Unsupervised Satellite Image Time Series Clustering Using Object-Based Approaches and 3D Convolutional Autoencoder

Nowadays, satellite image time series (SITS) analysis has become an indispensable part of many research projects as the quantity of freely available remote sensed data increases every day. However, with the growing image resolution, pixel-level SITS analysis approaches have been replaced by more eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 12; H. 11; S. 1816
Hauptverfasser: Kalinicheva, Ekaterina, Sublime, Jérémie, Trocan, Maria
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2020
MDPI
Schriftenreihe:Advanced Machine Learning for Time Series Remote Sensing Data Analysis
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!