Boundedness of intrinsic Littlewood--Paley functions on Musielak--Orlicz Morrey and Campanato spaces
Let [theta]: Rnx[0,[infinity])[rightarrow][0,[infinity]) be such that [theta](x,[dot]) is nondecreasing, [theta](x,0) = 0,[theta](x,t)>0 when t>0, lim t[rightarrow][infinity][theta](x,t) = [infinity] and [theta]([dot],t) is a Muckenhoupt A[infinity](Rn) weight uniformly in t. Let [theta]: [0,[...
Saved in:
| Published in: | Banach journal of mathematical analysis Vol. 8; no. 1; pp. 221 - 268 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Durham
Nature Publishing Group
01.01.2014
|
| Subjects: | |
| ISSN: | 1735-8787, 1735-8787 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Let [theta]: Rnx[0,[infinity])[rightarrow][0,[infinity]) be such that [theta](x,[dot]) is nondecreasing, [theta](x,0) = 0,[theta](x,t)>0 when t>0, lim t[rightarrow][infinity][theta](x,t) = [infinity] and [theta]([dot],t) is a Muckenhoupt A[infinity](Rn) weight uniformly in t. Let [theta]: [0,[infinity])[rightarrow][0,[infinity]) be nondecreasing. In this article, the authors introduce the MusielakOrlicz Morrey space M[theta],[theta](Rn) and obtain the boundedness on M[theta],[theta](Rn) of the intrinsic Lusin area function S[alpha], the intrinsic g-function g[alpha], the intrinsic g*[lambda]-function g*[lambda],[alpha] and their commutators with BMO(Rn) functions, where [alpha](0,1], [lambda](min{max{3,p1}, 3 + 2[alpha]/n},[infinity]) and p1 denotes the uniformly upper type index of [theta]. Let [theta] : [0,[infinity])[rightarrow][0,[infinity]) be nondecreasing, [theta](0) = 0, [theta](t)>0 when t>0, and lim t[rightarrow][infinity][theta](t) = [infinity], wA[infinity](Rn) and [theta]: (0,[infinity])[rightarrow](0,[infinity]) be nonincreasing. The authors also introduce the weighted OrliczMorrey space M[theta],[theta]w(Rn) and obtain the boundedness on M[theta], [theta]w(Rn) of the aforementioned intrinsic LittlewoodPaley functions and their commutators with BMO(Rn) functions. Finally, for q[1,[infinity]), the boundedness of the aforementioned intrinsic LittlewoodPaley functions on the Musielak-Orlicz Campanato space L[theta],q(Rn) is also established. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-General Information-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1735-8787 1735-8787 |
| DOI: | 10.15352/bjma/1381782098 |