Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design

•We present a multi-objective optimization model that assist green building design.•We use an improved multi-objective genetic algorithm (NSGA-II) as theory basis.•We present a case study with the aid of the multi-objective approach. Several conflicting criteria exist in building design optimization...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy and buildings Ročník 88; s. 135 - 143
Hlavní autoři: Yu, Wei, Li, Baizhan, Jia, Hongyuan, Zhang, Ming, Wang, Di
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.02.2015
Témata:
ISSN:0378-7788
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •We present a multi-objective optimization model that assist green building design.•We use an improved multi-objective genetic algorithm (NSGA-II) as theory basis.•We present a case study with the aid of the multi-objective approach. Several conflicting criteria exist in building design optimization, especially energy consumption and indoor environment thermal performance. This paper presents a novel multi-objective optimization model that can assist designers in green building design. The Pareto solution was used to obtain a set of optimal solutions for building design optimization, and uses an improved multi-objective genetic algorithm (NSGA-II) as a theoretical basis for building design multi-objective optimization model. Based on the simulation data on energy consumption and indoor thermal comfort, the study also used a simulation-based improved back-propagation (BP) network which is optimized by a genetic algorithm (GA) to characterize building behavior, and then establishes a GA–BP network model for rapidly predicting the energy consumption and indoor thermal comfort status of residential buildings; Third, the building design multi-objective optimization model was established by using the GA–BP network as a fitness function of the multi-objective Genetic Algorithm (NSGA-II); Finally, a case study is presented with the aid of the multi-objective approach in which dozens of potential designs are revealed for a typical building design in China, with a wide range of trade-offs between thermal comfort and energy consumption.
AbstractList Several conflicting criteria exist in building design optimization, especially energy consumption and indoor environment thermal performance. This paper presents a novel multi-objective optimization model that can assist designers in green building design. The Pareto solution was used to obtain a set of optimal solutions for building design optimization, and uses an improved multi-objective genetic algorithm (NSGA-II) as a theoretical basis for building design multi-objective optimization model. Based on the simulation data on energy consumption and indoor thermal comfort, the study also used a simulation-based improved back-propagation (BP) network which is optimized by a genetic algorithm (GA) to characterize building behavior, and then establishes a GA-BP network model for rapidly predicting the energy consumption and indoor thermal comfort status of residential buildings; Third, the building design multi-objective optimization model was established by using the GA-BP network as a fitness function of the multi-objective Genetic Algorithm (NSGA-II); Finally, a case study is presented with the aid of the multi-objective approach in which dozens of potential designs are revealed for a typical building design in China, with a wide range of trade-offs between thermal comfort and energy consumption.
•We present a multi-objective optimization model that assist green building design.•We use an improved multi-objective genetic algorithm (NSGA-II) as theory basis.•We present a case study with the aid of the multi-objective approach. Several conflicting criteria exist in building design optimization, especially energy consumption and indoor environment thermal performance. This paper presents a novel multi-objective optimization model that can assist designers in green building design. The Pareto solution was used to obtain a set of optimal solutions for building design optimization, and uses an improved multi-objective genetic algorithm (NSGA-II) as a theoretical basis for building design multi-objective optimization model. Based on the simulation data on energy consumption and indoor thermal comfort, the study also used a simulation-based improved back-propagation (BP) network which is optimized by a genetic algorithm (GA) to characterize building behavior, and then establishes a GA–BP network model for rapidly predicting the energy consumption and indoor thermal comfort status of residential buildings; Third, the building design multi-objective optimization model was established by using the GA–BP network as a fitness function of the multi-objective Genetic Algorithm (NSGA-II); Finally, a case study is presented with the aid of the multi-objective approach in which dozens of potential designs are revealed for a typical building design in China, with a wide range of trade-offs between thermal comfort and energy consumption.
Author Li, Baizhan
Wang, Di
Jia, Hongyuan
Yu, Wei
Zhang, Ming
Author_xml – sequence: 1
  givenname: Wei
  surname: Yu
  fullname: Yu, Wei
  email: yuweicqu@gmail.com
  organization: Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
– sequence: 2
  givenname: Baizhan
  surname: Li
  fullname: Li, Baizhan
  email: baizhanli@cqu.edu.cn
  organization: Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
– sequence: 3
  givenname: Hongyuan
  surname: Jia
  fullname: Jia, Hongyuan
  email: jiahony@outlook.com
  organization: Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
– sequence: 4
  givenname: Ming
  surname: Zhang
  fullname: Zhang, Ming
  email: 972257180@qq.com
  organization: Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
– sequence: 5
  givenname: Di
  surname: Wang
  fullname: Wang, Di
  email: 460061097@qq.com
  organization: Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
BookMark eNqNkTtv3DAQhFk4gJ8_IQDLNFJISqIkpAgMIw8DBtwkNUGRS3kPFKmQlIHLr8_5zlUau9piZwaD-S7JWYgBCPnIWc0Zl593NYRpQ29rwXhbc14z2ZyRC9b0Q9X3w3BOLnPeMcZk1_MLst2uq0ejC8ZAo6PL5gtWcdqBKfgMdIYABQ3Vfo4Jy9NCS6RxLbjgX6CHZ5r3FJxDgxDMnupgaXmCtGhPTVxcTIVioMdKGGZqIeMcrskHp32Gm9d7RX5___br7mf18Pjj_u72oTKtGErVuqnr7GRax6SwYEc2Gj3okbvBup47IYZhkpNonZAWeDc23aQbK7Tlo9Wyaa7Ip1PumuKfDXJRC2YD3usAccuKSzkOcmxE_x4paxlvxu4g7U5Sk2LOCZxaEy467RVn6oWC2qlXCuqFguJcsWObL__5DJbj8iVp9G-6v57ccBjsGSGpfNwcLKYDLGUjvpHwD0ztrg8
CitedBy_id crossref_primary_10_1016_j_energy_2024_132597
crossref_primary_10_1016_j_rser_2016_07_050
crossref_primary_10_1016_j_rser_2018_04_080
crossref_primary_10_1016_j_jobe_2019_100790
crossref_primary_10_1016_j_renene_2017_08_051
crossref_primary_10_1016_j_egyr_2021_01_097
crossref_primary_10_1016_j_jobe_2025_113809
crossref_primary_10_1016_j_est_2023_107807
crossref_primary_10_1007_s13243_022_00111_y
crossref_primary_10_1016_j_enbuild_2020_110522
crossref_primary_10_1016_j_buildenv_2021_107973
crossref_primary_10_1016_j_enbuild_2023_113512
crossref_primary_10_1016_j_buildenv_2020_107330
crossref_primary_10_1016_j_proeng_2015_10_051
crossref_primary_10_1016_j_inffus_2020_07_003
crossref_primary_10_3390_en10020245
crossref_primary_10_1016_j_enbuild_2018_03_039
crossref_primary_10_1016_j_enbuild_2025_116465
crossref_primary_10_1016_j_tsep_2024_102760
crossref_primary_10_3390_su14159416
crossref_primary_10_3390_app14093760
crossref_primary_10_1177_1420326X231180422
crossref_primary_10_1007_s40430_024_05279_x
crossref_primary_10_1016_j_buildenv_2024_112255
crossref_primary_10_1016_j_jobe_2021_102904
crossref_primary_10_1016_j_jobe_2022_104487
crossref_primary_10_1016_j_enbuild_2025_116100
crossref_primary_10_1007_s13198_021_01459_3
crossref_primary_10_1016_j_enbuild_2021_111693
crossref_primary_10_1016_j_rser_2021_110929
crossref_primary_10_1016_j_scs_2020_102555
crossref_primary_10_1016_j_applthermaleng_2015_12_073
crossref_primary_10_1016_j_csite_2024_105368
crossref_primary_10_1016_j_procs_2016_11_020
crossref_primary_10_1016_j_solener_2022_06_044
crossref_primary_10_1016_j_biosystemseng_2016_02_011
crossref_primary_10_1016_j_jclepro_2021_128824
crossref_primary_10_1016_j_applthermaleng_2022_118502
crossref_primary_10_1108_CI_12_2022_0334
crossref_primary_10_1155_2021_6511290
crossref_primary_10_1080_23744731_2018_1503033
crossref_primary_10_3390_en15020486
crossref_primary_10_3390_en11061570
crossref_primary_10_1016_j_buildenv_2021_108142
crossref_primary_10_1016_j_buildenv_2021_108263
crossref_primary_10_1016_j_scs_2017_09_032
crossref_primary_10_3390_en14113353
crossref_primary_10_1016_j_buildenv_2024_112147
crossref_primary_10_3390_en10020231
crossref_primary_10_1061_JCEMD4_COENG_14537
crossref_primary_10_1016_j_enbuild_2017_08_002
crossref_primary_10_32604_cmes_2023_025094
crossref_primary_10_1007_s12273_019_0586_5
crossref_primary_10_1016_j_apenergy_2019_114289
crossref_primary_10_1016_j_scs_2018_06_008
crossref_primary_10_1016_j_enbuild_2016_09_003
crossref_primary_10_1016_j_matdes_2015_09_044
crossref_primary_10_1016_j_scs_2022_103865
crossref_primary_10_1680_jinam_23_00040
crossref_primary_10_3390_su15054303
crossref_primary_10_1007_s11128_022_03643_1
crossref_primary_10_1016_j_jobe_2022_105123
crossref_primary_10_1177_0361198119853578
crossref_primary_10_1016_j_jobe_2023_106376
crossref_primary_10_3390_su131810033
crossref_primary_10_1016_j_enbuild_2019_109611
crossref_primary_10_3390_app14156719
crossref_primary_10_3390_su16083432
crossref_primary_10_1016_j_buildenv_2025_113716
crossref_primary_10_1016_j_applthermaleng_2024_122595
crossref_primary_10_1016_j_autcon_2022_104547
crossref_primary_10_1016_j_enbuild_2017_09_095
crossref_primary_10_3390_su12041427
crossref_primary_10_1109_TCYB_2020_2985081
crossref_primary_10_1016_j_conbuildmat_2015_10_014
crossref_primary_10_1061_JAEIED_AEENG_1490
crossref_primary_10_3390_en15228543
crossref_primary_10_1016_j_enbuild_2022_112732
crossref_primary_10_1016_j_esr_2023_101156
crossref_primary_10_1016_j_energy_2018_09_019
crossref_primary_10_1007_s10479_024_05888_8
crossref_primary_10_1108_IJBPA_04_2021_0050
crossref_primary_10_3390_en14102917
crossref_primary_10_1016_j_enbuild_2023_112998
crossref_primary_10_1016_j_enbuild_2023_112999
crossref_primary_10_3390_en16062693
crossref_primary_10_1016_j_enbuild_2021_110815
crossref_primary_10_1016_j_enbuild_2018_07_053
crossref_primary_10_1016_j_scs_2019_101672
crossref_primary_10_1016_j_applthermaleng_2020_115933
crossref_primary_10_1016_j_enbuild_2023_112992
crossref_primary_10_3390_buildings13092340
crossref_primary_10_1016_j_jobe_2020_102056
crossref_primary_10_1016_j_buildenv_2022_109633
crossref_primary_10_1016_j_iot_2023_100942
crossref_primary_10_1016_j_resourpol_2020_101593
crossref_primary_10_1016_j_enbuild_2022_112173
crossref_primary_10_1016_j_enbuild_2015_09_025
crossref_primary_10_1016_j_enbuild_2020_109972
crossref_primary_10_3390_su13105739
crossref_primary_10_1016_j_enconman_2025_119661
crossref_primary_10_1061__ASCE_AE_1943_5568_0000474
crossref_primary_10_1016_j_jnca_2019_102464
crossref_primary_10_3389_fenrg_2021_744974
crossref_primary_10_3390_pr11113155
crossref_primary_10_1016_j_ceramint_2018_08_210
crossref_primary_10_1016_j_est_2022_106073
crossref_primary_10_1016_j_buildenv_2025_113668
crossref_primary_10_1109_ACCESS_2019_2919689
crossref_primary_10_3390_machines12120907
crossref_primary_10_1016_j_buildenv_2022_108990
crossref_primary_10_3390_buildings12050647
crossref_primary_10_1016_j_scs_2025_106556
crossref_primary_10_3390_su13179815
crossref_primary_10_1016_j_jobe_2020_101855
crossref_primary_10_3390_en9080649
crossref_primary_10_3390_buildings14061688
crossref_primary_10_1016_j_buildenv_2025_112681
crossref_primary_10_1016_j_enbuild_2022_112479
crossref_primary_10_1016_j_jobe_2024_111377
crossref_primary_10_1016_j_enbuild_2019_109666
crossref_primary_10_1016_j_buildenv_2021_108581
crossref_primary_10_1016_j_scs_2025_106441
crossref_primary_10_1007_s00500_019_04106_z
crossref_primary_10_1016_j_apenergy_2021_118061
crossref_primary_10_1016_j_buildenv_2017_05_006
crossref_primary_10_1088_2515_7620_ad0990
crossref_primary_10_1016_j_enbuild_2023_113665
crossref_primary_10_1016_j_jobe_2020_101186
crossref_primary_10_1016_j_enbuild_2022_112596
crossref_primary_10_3390_en14010025
crossref_primary_10_1007_s00521_021_05712_5
crossref_primary_10_1016_j_apenergy_2018_09_170
crossref_primary_10_1016_j_jtherbio_2022_103276
crossref_primary_10_22227_1997_0935_2025_2_193_214
crossref_primary_10_3390_app9194076
crossref_primary_10_3390_buildings14113584
crossref_primary_10_3390_app10072435
crossref_primary_10_1016_j_buildenv_2020_106662
crossref_primary_10_1016_j_rser_2022_112327
crossref_primary_10_3390_buildings11090421
crossref_primary_10_1016_j_enbuild_2021_111439
crossref_primary_10_1108_SASBE_10_2021_0185
crossref_primary_10_3390_encyclopedia4040092
crossref_primary_10_1016_j_enbuild_2025_115750
crossref_primary_10_1016_j_rineng_2025_106012
crossref_primary_10_1016_j_solener_2021_07_054
crossref_primary_10_3390_s24051443
crossref_primary_10_1016_j_renene_2019_09_031
crossref_primary_10_1016_j_buildenv_2024_111386
crossref_primary_10_1016_j_apenergy_2023_122006
crossref_primary_10_1016_j_jobe_2021_102440
crossref_primary_10_1016_j_solener_2025_113746
crossref_primary_10_1590_0104_6632_20190361s20170379
crossref_primary_10_1049_iet_smc_2019_0052
crossref_primary_10_1016_j_enbuild_2022_112242
crossref_primary_10_1016_j_jobe_2024_109714
crossref_primary_10_1002_er_7139
crossref_primary_10_1016_j_jobe_2020_101712
crossref_primary_10_1007_s12273_020_0750_y
crossref_primary_10_1016_j_buildenv_2021_107924
crossref_primary_10_1080_10426914_2023_2238056
crossref_primary_10_1016_j_jobe_2024_111234
crossref_primary_10_1016_j_egyr_2025_05_061
crossref_primary_10_1016_j_enbuild_2020_109963
crossref_primary_10_1016_j_jobe_2022_105332
crossref_primary_10_1016_j_buildenv_2017_11_016
crossref_primary_10_3390_en13164172
crossref_primary_10_3390_en16196974
crossref_primary_10_1007_s00500_021_06653_w
crossref_primary_10_1016_j_energy_2025_138009
crossref_primary_10_3390_en14248223
crossref_primary_10_1016_j_buildenv_2022_109031
crossref_primary_10_3390_buildings13112710
crossref_primary_10_1016_j_enbuild_2023_112793
crossref_primary_10_1080_17508975_2019_1567456
crossref_primary_10_1016_j_buildenv_2023_111099
crossref_primary_10_1016_j_scs_2019_101597
crossref_primary_10_3390_computation13070173
crossref_primary_10_1016_j_enbenv_2023_08_003
crossref_primary_10_3390_en14030636
crossref_primary_10_3390_info11120587
crossref_primary_10_1080_13467581_2024_2320326
crossref_primary_10_3390_agronomy12092145
crossref_primary_10_1016_j_apenergy_2016_02_141
crossref_primary_10_1016_j_jobe_2023_108298
crossref_primary_10_1016_j_jobe_2024_108579
crossref_primary_10_1007_s11081_019_09477_8
crossref_primary_10_1016_j_buildenv_2016_05_034
crossref_primary_10_1016_j_apenergy_2024_123072
crossref_primary_10_1016_j_enbuild_2017_09_100
crossref_primary_10_1016_j_fraope_2025_100286
crossref_primary_10_1080_23307706_2018_1487808
crossref_primary_10_1016_j_enbuild_2016_05_052
crossref_primary_10_1016_j_istruc_2023_01_083
crossref_primary_10_1007_s40998_019_00288_2
crossref_primary_10_1016_j_scs_2019_101967
crossref_primary_10_1016_j_buildenv_2018_08_003
crossref_primary_10_3390_buildings13010074
crossref_primary_10_3390_buildings11110507
crossref_primary_10_3390_su141610230
crossref_primary_10_1016_j_apenergy_2018_09_002
crossref_primary_10_1016_j_ijmecsci_2023_108272
crossref_primary_10_1016_j_landurbplan_2020_103822
crossref_primary_10_1016_j_jclepro_2018_10_230
crossref_primary_10_1016_j_apenergy_2019_113919
crossref_primary_10_1007_s11630_019_1102_z
crossref_primary_10_1088_1757_899X_1037_1_012040
crossref_primary_10_1155_2022_8615251
crossref_primary_10_1016_j_enbuild_2020_109945
crossref_primary_10_1016_j_scs_2024_105895
crossref_primary_10_1061__ASCE_AE_1943_5568_0000309
crossref_primary_10_1007_s00500_019_03917_4
crossref_primary_10_1016_j_jobe_2017_12_003
crossref_primary_10_1016_j_asoc_2019_105644
crossref_primary_10_3389_fieng_2025_1620422
crossref_primary_10_3390_ijgi14070272
crossref_primary_10_3390_su122310052
crossref_primary_10_1016_j_jobe_2024_109763
crossref_primary_10_1016_j_apenergy_2020_115546
crossref_primary_10_1016_j_jobe_2023_107068
crossref_primary_10_1016_j_solener_2020_05_090
crossref_primary_10_1016_j_energy_2023_127540
crossref_primary_10_1016_j_scs_2018_09_017
crossref_primary_10_1016_j_enbuild_2019_109576
crossref_primary_10_1016_j_asoc_2019_105532
crossref_primary_10_1016_j_buildenv_2024_111227
crossref_primary_10_1016_j_enconman_2021_114556
crossref_primary_10_1080_15435075_2021_1880911
crossref_primary_10_1016_j_ifacol_2018_08_009
crossref_primary_10_1016_j_jclepro_2022_130930
crossref_primary_10_1016_j_enbuild_2021_111077
crossref_primary_10_1016_j_jobe_2023_108029
crossref_primary_10_1016_j_adhoc_2023_103308
crossref_primary_10_1016_j_enbuild_2020_110340
crossref_primary_10_3390_en13061433
crossref_primary_10_1007_s12273_017_0361_4
crossref_primary_10_3390_en17236095
crossref_primary_10_1016_j_biosystemseng_2019_09_008
crossref_primary_10_1016_j_rser_2019_109243
crossref_primary_10_3390_buildings14082423
crossref_primary_10_3390_su151310434
crossref_primary_10_1016_j_enbuild_2021_111749
crossref_primary_10_1109_ACCESS_2025_3526858
crossref_primary_10_1115_1_4048561
crossref_primary_10_1140_epjp_s13360_020_00417_5
crossref_primary_10_1016_j_buildenv_2021_108641
crossref_primary_10_1016_j_enbuild_2019_109690
crossref_primary_10_1061_JAEIED_AEENG_1642
crossref_primary_10_1007_s41024_022_00238_2
crossref_primary_10_1088_1755_1315_1078_1_012044
crossref_primary_10_1002_est2_70136
crossref_primary_10_1016_j_enbuild_2021_111181
crossref_primary_10_1016_j_rser_2022_112183
crossref_primary_10_1016_j_jobe_2019_101045
crossref_primary_10_1016_j_jobe_2024_109228
crossref_primary_10_1016_j_applthermaleng_2021_116654
crossref_primary_10_1016_j_buildenv_2020_106841
crossref_primary_10_1016_j_apenergy_2021_117828
crossref_primary_10_1016_j_buildenv_2023_110946
crossref_primary_10_1061_JMCEE7_MTENG_15800
crossref_primary_10_1016_j_ecolind_2022_109049
crossref_primary_10_1016_j_seta_2021_101277
crossref_primary_10_3390_su10020336
crossref_primary_10_1016_j_proeng_2017_02_419
crossref_primary_10_1016_j_asoc_2023_111174
crossref_primary_10_1016_j_jobe_2024_111669
crossref_primary_10_3390_su162410881
crossref_primary_10_1016_j_autcon_2021_103712
crossref_primary_10_3103_S0146411619050092
crossref_primary_10_1007_s12273_019_0515_7
crossref_primary_10_3390_buildings15101754
crossref_primary_10_3390_buildings12010069
crossref_primary_10_3390_buildings14113405
crossref_primary_10_1016_j_apenergy_2021_118476
crossref_primary_10_1038_s41598_025_10096_w
crossref_primary_10_1016_j_seta_2021_101162
crossref_primary_10_1016_j_scs_2022_104123
crossref_primary_10_1061_JCCEE5_CPENG_6159
crossref_primary_10_1016_j_enbuild_2021_110839
crossref_primary_10_1016_j_apenergy_2020_114725
crossref_primary_10_3390_su14010065
crossref_primary_10_1016_j_buildenv_2021_107780
crossref_primary_10_1080_00038628_2022_2040412
crossref_primary_10_1016_j_buildenv_2018_10_023
crossref_primary_10_1016_j_buildenv_2024_111776
crossref_primary_10_1371_journal_pone_0315545
crossref_primary_10_3390_su15043742
crossref_primary_10_1007_s11831_021_09589_4
crossref_primary_10_1016_j_buildenv_2022_109576
crossref_primary_10_1061__ASCE_WR_1943_5452_0001405
crossref_primary_10_1016_j_enbuild_2017_05_019
crossref_primary_10_1016_j_matcom_2024_11_017
crossref_primary_10_1061_JCEMD4_COENG_16359
crossref_primary_10_3389_fenrg_2018_00025
crossref_primary_10_1016_j_energy_2020_118384
crossref_primary_10_1016_j_buildenv_2017_08_032
crossref_primary_10_1016_j_enbuild_2025_115440
crossref_primary_10_1016_j_enbuild_2023_113382
crossref_primary_10_3390_en13174363
crossref_primary_10_1016_j_autcon_2022_104192
crossref_primary_10_1016_j_enbuild_2016_04_027
crossref_primary_10_1016_j_egyr_2023_08_066
crossref_primary_10_1177_01436244231174354
crossref_primary_10_1016_j_apenergy_2018_07_023
crossref_primary_10_1016_j_solener_2024_113186
crossref_primary_10_1007_s13198_023_02167_w
crossref_primary_10_1029_2024WR039169
crossref_primary_10_1177_1420326X241258678
crossref_primary_10_1016_j_apenergy_2025_126127
crossref_primary_10_1016_j_enbuild_2023_112840
crossref_primary_10_1051_e3sconf_202339603032
crossref_primary_10_3390_su13137155
crossref_primary_10_3390_su132313119
crossref_primary_10_1016_j_jclepro_2022_131264
crossref_primary_10_1016_j_jestch_2015_04_007
crossref_primary_10_3390_s23146487
crossref_primary_10_1016_j_jweia_2020_104281
crossref_primary_10_3390_buildings13010167
crossref_primary_10_3390_su11133716
crossref_primary_10_1016_j_enbuild_2020_110313
crossref_primary_10_1016_j_proeng_2017_04_217
crossref_primary_10_3390_buildings12010052
crossref_primary_10_3390_buildings14051342
crossref_primary_10_1016_j_enbuild_2016_09_030
crossref_primary_10_1016_j_energy_2022_125373
crossref_primary_10_1016_j_buildenv_2018_09_038
crossref_primary_10_1016_j_jobe_2023_108183
crossref_primary_10_1177_1420326X241276082
crossref_primary_10_1016_j_apenergy_2020_115908
crossref_primary_10_3390_su17167541
crossref_primary_10_3390_buildings12030329
crossref_primary_10_1016_j_enbuild_2025_115460
Cites_doi 10.1016/S0378-7788(97)00008-X
10.1080/14733315.2012.11683982
10.1016/j.enbuild.2007.10.018
10.1016/j.buildenv.2004.11.017
10.1029/95WR01955
10.1016/j.buildenv.2008.05.009
10.3390/en4030475
10.1016/S0378-7788(02)00071-3
10.1016/j.buildenv.2009.08.016
10.1002/(SICI)1099-114X(199708)21:10<941::AID-ER302>3.0.CO;2-Y
10.1016/j.amc.2006.08.093
10.1016/S0360-1323(01)00106-8
10.1162/evco.1994.2.3.221
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7ST
7U6
C1K
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.enbuild.2014.11.063
DatabaseName CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Environment Abstracts
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 143
ExternalDocumentID 10_1016_j_enbuild_2014_11_063
S0378778814010305
GeographicLocations China, People's Rep
GeographicLocations_xml – name: China, People's Rep
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
WUQ
ZMT
ZY4
~HD
7ST
7U6
C1K
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c428t-4fb55dbc4f062ded909ca8a91f8df71f2288b6b24f26de15935ba3d2ad19da633
ISICitedReferencesCount 358
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000349732100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7788
IngestDate Sun Nov 09 11:00:56 EST 2025
Tue Oct 07 09:39:29 EDT 2025
Sat Nov 29 02:27:21 EST 2025
Tue Nov 18 20:44:34 EST 2025
Fri Feb 23 02:30:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective genetic algorithm
Energy consumption
Thermal comfort
Artificial neural network
Building design
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-4fb55dbc4f062ded909ca8a91f8df71f2288b6b24f26de15935ba3d2ad19da633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1660401395
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_1669869327
proquest_miscellaneous_1660401395
crossref_primary_10_1016_j_enbuild_2014_11_063
crossref_citationtrail_10_1016_j_enbuild_2014_11_063
elsevier_sciencedirect_doi_10_1016_j_enbuild_2014_11_063
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Energy and buildings
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dorsey, Johnson, Mayer (bib0100) 1994; 1
Wang, Zmeureanu, Rivard (bib0085) 2005; 40
Hauglustaine, Azar (bib0040) 2001, August 13-15
Chongqing Construction Technology Development Center (bib0115) 2010
Rammer Nielsen (bib0035) 2002
Hsu, Gupta, Sorooshian (bib0130) 1995; 31
Huh, Brandemuehl (bib0060) 2008; 40
Al-Homoud (bib0020) 1997; 21
Wright, Loosemore, Farmani (bib0045) 2002; 34
Wang (bib0070) 1999
Azadeh, Ghaderi, Tarverdian, Saberi (bib0105) 2007; 186
Song (bib0010) 2003
Tu, Wang (bib0015) 2004; 08
Zhou, Haghighat (bib0050) 2009; 44
Coley, Schukat (bib0025) 2002; 37
Chongqing Construction Technology Development Center (bib0125) 2005; vol. 7
Center (bib0135) 2005
Magnier, Haghighat (bib0005) 2010; 45
Srinivas, Deb (bib0090) 1994; 2
Chipperfield, Fleming, Pohlheim (bib0150) 1994
Huang, Lam (bib0080) 1997; 26
Coffey (bib0075) 2008
Yu, Li, Lei, Liu (bib0095) 2011; 4
Chongqing Construction Technology Development Center (bib0120) 2005; vol. 7
Elmas (bib0145) 2003
Li, Yu, Li (bib0055) 2012; 11
Wetter (bib0030) 2001, August 13-15
Holland (bib0065) 1975
China Academy of Building Research, Chongqing University (bib0110) 2010
Yuan (bib0140) 1999
Azadeh (10.1016/j.enbuild.2014.11.063_bib0105) 2007; 186
Wang (10.1016/j.enbuild.2014.11.063_bib0085) 2005; 40
Magnier (10.1016/j.enbuild.2014.11.063_bib0005) 2010; 45
Chongqing Construction Technology Development Center (10.1016/j.enbuild.2014.11.063_bib0115) 2010
Coffey (10.1016/j.enbuild.2014.11.063_bib0075) 2008
Wang (10.1016/j.enbuild.2014.11.063_bib0070) 1999
Chongqing Construction Technology Development Center (10.1016/j.enbuild.2014.11.063_bib0125) 2005; vol. 7
Song (10.1016/j.enbuild.2014.11.063_bib0010) 2003
Chipperfield (10.1016/j.enbuild.2014.11.063_bib0150) 1994
Coley (10.1016/j.enbuild.2014.11.063_bib0025) 2002; 37
Zhou (10.1016/j.enbuild.2014.11.063_bib0050) 2009; 44
Al-Homoud (10.1016/j.enbuild.2014.11.063_bib0020) 1997; 21
Hauglustaine (10.1016/j.enbuild.2014.11.063_bib0040) 2001
Wetter (10.1016/j.enbuild.2014.11.063_bib0030) 2001
Huh (10.1016/j.enbuild.2014.11.063_bib0060) 2008; 40
Hsu (10.1016/j.enbuild.2014.11.063_bib0130) 1995; 31
Center (10.1016/j.enbuild.2014.11.063_bib0135) 2005
Rammer Nielsen (10.1016/j.enbuild.2014.11.063_bib0035) 2002
Holland (10.1016/j.enbuild.2014.11.063_bib0065) 1975
Huang (10.1016/j.enbuild.2014.11.063_bib0080) 1997; 26
Dorsey (10.1016/j.enbuild.2014.11.063_bib0100) 1994; 1
Elmas (10.1016/j.enbuild.2014.11.063_bib0145) 2003
China Academy of Building Research (10.1016/j.enbuild.2014.11.063_bib0110) 2010
Yuan (10.1016/j.enbuild.2014.11.063_bib0140) 1999
Srinivas (10.1016/j.enbuild.2014.11.063_bib0090) 1994; 2
Chongqing Construction Technology Development Center (10.1016/j.enbuild.2014.11.063_bib0120) 2005; vol. 7
Wright (10.1016/j.enbuild.2014.11.063_bib0045) 2002; 34
Li (10.1016/j.enbuild.2014.11.063_bib0055) 2012; 11
Tu (10.1016/j.enbuild.2014.11.063_bib0015) 2004; 08
Yu (10.1016/j.enbuild.2014.11.063_bib0095) 2011; 4
References_xml – volume: 186
  start-page: 1731
  year: 2007
  end-page: 1741
  ident: bib0105
  article-title: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption
  publication-title: Appl. Math. Comput.
– volume: 1
  start-page: 93
  year: 1994
  end-page: 111
  ident: bib0100
  article-title: A genetic algorithm for the training of feedforward neural networks. Advances in artificial intelligence in economics
  publication-title: Finance Manage.
– volume: 37
  start-page: 1241
  year: 2002
  end-page: 1247
  ident: bib0025
  article-title: Low-energy design: combining computer-based optimisation and human judgement
  publication-title: Build. Environ.
– year: 2008
  ident: bib0075
  article-title: A Development and Testing Framework for Simulation-based Supervisory Control with Application to Optimal Zone Temperature Ramping Demand Response Using a Modified Genetic Algorithm
– volume: 45
  start-page: 739
  year: 2010
  end-page: 746
  ident: bib0005
  article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network
  publication-title: Build. Environ.
– volume: vol. 7
  start-page: 127
  year: 2005
  end-page: 168
  ident: bib0120
  publication-title: Coaching Materials for Design Standard of Building Energy Efficiency
– volume: vol. 7
  start-page: 9
  year: 2005
  end-page: 104
  ident: bib0125
  publication-title: Building Energy Efficiency of Yangtze River Region
– volume: 4
  start-page: 475
  year: 2011
  end-page: 487
  ident: bib0095
  article-title: Analysis of a residential building energy consumption demand model
  publication-title: Energies
– volume: 31
  start-page: 2517
  year: 1995
  end-page: 2530
  ident: bib0130
  article-title: Artificial neural network modeling of the rainfall–runoff Process
  publication-title: Water Resour. Res.
– start-page: 20
  year: 2003
  end-page: 21
  ident: bib0010
  article-title: Building Energy Efficiency Design and Technology
– volume: 44
  start-page: 651
  year: 2009
  end-page: 656
  ident: bib0050
  article-title: Optimization of ventilation system design and operation in office environment, Part I: Methodology
  publication-title: Build. Environ.
– year: 2010
  ident: bib0110
  article-title: Design standard for energy efficiency of residential buildings in hot summer and cold winter zone
  publication-title: JGJ 134-2010
– year: 2002
  ident: bib0035
  article-title: Optimization of Buildings with Respect to Energy and Indoor Environment
– year: 2010
  ident: bib0115
  article-title: Design standard for energy efficiency of residential building in Chongqing
  publication-title: DBJ 50-071-2010
– year: 2005
  ident: bib0135
  article-title: Artificial Neural Network Theory and Matlab Application
– start-page: 387
  year: 2001, August 13-15
  end-page: 394
  ident: bib0040
  article-title: Interactive tool aiding to optimise the building envelope during the sketch design
  publication-title: Proceedings of the Seventh International IBPSA Conference
– year: 1999
  ident: bib0140
  article-title: Artificial Neural Networks and its Application
– volume: 26
  start-page: 277
  year: 1997
  end-page: 282
  ident: bib0080
  article-title: Using genetic algorithms to optimize controller parameters for HVAC systems
  publication-title: Energy Build.
– year: 1975
  ident: bib0065
  publication-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence
– start-page: 601
  year: 2001, August 13-15
  end-page: 608
  ident: bib0030
  article-title: GenOpt, a generic optimization program
  publication-title: Proceedings of the Seventh International IBPSA Conference
– start-page: 200
  year: 1994
  end-page: 207
  ident: bib0150
  article-title: A genetic algorithm toolbox for Matlab
  publication-title: Int. Conf. Syst. Engineering
– volume: 40
  start-page: 1202
  year: 2008
  end-page: 1213
  ident: bib0060
  article-title: Optimization of air-conditioning system operating strategies for hot and humid climates
  publication-title: Energy Build.
– volume: 40
  start-page: 1512
  year: 2005
  end-page: 1525
  ident: bib0085
  article-title: Applying multi-objective genetic algorithms in green building design optimization
  publication-title: Build. Environ.
– year: 2003
  ident: bib0145
  article-title: Artificial Neural Networks (Theory, Architecture, Training, Application)
– volume: 11
  start-page: 205
  year: 2012
  end-page: 217
  ident: bib0055
  article-title: Assessing adaptive thermal comfort using artificial neural networks in naturally-ventilated buildings
  publication-title: Int. J. Vent.
– volume: 34
  start-page: 959
  year: 2002
  end-page: 972
  ident: bib0045
  article-title: Optimization of building thermal design and control by multi-criterion genetic algorithm
  publication-title: Energy Build.
– year: 1999
  ident: bib0070
  article-title: Computational Intelligent Processing Technology and its Application
– volume: 2
  start-page: 221
  year: 1994
  end-page: 248
  ident: bib0090
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evol. Comput.
– volume: 08
  start-page: 15
  year: 2004
  end-page: 18
  ident: bib0015
  article-title: Building energy saving—the necessary choice for China (I)
  publication-title: Energy Conserv Environ. Prot.
– volume: 21
  start-page: 941
  year: 1997
  end-page: 957
  ident: bib0020
  article-title: Optimum thermal design of office buildings
  publication-title: Int. J. Energy Res.
– volume: 26
  start-page: 277
  issue: 3
  year: 1997
  ident: 10.1016/j.enbuild.2014.11.063_bib0080
  article-title: Using genetic algorithms to optimize controller parameters for HVAC systems
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(97)00008-X
– volume: 11
  start-page: 205
  issue: 2
  year: 2012
  ident: 10.1016/j.enbuild.2014.11.063_bib0055
  article-title: Assessing adaptive thermal comfort using artificial neural networks in naturally-ventilated buildings
  publication-title: Int. J. Vent.
  doi: 10.1080/14733315.2012.11683982
– year: 1999
  ident: 10.1016/j.enbuild.2014.11.063_bib0140
– volume: 1
  start-page: 93
  year: 1994
  ident: 10.1016/j.enbuild.2014.11.063_bib0100
  article-title: A genetic algorithm for the training of feedforward neural networks. Advances in artificial intelligence in economics
  publication-title: Finance Manage.
– year: 2008
  ident: 10.1016/j.enbuild.2014.11.063_bib0075
– volume: 08
  start-page: 15
  year: 2004
  ident: 10.1016/j.enbuild.2014.11.063_bib0015
  article-title: Building energy saving—the necessary choice for China (I)
  publication-title: Energy Conserv Environ. Prot.
– start-page: 601
  year: 2001
  ident: 10.1016/j.enbuild.2014.11.063_bib0030
  article-title: GenOpt, a generic optimization program
– volume: 40
  start-page: 1202
  issue: 7
  year: 2008
  ident: 10.1016/j.enbuild.2014.11.063_bib0060
  article-title: Optimization of air-conditioning system operating strategies for hot and humid climates
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2007.10.018
– volume: 40
  start-page: 1512
  issue: 11
  year: 2005
  ident: 10.1016/j.enbuild.2014.11.063_bib0085
  article-title: Applying multi-objective genetic algorithms in green building design optimization
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2004.11.017
– year: 2010
  ident: 10.1016/j.enbuild.2014.11.063_bib0110
  article-title: Design standard for energy efficiency of residential buildings in hot summer and cold winter zone
– volume: 31
  start-page: 2517
  issue: 10
  year: 1995
  ident: 10.1016/j.enbuild.2014.11.063_bib0130
  article-title: Artificial neural network modeling of the rainfall–runoff Process
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR01955
– year: 2003
  ident: 10.1016/j.enbuild.2014.11.063_bib0145
– volume: 44
  start-page: 651
  issue: 4
  year: 2009
  ident: 10.1016/j.enbuild.2014.11.063_bib0050
  article-title: Optimization of ventilation system design and operation in office environment, Part I: Methodology
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2008.05.009
– volume: 4
  start-page: 475
  issue: 3
  year: 2011
  ident: 10.1016/j.enbuild.2014.11.063_bib0095
  article-title: Analysis of a residential building energy consumption demand model
  publication-title: Energies
  doi: 10.3390/en4030475
– start-page: 200
  year: 1994
  ident: 10.1016/j.enbuild.2014.11.063_bib0150
  article-title: A genetic algorithm toolbox for Matlab
– year: 2002
  ident: 10.1016/j.enbuild.2014.11.063_bib0035
– volume: 34
  start-page: 959
  issue: 9
  year: 2002
  ident: 10.1016/j.enbuild.2014.11.063_bib0045
  article-title: Optimization of building thermal design and control by multi-criterion genetic algorithm
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(02)00071-3
– year: 2010
  ident: 10.1016/j.enbuild.2014.11.063_bib0115
  article-title: Design standard for energy efficiency of residential building in Chongqing
– volume: 45
  start-page: 739
  issue: 3
  year: 2010
  ident: 10.1016/j.enbuild.2014.11.063_bib0005
  article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.08.016
– volume: vol. 7
  start-page: 9
  year: 2005
  ident: 10.1016/j.enbuild.2014.11.063_bib0125
– start-page: 387
  year: 2001
  ident: 10.1016/j.enbuild.2014.11.063_bib0040
  article-title: Interactive tool aiding to optimise the building envelope during the sketch design
– year: 2005
  ident: 10.1016/j.enbuild.2014.11.063_bib0135
– volume: 21
  start-page: 941
  issue: 10
  year: 1997
  ident: 10.1016/j.enbuild.2014.11.063_bib0020
  article-title: Optimum thermal design of office buildings
  publication-title: Int. J. Energy Res.
  doi: 10.1002/(SICI)1099-114X(199708)21:10<941::AID-ER302>3.0.CO;2-Y
– volume: vol. 7
  start-page: 127
  year: 2005
  ident: 10.1016/j.enbuild.2014.11.063_bib0120
– start-page: 20
  year: 2003
  ident: 10.1016/j.enbuild.2014.11.063_bib0010
– volume: 186
  start-page: 1731
  issue: 2
  year: 2007
  ident: 10.1016/j.enbuild.2014.11.063_bib0105
  article-title: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.08.093
– volume: 37
  start-page: 1241
  issue: 12
  year: 2002
  ident: 10.1016/j.enbuild.2014.11.063_bib0025
  article-title: Low-energy design: combining computer-based optimisation and human judgement
  publication-title: Build. Environ.
  doi: 10.1016/S0360-1323(01)00106-8
– year: 1975
  ident: 10.1016/j.enbuild.2014.11.063_bib0065
– year: 1999
  ident: 10.1016/j.enbuild.2014.11.063_bib0070
– volume: 2
  start-page: 221
  issue: 3
  year: 1994
  ident: 10.1016/j.enbuild.2014.11.063_bib0090
  article-title: Muiltiobjective optimization using nondominated sorting in genetic algorithms
  publication-title: Evol. Comput.
  doi: 10.1162/evco.1994.2.3.221
SSID ssj0006571
Score 2.6027908
Snippet •We present a multi-objective optimization model that assist green building design.•We use an improved multi-objective genetic algorithm (NSGA-II) as theory...
Several conflicting criteria exist in building design optimization, especially energy consumption and indoor environment thermal performance. This paper...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 135
SubjectTerms Artificial neural network
Building design
Computer simulation
Construction
Design of buildings
Energy consumption
Genetic algorithms
Mathematical models
Multi-objective genetic algorithm
Networks
Optimization
Thermal comfort
Title Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design
URI https://dx.doi.org/10.1016/j.enbuild.2014.11.063
https://www.proquest.com/docview/1660401395
https://www.proquest.com/docview/1669869327
Volume 88
WOSCitedRecordID wos000349732100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-7788
  databaseCode: AIEXJ
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006571
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM8ID61MUBG4m1KaT7sxI8VGhoTTEgMVJ6iJLa3VG0ydcm07Z3_m7vYTsYGDJB4iVorTtLeL-e7893vCHkFy4CcKBZiplrmRQkvPEBJ5vlSTJBdnYVd_5Qv7-P9_WQ2Ex9Ho2-uFuZ0EVdVcnYmjv-rqGEMhI2ls38h7v6iMACfQehwBLHD8Y8EPx22pLvNc8wY9Op8bjQbtkxWHUnr4rBelc3REq3PGhTHsrxQ28qUAqqOWKKryrQZlqC_kUhkCTZu11Qgt-20t-WQAuIC_OYaONGd1RvuX9suqU-VfSJQaXY9youjAad7JoN3t64Oz9thuA9uf3DrrQ1X-MxlOLsY2rU6GlO7Bb5sHJsGf04v229GsfqG1MSu0b6hdrqm_k0kYj5G2gj4fZi5F42RpNUq0R-ZtT_hbfGu6GSi4rtF1oOYCVCO69N3O7O9fknnrPPc-8ccSsFe__RmvzJyriz3nQ1zcJ_cs84HnRrQPCAjVT0kdy9RUj4i7SX40FrTK_ChFj60hw9taurgQw186AAfCiigFj7UwoeWFXXAoAY-j8nntzsHb3Y925rDK8BfbbxI54zJvIj0hAdSwYstiizJhK8TqWNfB0GS5DwPIh1wqcBkDlmehTLIpC9kxsPwCVmr6kptEBozLTQ4rUGRa-zlIIoEXPCwyLlmMCA3SeT-y7SwvPXYPmWRugTFeWpFkKIIwKdNQQSbZNxPOzbELTdNSJygUmt9GqsyBXTdNPWlE2wK2hm33LJK1e1J6nM-wQiGYL89RyQc_Kj46b8_wha5M7xtz8has2rVc3K7OG3Kk9ULi-fvOerJUg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+multi-objective+genetic+algorithm+to+optimize+energy+efficiency+and+thermal+comfort+in+building+design&rft.jtitle=Energy+and+buildings&rft.au=Yu%2C+Wei&rft.au=Li%2C+Baizhan&rft.au=Jia%2C+Hongyuan&rft.au=Zhang%2C+Ming&rft.date=2015-02-01&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=88&rft.spage=135&rft.epage=143&rft_id=info:doi/10.1016%2Fj.enbuild.2014.11.063&rft.externalDocID=S0378778814010305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon