings (b0120) 2008; 92
Jaramillo-Fernandez, Chavez-Angel, Sotomayor-Torres (b0075) 2018; 130
Hua, Cao (b0150) 2016; 92
Wang, Alaniz, Jang, Garay, Dames (b0185) 2011; 11
Graczykowski, El Sachat, Reparaz, Sledzinska, Wagner, Chavez-Angel, Wu, Volz, Wu, Alzina, Sotomayor Torres (b0110) 2017; 8
Doerk, Carraro, Maboudian (b0115) 2010; 4
Novikov, Burkov, Schumann (b0050) 2013; 557
Poborchii, Tada, Morita, Migita, Kanayama, Geshev (b0145) 2012; 112
Poborchii, Tada, Kanayama (b0065) 2005; 97
Balandin, Ghosh, Bao, Calizo, Teweldebrhan, Miao, Lau (b0085) 2008; 8
Zushi, Ohmori, Yamada, Watanabe (b0040) 2015; 91
Chávez-Ángel, Reparaz, Gomis-Bresco, Wagner, Cuffe, Graczykowski, Shchepetov, Jiang, Prunnila, Ahopelto, Alzina, Sotomayor Torres (b0080) 2014; 2
Poborchii, Morita, Hattori, Tada, Geshev (b0130) 2016; 120
Uchida, Tada, Ohishi, Miyazaki, Kurosaki, Yamanaka (b0055) 2013; 114
Mukherjee, Givan, Senz, Bergeron, Francoeur, de la Mata, Arbiol, Sekiguchi, Itoh, Isheim, Seidman, Moutanabbir (b0035) 2015; 15
Cai, Moore, Zhu, Li, Chen, Shi, Ruoff (b0095) 2010; 10
Landau, Lifshitz (b0140) 1984
Ju, Goodson (b0165) 1999; 74
Balandin, Wang (b0020) 1998; 58
Reparaz, Chavez-Angel, Wagner, Graczykowski, Gomis-Bresco, Alzina, Sotomayor Torres (b0105) 2014; 85
Hippalgaonkar, Huang, Chen, Sawyer, Ercius, Majumdar (b0025) 2010; 10
Chen, Zhang, Li (b0155) 2012; 112
Ju (10.1016/j.ijheatmasstransfer.2018.02.074_b0165) 1999; 74
Chen (10.1016/j.ijheatmasstransfer.2018.02.074_b0090) 2010; 5
Brockmann (10.1016/j.ijheatmasstransfer.2018.02.074_b0160) 2003; 46
Tian (10.1016/j.ijheatmasstransfer.2018.02.074_b0015) 2011; 99
Uchida (10.1016/j.ijheatmasstransfer.2018.02.074_b0055) 2013; 114
Landau (10.1016/j.ijheatmasstransfer.2018.02.074_b0140) 1984
Hua (10.1016/j.ijheatmasstransfer.2018.02.074_b0150) 2016; 92
Cahill (10.1016/j.ijheatmasstransfer.2018.02.074_b0045) 2014; 1
Mukherjee (10.1016/j.ijheatmasstransfer.2018.02.074_b0035) 2015; 15
Novikov (10.1016/j.ijheatmasstransfer.2018.02.074_b0050) 2013; 557
Chávez-Ángel (10.1016/j.ijheatmasstransfer.2018.02.074_b0080) 2014; 2
Balandin (10.1016/j.ijheatmasstransfer.2018.02.074_b0085) 2008; 8
Poborchii (10.1016/j.ijheatmasstransfer.2018.02.074_b0130) 2016; 120
Balandin (10.1016/j.ijheatmasstransfer.2018.02.074_b0020) 1998; 58
Xu (10.1016/j.ijheatmasstransfer.2018.02.074_b0135) 2015; 23
Chen (10.1016/j.ijheatmasstransfer.2018.02.074_b0155) 2012; 112
Liu (10.1016/j.ijheatmasstransfer.2018.02.074_b0100) 2011; 98
Doerk (10.1016/j.ijheatmasstransfer.2018.02.074_b0115) 2010; 4
Li (10.1016/j.ijheatmasstransfer.2018.02.074_b0005) 2003; 83
Graczykowski (10.1016/j.ijheatmasstransfer.2018.02.074_b0110) 2017; 8
Boukai (10.1016/j.ijheatmasstransfer.2018.02.074_b0010) 2008; 451
Cai (10.1016/j.ijheatmasstransfer.2018.02.074_b0095) 2010; 10
Soini (10.1016/j.ijheatmasstransfer.2018.02.074_b0125) 2010; 97
Liu (10.1016/j.ijheatmasstransfer.2018.02.074_b0175) 2005; 98
Jeong (10.1016/j.ijheatmasstransfer.2018.02.074_b0170) 2012; 111
Wang (10.1016/j.ijheatmasstransfer.2018.02.074_b0185) 2011; 11
Hsu (10.1016/j.ijheatmasstransfer.2018.02.074_b0120) 2008; 92
Hochbaum (10.1016/j.ijheatmasstransfer.2018.02.074_b0030) 2008; 451
Zushi (10.1016/j.ijheatmasstransfer.2018.02.074_b0040) 2015; 91
Doerk (10.1016/j.ijheatmasstransfer.2018.02.074_b0060) 2009; 80
Poborchii (10.1016/j.ijheatmasstransfer.2018.02.074_b0065) 2005; 97
Reparaz (10.1016/j.ijheatmasstransfer.2018.02.074_b0105) 2014; 85
Hippalgaonkar (10.1016/j.ijheatmasstransfer.2018.02.074_b0025) 2010; 10
Jaramillo-Fernandez (10.1016/j.ijheatmasstransfer.2018.02.074_b0075) 2018; 130
Beechem (10.1016/j.ijheatmasstransfer.2018.02.074_b0180) 2015; 86
Stoib (10.1016/j.ijheatmasstransfer.2018.02.074_b0070) 2014; 29
Poborchii (10.1016/j.ijheatmasstransfer.2018.02.074_b0145) 2012; 112
References_xml – volume: 2
  start-page: 012113
  year: 2014
  ident: b0080
  article-title: Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry
  publication-title: APL Mater.
– volume: 97
  start-page: 263107
  year: 2010
  ident: b0125
  article-title: Thermal conductivity of GaAs nanowires studied by micro-Raman spectroscopy combined with laser heating
  publication-title: Appl. Phys. Lett.
– start-page: 273
  year: 1984
  ident: b0140
  article-title: Electrodynamics of Continuous Media
– volume: 5
  start-page: 321
  year: 2010
  end-page: 328
  ident: b0090
  article-title: Raman measurement of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments
  publication-title: ACS Nano
– volume: 557
  start-page: 239
  year: 2013
  end-page: 243
  ident: b0050
  article-title: Enhancement of thermoelectric properties in nanocrystalline M-Si thin film composites (M = Cr, Mn)
  publication-title: J. Alloys Comp.
– volume: 86
  start-page: 041101
  year: 2015
  ident: b0180
  article-title: Error and uncertainty in Raman thermal conductivity measurements
  publication-title: Rev. Sci. Instrum.
– volume: 451
  start-page: 168
  year: 2008
  end-page: 171
  ident: b0010
  article-title: Si nanowires as efficient thermoelectric materials
  publication-title: Nature
– volume: 91
  start-page: 115308
  year: 2015
  ident: b0040
  article-title: Effect of a SiO
  publication-title: Phys. Rev. B
– volume: 92
  start-page: 063119
  year: 2008
  ident: b0120
  article-title: Optical measurement of thermal transport in suspended carbon nanotubes
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 902
  year: 2008
  end-page: 907
  ident: b0085
  article-title: Superior thermal conductivity of single layer graphene
  publication-title: Nano Lett.
– volume: 85
  start-page: 034901
  year: 2014
  ident: b0105
  article-title: A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry
  publication-title: Rev. Sci. Instrum.
– volume: 120
  start-page: 154304
  year: 2016
  ident: b0130
  article-title: Corrugated Si nanowires with reduced thermal conductivity for wide-temperature-range thermoelectricity
  publication-title: J. Appl. Phys.
– volume: 112
  start-page: 064319
  year: 2012
  ident: b0155
  article-title: Thermal contact resistance across nanoscale silicon dioxide and silicon interface
  publication-title: J. Appl. Phys.
– volume: 4
  start-page: 4908
  year: 2010
  end-page: 4914
  ident: b0115
  article-title: Single nanowire thermal conductivity measurements by Raman thermography
  publication-title: ACS Nano
– volume: 83
  start-page: 2934
  year: 2003
  end-page: 2936
  ident: b0005
  article-title: Thermal conductivity of individual silicon nanowires
  publication-title: Appl. Phys. Lett.
– volume: 80
  start-page: 073306
  year: 2009
  ident: b0060
  article-title: Temperature dependence of Raman spectra for individual silicon nanowires
  publication-title: Phys Rev. B
– volume: 10
  start-page: 4341
  year: 2010
  end-page: 4348
  ident: b0025
  article-title: Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport
  publication-title: NANO Lett.
– volume: 10
  start-page: 1645
  year: 2010
  end-page: 1651
  ident: b0095
  article-title: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
  publication-title: Nano Lett.
– volume: 8
  start-page: 415
  year: 2017
  ident: b0110
  article-title: Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures
  publication-title: Nat. Commun.
– volume: 112
  start-page: 074317
  year: 2012
  ident: b0145
  article-title: Enhancement of the ultraviolet absorption and Raman efficiencies of a few nanometer thick Si-on-insulator
  publication-title: J. Appl. Phys.
– volume: 111
  start-page: 093708
  year: 2012
  ident: b0170
  article-title: Thermal conductivity of bulk and thin-film silicon: a Landauer approach
  publication-title: J. Appl. Phys
– volume: 46
  start-page: 717
  year: 2003
  end-page: 723
  ident: b0160
  article-title: Calculation of temperature field in a thin moving sheet heated with laser beam
  publication-title: Int. J. Heat Mass Transfer
– volume: 98
  start-page: 174104
  year: 2011
  ident: b0100
  article-title: and noncontact measurement of silicon membrane thermal conductivity
  publication-title: Appl. Phys. Lett.
– volume: 58
  start-page: 1544
  year: 1998
  end-page: 1549
  ident: b0020
  article-title: Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well
  publication-title: Phys. Rev. B
– volume: 114
  start-page: 134311
  year: 2013
  ident: b0055
  article-title: Heavily doped silicon and nickel silicide nanocrystal composite films with enhanced thermoelectric efficiency
  publication-title: J. Appl. Phys.
– volume: 130
  start-page: 1175
  year: 2018
  end-page: 1181
  ident: b0075
  article-title: Raman thermometry analysis: modelling assumptions Revisited
  publication-title: Appl. Therm. Eng.
– volume: 92
  start-page: 995
  year: 2016
  end-page: 1003
  ident: b0150
  article-title: The effective thermal conductivity of ballistic–diffusive heat conduction in nanostructures with internal heat source
  publication-title: Int. J. Heat Mass Transfer
– volume: 74
  start-page: 3005
  year: 1999
  end-page: 3007
  ident: b0165
  article-title: Phonon scattering in silicon films with thickness of order 100 nm
  publication-title: Appl. Phys. Lett.
– volume: 98
  start-page: 123523
  year: 2005
  ident: b0175
  publication-title: J. Appl. Phys.
– volume: 99
  start-page: 053122
  year: 2011
  ident: b0015
  article-title: On the importance of optical phonons to thermal conductivity in nanostructures
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 124005
  year: 2014
  ident: b0070
  article-title: Spatially resolved determination of thermal conductivity by Raman spectroscopy
  publication-title: Semicond. Sci. Technol.
– volume: 23
  start-page: 10040
  year: 2015
  end-page: 10056
  ident: b0135
  article-title: Development of time-domain differential Raman for transient thermal probing of materials
  publication-title: Opt. Express
– volume: 11
  start-page: 2206
  year: 2011
  end-page: 2213
  ident: b0185
  article-title: Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths
  publication-title: NANO Lett.
– volume: 15
  start-page: 3885
  year: 2015
  end-page: 3893
  ident: b0035
  article-title: Phonon engineering in isotopically disordered silicon nanowires
  publication-title: NANO Lett.
– volume: 1
  start-page: 011305
  year: 2014
  ident: b0045
  article-title: Nanoscale thermal transport II 2003–2012
  publication-title: Appl. Phys. Rev.
– volume: 451
  start-page: 163
  year: 2008
  end-page: 167
  ident: b0030
  article-title: Enhanced thermoelectric performance of rough silicon nanowires
  publication-title: Nature
– volume: 97
  start-page: 104323
  year: 2005
  ident: b0065
  article-title: Giant heating of Si nanoparticles by weak laser light: optical micro-spectroscopic study and application to particle modification
  publication-title: J. Appl. Phys.
– volume: 98
  start-page: 174104
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0100
  article-title: In situ and noncontact measurement of silicon membrane thermal conductivity
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3583603
– volume: 92
  start-page: 995
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0150
  article-title: The effective thermal conductivity of ballistic–diffusive heat conduction in nanostructures with internal heat source
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.09.068
– volume: 451
  start-page: 168
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0010
  article-title: Si nanowires as efficient thermoelectric materials
  publication-title: Nature
  doi: 10.1038/nature06458
– volume: 112
  start-page: 064319
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0155
  article-title: Thermal contact resistance across nanoscale silicon dioxide and silicon interface
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4754513
– volume: 5
  start-page: 321
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0090
  article-title: Raman measurement of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments
  publication-title: ACS Nano
  doi: 10.1021/nn102915x
– volume: 11
  start-page: 2206
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0185
  article-title: Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths
  publication-title: NANO Lett.
  doi: 10.1021/nl1045395
– volume: 46
  start-page: 717
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0160
  article-title: Calculation of temperature field in a thin moving sheet heated with laser beam
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(02)00304-6
– volume: 451
  start-page: 163
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0030
  article-title: Enhanced thermoelectric performance of rough silicon nanowires
  publication-title: Nature
  doi: 10.1038/nature06381
– volume: 97
  start-page: 263107
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0125
  article-title: Thermal conductivity of GaAs nanowires studied by micro-Raman spectroscopy combined with laser heating
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3532848
– volume: 111
  start-page: 093708
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0170
  article-title: Thermal conductivity of bulk and thin-film silicon: a Landauer approach
  publication-title: J. Appl. Phys
  doi: 10.1063/1.4710993
– volume: 74
  start-page: 3005
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0165
  article-title: Phonon scattering in silicon films with thickness of order 100 nm
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123994
– volume: 557
  start-page: 239
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0050
  article-title: Enhancement of thermoelectric properties in nanocrystalline M-Si thin film composites (M = Cr, Mn)
  publication-title: J. Alloys Comp.
  doi: 10.1016/j.jallcom.2012.12.088
– volume: 8
  start-page: 902
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0085
  article-title: Superior thermal conductivity of single layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– start-page: 273
  year: 1984
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0140
– volume: 112
  start-page: 074317
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0145
  article-title: Enhancement of the ultraviolet absorption and Raman efficiencies of a few nanometer thick Si-on-insulator
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4757598
– volume: 114
  start-page: 134311
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0055
  article-title: Heavily doped silicon and nickel silicide nanocrystal composite films with enhanced thermoelectric efficiency
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4823814
– volume: 29
  start-page: 124005
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0070
  article-title: Spatially resolved determination of thermal conductivity by Raman spectroscopy
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/29/12/124005
– volume: 83
  start-page: 2934
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0005
  article-title: Thermal conductivity of individual silicon nanowires
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1616981
– volume: 8
  start-page: 415
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0110
  article-title: Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00115-4
– volume: 85
  start-page: 034901
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0105
  article-title: A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4867166
– volume: 99
  start-page: 053122
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0015
  article-title: On the importance of optical phonons to thermal conductivity in nanostructures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3615709
– volume: 120
  start-page: 154304
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0130
  article-title: Corrugated Si nanowires with reduced thermal conductivity for wide-temperature-range thermoelectricity
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4965302
– volume: 92
  start-page: 063119
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0120
  article-title: Optical measurement of thermal transport in suspended carbon nanotubes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2829864
– volume: 4
  start-page: 4908
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0115
  article-title: Single nanowire thermal conductivity measurements by Raman thermography
  publication-title: ACS Nano
  doi: 10.1021/nn1012429
– volume: 15
  start-page: 3885
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0035
  article-title: Phonon engineering in isotopically disordered silicon nanowires
  publication-title: NANO Lett.
  doi: 10.1021/acs.nanolett.5b00708
– volume: 86
  start-page: 041101
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0180
  article-title: Error and uncertainty in Raman thermal conductivity measurements
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4918623
– volume: 10
  start-page: 1645
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0095
  article-title: Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
  publication-title: Nano Lett.
  doi: 10.1021/nl9041966
– volume: 1
  start-page: 011305
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0045
  article-title: Nanoscale thermal transport II 2003–2012
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4832615
– volume: 23
  start-page: 10040
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0135
  article-title: Development of time-domain differential Raman for transient thermal probing of materials
  publication-title: Opt. Express
  doi: 10.1364/OE.23.010040
– volume: 130
  start-page: 1175
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0075
  article-title: Raman thermometry analysis: modelling assumptions Revisited
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.11.033
– volume: 58
  start-page: 1544
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0020
  article-title: Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.1544
– volume: 97
  start-page: 104323
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0065
  article-title: Giant heating of Si nanoparticles by weak laser light: optical micro-spectroscopic study and application to particle modification
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1904157
– volume: 80
  start-page: 073306
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0060
  article-title: Temperature dependence of Raman spectra for individual silicon nanowires
  publication-title: Phys Rev. B
  doi: 10.1103/PhysRevB.80.073306
– volume: 91
  start-page: 115308
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0040
  article-title: Effect of a SiO2 layer on the thermal transport properties of (100) Si nanowires: a molecular dynamics study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.115308
– volume: 98
  start-page: 123523
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0175
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2149497
– volume: 10
  start-page: 4341
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0025
  article-title: Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport
  publication-title: NANO Lett.
  doi: 10.1021/nl101671r
– volume: 2
  start-page: 012113
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2018.02.074_b0080
  article-title: Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry
  publication-title: APL Mater.
  doi: 10.1063/1.4861796
SSID ssj0017046
Score 2.3247511
Snippet •First Raman thermometric measurement of thermal conductivity of films on bulk substrate.•A simple efficient method: a dozen of films on quartz can be examined...
In contrast to known Raman-thermometric measurements of thermal conductivity (k) of suspended Si nano-membranes, here we apply Raman thermometry for k...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 137
SubjectTerms Boundary layer
Crystal structure
Crystallinity
Dependence
Heat conductivity
Heat transfer
Laser beam heating
Mathematical analysis
Nanocrystals
Nanoelectronics
Polycrystals
Quartz
Silicon films
Substrates
Thermal conductivity
Thermal resistance
Thermometry
Thickness
Transport
Title A simple efficient method of nanofilm-on-bulk-substrate thermal conductivity measurement using Raman thermometry
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.02.074
https://www.proquest.com/docview/2076198609
Volume 123
WOSCitedRecordID wos000434887000013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBogXxKcYDOQHhJCmoOajif2EqqkToKpMqK3KU-QkjkjXJmVpppU_k7-IO9tJU6ZN7IGXqLIbq_X9crk73_2OkLddX4IdgCeMHncsL457FvdcYSVgHjAWpU6kyKqnw2A0YrMZP-10fte1MBeLIM_Z5SVf_VdRwxgIG0tnbyHuZlEYgM8gdLiC2OH6T4LvH5UZUv5iqkamyh1Nm2iVsyFy7NG9tIrciqrFmVWC4lAEtWiBgpJGtpAcOWB1U4nlNoR4VKmwwjeBUX_15QLW3a2o3o0vtlgpUOWrc4olGOvYlwKs5W1e8GkBSIx_ZCqzYLoQSbbMmskJTCTCnDFlm-osa0CSbcQvoftufy8wllZE1TYUoW8ay3VZbUQ7umGzJrfOhNyasptpW4vDm5W7Jh1WasXNAm6BucJ3NLvjtnSzrdllrrwzdPhi_iGb417gNtS7gJl_TFG66k5Cu3Tdo6_hyWQ4DMeD2fjd6qeFnczwxN-0dblD9p2gx0HT7vc_D2ZfmrOtoKvLx-p_cZ-832Yd3vwjrjOe_jIjlG00fkQeGqeG9jUYH5OOzJ-Qeyq5OC6fklWfakjSBpJUQ5IWKb0ektRAkrYhSVuQpAqSVEGStiD5jExOBuPjT5bp9GHF4P6uLZ9L1-my1I8ZOCieBKfE5p7E5gMwEMsgdXzHjtNukkapcB1bREwE0hGcCc8NpPuc7OVFLl8QKnjSA68xiaSXIM2DSP3UxnQE7ieSx_yAfKy3MIwNDT52Y1mEdb7jPLwqhBCFEHadEIRwQHizwkpTwtzi3uNaaqExcbXpGgIab7HKYS3w0DzKJcxjRJL5Xf7y5ulX5MH2STske-vzSr4md-OLdVaevzFo_QOQGOGI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+efficient+method+of+nanofilm-on-bulk-substrate+thermal+conductivity+measurement+using+Raman+thermometry&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Poborchii%2C+Vladimir&rft.au=Uchida%2C+Noriyuki&rft.au=Miyazaki%2C+Yoshinobu&rft.au=Tada%2C+Tetsuya&rft.date=2018-08-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=123&rft.spage=137&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2018.02.074&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon