Artificial Intelligence in Cardiology: Present and Future

Artificial intelligence (AI) is a nontechnical, popular term that refers to machine learning of various types but most often to deep neural networks. Cardiology is at the forefront of AI in medicine. For this review, we searched PubMed and MEDLINE databases with no date restriction using search term...

Full description

Saved in:
Bibliographic Details
Published in:Mayo Clinic proceedings Vol. 95; no. 5; pp. 1015 - 1039
Main Authors: Lopez-Jimenez, Francisco, Attia, Zachi, Arruda-Olson, Adelaide M., Carter, Rickey, Chareonthaitawee, Panithaya, Jouni, Hayan, Kapa, Suraj, Lerman, Amir, Luong, Christina, Medina-Inojosa, Jose R., Noseworthy, Peter A., Pellikka, Patricia A., Redfield, Margaret M., Roger, Veronique L., Sandhu, Gurpreet S., Senecal, Conor, Friedman, Paul A.
Format: Journal Article
Language:English
Published: England Elsevier Inc 01.05.2020
Frontline Medical Communications Inc
Elsevier Limited
Subjects:
ISSN:0025-6196, 1942-5546, 1942-5546
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Artificial intelligence (AI) is a nontechnical, popular term that refers to machine learning of various types but most often to deep neural networks. Cardiology is at the forefront of AI in medicine. For this review, we searched PubMed and MEDLINE databases with no date restriction using search terms related to AI and cardiology. Articles were selected for inclusion on the basis of relevance. We highlight the major achievements in recent years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will take center stage in the field. Artificial intelligence requires a close collaboration among computer scientists, clinical investigators, clinicians, and other users in order to identify the most relevant problems to be solved. Best practices in the generation and implementation of AI include the selection of ideal data sources, taking into account common challenges during the interpretation, validation, and generalizability of findings, and addressing safety and ethical concerns before final implementation. The future of AI in cardiology and in medicine in general is bright as the collaboration between investigators and clinicians continues to excel.
AbstractList Artificial intelligence (AI) is a nontechnical, popular term that refers to machine learning of various types but most often to deep neural networks. Cardiology is at the forefront of AI in medicine. For this review, we searched PubMed and MEDLINE databases with no date restriction using search terms related to AI and cardiology. Articles were selected for inclusion on the basis of relevance. We highlight the major achievements in recent years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will take center stage in the field. Artificial intelligence requires a close collaboration among computer scientists, clinical investigators, clinicians, and other users in order to identify the most relevant problems to be solved. Best practices in the generation and implementation of AI include the selection of ideal data sources, taking into account common challenges during the interpretation, validation, and generalizability of findings, and addressing safety and ethical concerns before final implementation. The future of AI in cardiology and in medicine in general is bright as the collaboration between investigators and clinicians continues to excel.
Artificial intelligence (AI) is a nontechnical, popular term that refers to machine learning of various types but most often to deep neural networks. Cardiology is at the forefront of AI in medicine. For this review, we searched PubMed and MEDLINE databases with no date restriction using search terms related to AI and cardiology. Articles were selected for inclusion on the basis of relevance. We highlight the major achievements in recent years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will take center stage in the field. Artificial intelligence requires a close collaboration among computer scientists, clinical investigators, clinicians, and other users in order to identify the most relevant problems to be solved. Best practices in the generation and implementation of AI include the selection of ideal data sources, taking into account common challenges during the interpretation, validation, and generalizability of findings, and addressing safety and ethical concerns before final implementation. The future of AI in cardiology and in medicine in general is bright as the collaboration between investigators and clinicians continues to excel.Artificial intelligence (AI) is a nontechnical, popular term that refers to machine learning of various types but most often to deep neural networks. Cardiology is at the forefront of AI in medicine. For this review, we searched PubMed and MEDLINE databases with no date restriction using search terms related to AI and cardiology. Articles were selected for inclusion on the basis of relevance. We highlight the major achievements in recent years in nearly all areas of cardiology and underscore the mounting evidence suggesting how AI will take center stage in the field. Artificial intelligence requires a close collaboration among computer scientists, clinical investigators, clinicians, and other users in order to identify the most relevant problems to be solved. Best practices in the generation and implementation of AI include the selection of ideal data sources, taking into account common challenges during the interpretation, validation, and generalizability of findings, and addressing safety and ethical concerns before final implementation. The future of AI in cardiology and in medicine in general is bright as the collaboration between investigators and clinicians continues to excel.
Audience Academic
Author Friedman, Paul A.
Senecal, Conor
Attia, Zachi
Jouni, Hayan
Arruda-Olson, Adelaide M.
Luong, Christina
Carter, Rickey
Roger, Veronique L.
Lerman, Amir
Kapa, Suraj
Lopez-Jimenez, Francisco
Chareonthaitawee, Panithaya
Noseworthy, Peter A.
Medina-Inojosa, Jose R.
Pellikka, Patricia A.
Redfield, Margaret M.
Sandhu, Gurpreet S.
Author_xml – sequence: 1
  givenname: Francisco
  orcidid: 0000-0001-5788-9734
  surname: Lopez-Jimenez
  fullname: Lopez-Jimenez, Francisco
  email: lopez@mayo.edu
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 2
  givenname: Zachi
  surname: Attia
  fullname: Attia, Zachi
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 3
  givenname: Adelaide M.
  orcidid: 0000-0001-9541-9899
  surname: Arruda-Olson
  fullname: Arruda-Olson, Adelaide M.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 4
  givenname: Rickey
  orcidid: 0000-0002-0818-273X
  surname: Carter
  fullname: Carter, Rickey
  organization: Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL
– sequence: 5
  givenname: Panithaya
  surname: Chareonthaitawee
  fullname: Chareonthaitawee, Panithaya
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 6
  givenname: Hayan
  surname: Jouni
  fullname: Jouni, Hayan
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 7
  givenname: Suraj
  surname: Kapa
  fullname: Kapa, Suraj
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 8
  givenname: Amir
  orcidid: 0000-0002-9446-5313
  surname: Lerman
  fullname: Lerman, Amir
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 9
  givenname: Christina
  surname: Luong
  fullname: Luong, Christina
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 10
  givenname: Jose R.
  orcidid: 0000-0001-8705-0462
  surname: Medina-Inojosa
  fullname: Medina-Inojosa, Jose R.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 11
  givenname: Peter A.
  surname: Noseworthy
  fullname: Noseworthy, Peter A.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 12
  givenname: Patricia A.
  orcidid: 0000-0001-6800-3521
  surname: Pellikka
  fullname: Pellikka, Patricia A.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 13
  givenname: Margaret M.
  surname: Redfield
  fullname: Redfield, Margaret M.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 14
  givenname: Veronique L.
  orcidid: 0000-0002-9347-7865
  surname: Roger
  fullname: Roger, Veronique L.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 15
  givenname: Gurpreet S.
  surname: Sandhu
  fullname: Sandhu, Gurpreet S.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 16
  givenname: Conor
  surname: Senecal
  fullname: Senecal, Conor
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
– sequence: 17
  givenname: Paul A.
  orcidid: 0000-0001-5052-2948
  surname: Friedman
  fullname: Friedman, Paul A.
  organization: Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32370835$$D View this record in MEDLINE/PubMed
BookMark eNqFkV2LEzEUhoOsuN3VfyAyIIg3HfMxH8kiQimuLizohV6HTHKmm5omNckI_femzCram5KLA-F5zjmc9wpd-OABoZcE1wST7t223qlD0PuaYoprTGrM-BO0IKKhy7Ztugu0wJi2y46I7hJdpbTFGPdCNM_QJaOsx5y1CyRWMdvRaqtcdeczOGc34DVU1ldrFY0NLmwON9XXCAl8rpQ31e2UpwjP0dNRuQQvHus1-n778dv68_L-y6e79ep-qRvK85LooacDsJbwkZt-ML3ArRiHtlfc8FZRENxQ1nRCE2Mw6IG0LWs150PDiBnZNXo7993H8HOClOXOJl0WVR7ClCRlQlDW9T0u6OsTdBum6Mt2kjaYMMoJ7QtVz9RGOZDWjyFHpcszsLO6HHm05X_V0a5vWMe7Irz5R3gA5fJDCm7KNvj0P_jqcf407MDIfbQ7FQ_yz7kL0MyAjiGlCONfhGB5TFVu5ZyqPKYqMZEl1aLdnGjaZnUcXza37pz8YZahhPTLQpRJ22PExkbQWZpgzzV4f9JAO-utVu4HHM7rvwFmj9D7
CitedBy_id crossref_primary_10_2196_57583
crossref_primary_10_1016_j_ancard_2021_08_001
crossref_primary_10_1016_j_mayocp_2020_03_020
crossref_primary_10_1016_j_jcmg_2021_01_014
crossref_primary_10_1136_bmj_n304
crossref_primary_10_1016_j_ijcard_2022_05_023
crossref_primary_10_1038_s41598_025_06738_8
crossref_primary_10_1186_s12911_020_01353_1
crossref_primary_10_1016_j_survophthal_2021_08_004
crossref_primary_10_1016_j_cmpb_2021_106588
crossref_primary_10_1016_j_jrras_2024_101012
crossref_primary_10_1007_s11517_021_02447_2
crossref_primary_10_1007_s11831_021_09685_5
crossref_primary_10_2196_30798
crossref_primary_10_3390_jcm12227121
crossref_primary_10_1016_j_bas_2025_104375
crossref_primary_10_3389_fcvm_2022_956147
crossref_primary_10_1016_j_ibmed_2025_100238
crossref_primary_10_7759_cureus_68472
crossref_primary_10_1186_s12911_024_02653_6
crossref_primary_10_2196_40238
crossref_primary_10_3390_s23125752
crossref_primary_10_1016_j_jcin_2021_08_072
crossref_primary_10_1093_jamia_ocac070
crossref_primary_10_2217_fca_2023_0106
crossref_primary_10_55581_ejeas_1639148
crossref_primary_10_7759_cureus_59661
crossref_primary_10_1016_j_tcm_2021_02_007
crossref_primary_10_1038_s41569_020_00503_2
crossref_primary_10_1016_j_cmpb_2021_106190
crossref_primary_10_1007_s12325_022_02254_7
crossref_primary_10_1016_j_ijcard_2024_132653
crossref_primary_10_4274_tmsj_galenos_2025_290525
crossref_primary_10_3390_clinpract15010017
crossref_primary_10_3389_fmed_2025_1564155
crossref_primary_10_2196_40964
crossref_primary_10_4330_wjc_v17_i9_109992
crossref_primary_10_1016_j_cvdhj_2020_07_003
crossref_primary_10_7759_cureus_83745
crossref_primary_10_1111_eci_13406
crossref_primary_10_1016_j_hrthm_2024_08_007
crossref_primary_10_1016_j_procbio_2021_08_001
crossref_primary_10_33151_ajp_17_816
crossref_primary_10_3390_app131810362
crossref_primary_10_1186_s12911_025_02996_8
crossref_primary_10_3389_fcvm_2022_829512
crossref_primary_10_1002_pd_5892
crossref_primary_10_1186_s12874_021_01487_4
crossref_primary_10_12968_bjhc_2024_0086
crossref_primary_10_3389_fendo_2022_1080159
crossref_primary_10_3389_fphys_2021_753282
crossref_primary_10_1016_j_carrev_2023_05_013
crossref_primary_10_1109_RBME_2022_3142058
crossref_primary_10_3390_jcm14020521
crossref_primary_10_3389_frai_2023_1133677
crossref_primary_10_25295_fsecon_1573723
crossref_primary_10_1016_j_cvdhj_2022_09_001
crossref_primary_10_1016_j_cej_2025_159478
crossref_primary_10_1016_j_cjca_2021_10_009
crossref_primary_10_1016_j_jacadv_2022_100060
crossref_primary_10_1186_s13561_025_00638_3
crossref_primary_10_3390_jcdd12060221
crossref_primary_10_1186_s42836_021_00095_3
crossref_primary_10_1016_j_jacadv_2025_101709
crossref_primary_10_1002_ejhf_2206
crossref_primary_10_3390_jcm12144830
crossref_primary_10_1007_s10815_024_03382_5
crossref_primary_10_11648_j_cmr_20251404_15
crossref_primary_10_1007_s11886_023_01988_2
crossref_primary_10_3390_diagnostics14171894
crossref_primary_10_3390_genes12070991
crossref_primary_10_1016_j_glmedi_2024_100109
crossref_primary_10_1161_JAHA_120_017787
crossref_primary_10_1109_ACCESS_2021_3098039
crossref_primary_10_1177_17455065211046132
crossref_primary_10_1186_s43044_024_00551_w
crossref_primary_10_1155_2021_6637039
crossref_primary_10_1007_s11517_023_03013_8
crossref_primary_10_1016_j_mayocp_2021_06_024
crossref_primary_10_1016_j_jbi_2021_103869
crossref_primary_10_3389_fphys_2022_760000
crossref_primary_10_1016_j_jelectrocard_2024_01_008
crossref_primary_10_1093_ehjdh_ztaf067
crossref_primary_10_3390_jcdd11010022
crossref_primary_10_3390_physiologia5030034
crossref_primary_10_1080_14779072_2025_2520830
crossref_primary_10_1161_CIRCRESAHA_121_319876
crossref_primary_10_3390_jcm13102996
crossref_primary_10_1093_cvr_cvab220
crossref_primary_10_1038_s41598_023_38765_8
crossref_primary_10_1016_j_hfc_2021_11_001
crossref_primary_10_1177_17407745221149222
crossref_primary_10_1016_j_acepjo_2025_100051
crossref_primary_10_1016_j_mayocp_2025_06_018
crossref_primary_10_1111_1467_9566_70055
crossref_primary_10_36660_abc_20240843i
crossref_primary_10_3390_cancers15092656
crossref_primary_10_1016_j_jacadv_2024_101202
crossref_primary_10_1016_j_jacep_2024_02_011
crossref_primary_10_1007_s11882_023_01084_z
crossref_primary_10_3390_jcm14020625
crossref_primary_10_1016_j_jacadv_2023_100632
crossref_primary_10_31083_RCM41523
crossref_primary_10_1038_s41598_024_63656_x
crossref_primary_10_1111_coin_12505
crossref_primary_10_1016_j_jcmg_2021_11_010
crossref_primary_10_1016_j_mayocp_2020_11_010
crossref_primary_10_1016_j_cpcardiol_2023_101922
crossref_primary_10_1186_s12911_022_01774_0
crossref_primary_10_3390_electronics12214407
crossref_primary_10_1016_j_ihj_2022_07_004
crossref_primary_10_1016_j_mayocp_2024_11_012
crossref_primary_10_36660_abc_20240843
crossref_primary_10_1097_CCO_0000000000000996
crossref_primary_10_1016_j_mcpdig_2023_11_003
crossref_primary_10_1016_j_jjcc_2021_11_017
crossref_primary_10_3390_jcdd12090350
crossref_primary_10_3389_fphys_2021_745349
crossref_primary_10_5334_gh_1023
Cites_doi 10.1016/j.jacc.2014.07.979
10.1161/CIRCULATIONAHA.118.034338
10.1161/CIRCOUTCOMES.116.003308
10.1016/j.jbi.2016.07.001
10.1371/journal.pmed.1002705
10.1016/j.jcmg.2017.07.024
10.1161/JAHA.118.011685
10.1161/JAHA.115.002746
10.1161/CIRCOUTCOMES.116.003039
10.1148/radiol.2018181371
10.1161/CIRCOUTCOMES.116.002797
10.1016/j.jbi.2015.05.016
10.1161/CIRCULATIONAHA.114.010637
10.1111/jce.13889
10.1161/CIRCOUTCOMES.116.003097
10.1016/j.cardfail.2018.08.011
10.1016/j.hrthm.2005.02.011
10.1161/CIRCHEARTFAILURE.114.001896
10.1161/JAHA.117.005958
10.1038/s41598-017-12951-x
10.1038/s41746-019-0120-2
10.2337/dc18-0147
10.1001/jamaoncol.2016.0213
10.1038/s41746-019-0128-7
10.1161/JAHA.118.009680
10.1001/jamacardio.2018.0136
10.1161/CIRCEP.117.005499
10.1001/jama.2013.890
10.1038/s41586-019-1799-6
10.1016/j.jbi.2009.08.007
10.1016/j.jvs.2016.11.031
10.2967/jnumed.112.111542
10.1016/j.jcmg.2018.01.020
10.1038/s41591-018-0240-2
10.1038/s41746-017-0013-1
10.1002/ejhf.663
10.1038/s41467-019-10933-3
10.1016/j.jcmg.2019.02.024
10.1001/jama.2011.1219
10.1002/ejhf.1333
10.1016/j.jacc.2012.11.019
10.1007/s12350-014-0027-x
10.4132/jptm.2018.12.16
10.1016/j.jelectrocard.2017.10.011
10.1161/CIRCULATIONAHA.115.001593
10.1161/CIR.0000000000000509
10.1161/CIRCRESAHA.117.311312
10.1038/s41551-018-0195-0
10.1016/j.jcin.2019.02.035
10.1016/j.ultrasmedbio.2018.07.024
10.1001/jama.2009.389
10.1089/ten.tea.2017.0404
10.1016/j.jacc.2017.07.792
10.1038/nrg3208
10.1197/jamia.M2130
10.1016/j.jacc.2016.08.062
10.1016/j.ejrad.2018.09.017
10.1016/j.jacc.2018.04.070
10.1007/s12350-014-9857-9
10.1016/j.pcad.2018.01.007
10.2196/11936
10.1016/j.jcmg.2018.04.026
10.1016/j.ins.2018.07.063
10.1038/s41433-018-0064-9
10.1161/JAHA.118.009476
10.1016/j.jbi.2017.11.011
10.1002/ejhf.1212
10.1161/CIRCEP.118.006834
10.1016/j.ijmedinf.2017.12.024
10.1161/CIRCIMAGING.115.004330
10.1016/j.jbi.2017.07.012
10.1093/jnci/djy222
10.1148/radiol.16142770
10.1016/j.jacc.2018.03.521
10.1371/journal.pone.0201059
10.1186/s12911-018-0620-z
10.1371/journal.pgen.1005716
10.1186/s12992-018-0415-0
10.1200/CCI.18.00133
10.1111/echo.14220
10.1007/s12350-013-9706-2
10.1038/nrcardio.2017.60
10.1016/j.mayocp.2017.12.025
10.1001/jama.2011.1204
10.1007/s10278-009-9215-7
10.1530/ERP-18-0056
10.1056/NEJMp1006114
10.1016/0002-9149(76)90323-4
10.1001/jama.2016.17216
10.1080/17434440.2017.1300057
ContentType Journal Article
Copyright 2020 Mayo Foundation for Medical Education and Research
Copyright © 2020 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
COPYRIGHT 2020 Frontline Medical Communications Inc.
Copyright Mayo Foundation for Medical Education and Research May 2020
Copyright_xml – notice: 2020 Mayo Foundation for Medical Education and Research
– notice: Copyright © 2020 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
– notice: COPYRIGHT 2020 Frontline Medical Communications Inc.
– notice: Copyright Mayo Foundation for Medical Education and Research May 2020
DBID AAYXX
CITATION
NPM
3V.
4U-
7RV
7T5
7X7
7XB
88E
88I
8AF
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9-
K9.
KB0
M0R
M0S
M1P
M2P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
DOI 10.1016/j.mayocp.2020.01.038
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
University Readers
Nursing & Allied Health Database (ProQuest)
Immunology Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
eLibrary Curriculum
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
Consumer Health Database (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Consumer Health Database (ProQuest)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
University Readers
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
elibrary
ProQuest Health & Medical Complete (Alumni)
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Family Health (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList University Readers
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & allied health premium.
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1942-5546
EndPage 1039
ExternalDocumentID A626743686
32370835
10_1016_j_mayocp_2020_01_038
S0025619620301385
Genre Journal Article
Review
GrantInformation_xml – fundername: GE Healthcare
  funderid: https://doi.org/10.13039/100006775
– fundername: Lantheus Medical Imaging
  funderid: https://doi.org/10.13039/100008270
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
08P
0R~
18M
1CY
1P~
29M
2WC
354
36B
3O-
4.4
457
53G
5GY
5RE
7RV
7X7
88E
88I
8AF
8C1
8F7
8FI
8FJ
96U
AAEDT
AAEDW
AAKAS
AALRI
AAQQT
AAQXK
AAWTL
AAXUO
AAYEP
ABCQX
ABJNI
ABLJU
ABMAC
ABUWG
ABWVN
ACGFO
ACGOD
ACPRK
ACRPL
ACVFH
ADBBV
ADCNI
ADFRT
ADMUD
ADNMO
ADZCM
AENEX
AERZD
AEVXI
AFAZI
AFFNX
AFJKZ
AFKRA
AFRHN
AFTJW
AGNAY
AGQPQ
AHMBA
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
AZQEC
BAAKF
BAWUL
BCR
BCU
BEC
BENPR
BES
BKEYQ
BKNYI
BKOMP
BLC
BPHCQ
BVXVI
CCPQU
DIK
DU5
DWQXO
E3Z
EBS
EFKBS
EJD
EX3
F8P
F9R
FAS
FDB
FEDTE
FGOYB
FJW
FYUFA
GNUQQ
GX1
H13
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IAO
IEA
IHR
IHW
INH
INR
IOF
ITC
J5H
K9-
L7B
M0R
M1P
M2P
M2Q
M41
N4W
N95
NAPCQ
O9-
OD.
OHT
OK1
OO~
OVD
P2P
PCD
PEA
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
R2-
ROL
RPM
RVF
RWL
RXW
S0X
SEL
SJFOW
TAE
TEORI
TJF
TR2
U5U
UKHRP
UNMZH
VVN
W8F
WH7
WOW
X7M
XH2
YFH
YOC
Z5R
ZGI
ZXP
3V.
AAIAV
AAYOK
AFCTW
AHPSJ
FAC
ICW
RIG
XI7
ZA5
AAYXX
AFFHD
CITATION
ALIPV
NPM
PKN
AGCQF
4U-
7T5
7XB
8FK
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c428t-1cb72be3518f8d7bd79059fb57a8d85a2e98d23469c1dd0ecb15535c88b431df3
IEDL.DBID 7RV
ISSN 0025-6196
1942-5546
IngestDate Thu Oct 02 10:46:52 EDT 2025
Sat Nov 29 14:35:36 EST 2025
Tue Nov 04 17:56:59 EST 2025
Thu May 22 21:17:22 EDT 2025
Wed Feb 19 02:30:18 EST 2025
Tue Nov 18 21:19:25 EST 2025
Sat Nov 29 07:26:18 EST 2025
Fri Feb 23 02:47:08 EST 2024
Tue Oct 14 19:38:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords NSTEMI
EF
CRT
CAD
MPI
AI
DL
ECG
TPD
HFpEF
UA
HFrEF
EHR
SPECT
AUC
ACS
CDS
NLP
MACE
STEMI
HF
ML
Language English
License Copyright © 2020 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-1cb72be3518f8d7bd79059fb57a8d85a2e98d23469c1dd0ecb15535c88b431df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9446-5313
0000-0001-5052-2948
0000-0001-5788-9734
0000-0001-6800-3521
0000-0001-9541-9899
0000-0002-9347-7865
0000-0002-0818-273X
0000-0001-8705-0462
PMID 32370835
PQID 2401328127
PQPubID 48850
PageCount 25
ParticipantIDs proquest_miscellaneous_2399236770
proquest_journals_2401328127
gale_infotracacademiconefile_A626743686
gale_healthsolutions_A626743686
pubmed_primary_32370835
crossref_primary_10_1016_j_mayocp_2020_01_038
crossref_citationtrail_10_1016_j_mayocp_2020_01_038
elsevier_sciencedirect_doi_10_1016_j_mayocp_2020_01_038
elsevier_clinicalkey_doi_10_1016_j_mayocp_2020_01_038
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
2020-May
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Rochester
PublicationTitle Mayo Clinic proceedings
PublicationTitleAlternate Mayo Clin Proc
PublicationYear 2020
Publisher Elsevier Inc
Frontline Medical Communications Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Frontline Medical Communications Inc
– name: Elsevier Limited
References Ng, Steinhubl, deFilippi, Dey, Stewart (bib65) 2016; 9
Cimino (bib83) 2013; 309
Mortazavi, Downing, Bucholz (bib71) 2016; 9
Ahmad, Pencina, Schulte (bib77) 2014; 64
O'Gara, Kushner, Ascheim (bib50) 2013; 61
Johnson, Torres Soto, Glicksberg (bib93) 2018; 71
Garcia, Klein, Taylor (bib34) 2014; 21
Liverani, Teng, Le, Coker (bib105) 2018; 14
Attia, Sugrue, Asirvatham (bib47) 2018; 13
Rodríguez-Ruiz, Krupinski, Mordang (bib3) 2019; 290
Kwon, Kim, Jeon, Park (bib26) 2019; 36
bib111
Sandhu, Sanon, Holmes (bib59) 2014; 84
Alsharqi, Woodward, Mumith, Markham, Upton, Leeson (bib8) 2018; 5
Arsanjani, Xu, Dey (bib36) 2013; 20
Tashea (bib100) Published April 17, 2017
VanHouten, Starmer, Lorenzi, Maron, Lasko (bib54) 2014; 2014
Garcia, Klein, Moncayo (bib40)
Hagiwara, Fujita, Oh (bib44) 2018; 467
McCowan, Moore, Nguyen (bib20) 2007; 14
Carter, Attia, Lopez-Jimenez, Friedman (bib108) 2019; 2
Budds (bib99) Published July 25, 2017
Attia, Kapa, Lopez-Jimenez (bib6) 2019; 25
Golas, Shibahara, Agboola (bib70) 2018; 18
Deo, Nallamothu (bib67) 2016; 9
Kusunose, Abe, Haga (bib23) 2020; 13
bib106
Carter, Attia, Geske (bib5) 2019; 3
bib103
AbouEzzeddine, McKie, Scott (bib63) 2016; 18
bib102
Behnami, Liao, Girgis (bib24) 2019
Barbagelata, Bethea, Severance (bib51) 2018; 51
Kaggal, Elayavilli, Mehrabi (bib85) 2016; 8
Nakagawa, Nakaura, Namimoto (bib97) 2018; 108
Tefft, Uthamaraj, Harbuzariu (bib60) 2018; 24
Kalscheur, Kipp, Tattersall (bib75) 2018; 11
Gupta, Fonarow (bib72) 2018; 20
Madani, Arnaout, Mofrad, Arnaout (bib30) 2018; 1
Futoma, Morris, Lucas (bib69) 2015; 56
Pons, Braun, Hunink, Kors (bib11) 2016; 279
Blumenthal, Tavenner (bib84) 2010; 363
Jensen, Jensen, Brunak (bib10) 2012; 13
Zollei, Grimson, Norbash, Wells (bib48) 2001
Maor, Sara, Orbelo, Lerman, Levanon, Lerman (bib82) 2018; 93
Afzal, Mallipeddi, Sohn (bib16) 2018; 111
Ernande, Audureau, Jellis (bib31) 2017; 70
Arsanjani, Xu, Dey (bib35) 2013; 54
Cho, Lee, Kang (bib58) 2019; 8
Yim, Yetisgen, Harris, Kwan (bib12) 2016; 2
Arruda-Olson, Afzal, Priya Mallipeddi (bib88) 2018; 7
Lauer, Gordon, Wei, Pearson (bib95) 2017; 14
Singh, Chun, Hadley, Froelicher (bib43) 2018; 60
Echouffo-Tcheugui, Greene, Papadimitriou (bib64) 2015; 8
Betancur, Otaki, Motwani (bib39) 2018; 11
Gerber, Weston, Enriquez-Sarano (bib94) 2017; 6
Hardesty (bib98) Published February 11, 2018
Wang, Wang, Rastegar-Mojarad (bib86) 2018; 77
Brinker, Hekler, Utikal (bib91) 2018; 20
Goldstein, Navar, Carter (bib9) 2017; 38
Arsanjani, Dey, Khachatryan (bib38) 2015; 22
Attia, Kapa, Yao (bib7) 2019; 30
Chang, Jung, Woo (bib1) 2019; 53
Deo (bib66) 2015; 132
Rodriguez-Ruiz, Lång, Gubern-Merida (bib2) 2019; 111
Liu, Bielinski, Sohn (bib87) 2013; 2013
Slomka, Dey, Sitek, Motwani, Berman, Germano (bib41) 2017; 14
Jha (bib13) 2011; 306
Cikes, Sanchez-Martinez, Claggett (bib74) 2019; 21
Afzal, Sohn, Abram (bib17) 2017; 65
Kreimeyer, Foster, Pandey (bib18) 2017; 73
Narula, Shameer, Salem Omar, Dudley, Sengupta (bib32) 2016; 68
Betancur, Commandeur, Motlagh (bib37) 2018; 11
Myers, Scirica, Stultz (bib56) 2017; 7
Shah, Katz, Selvaraj (bib76) 2015; 131
Shead (bib112) Published November 3, 2018
Østvik, Smistad, Aase, Haugen, Lovstakken (bib27) 2019; 45
(bib15) 2020
Zack, Senecal, Kinar (bib55) 2019; 12
Davies (bib57) September 24, 2018
Cheng, Zheng, Savova, Erickson (bib22) 2010; 23
Attia, DeSimone, Dillon (bib49) 2016; 5
Sengupta, Huang, Bansal (bib33) 2016; 9
Viskin, Rosovski, Sands (bib46) 2005; 2
Hall, Schulman (bib110) 2009; 301
Demner-Fushman, Chapman, McDonald (bib14) 2009; 42
Ambale-Venkatesh, Yang, Wu (bib80) 2017; 121
Omar, Domingos, Patra, Upton, Leeson, Noble (bib29) April 4-7, 2018
Xiao, Xu, Pelter, Mortara, Hu (bib53) 2018; 2018
Greene, Butler, Albert (bib62) 2018; 72
Rajalakshmi, Subashini, Anjana, Mohan (bib4) 2018; 32
Kakadiaris, Vrigkas, Yen, Kuznetsova, Budoff, Naghavi (bib79) 2018; 7
Barsh, Cooper, Copenhaver (bib107) 2015; 11
Poplin, Varadarajan, Blumer (bib81) 2018; 2
Wasserlauf, You, Patel, Valys, Albert, Passman (bib42) 2019; 12
Li, Keel, Liu (bib89) 2018; 41
Chan, Rea, Gollakota, Sunshine (bib52) 2019; 2
Rocher, Hendrickx, de Montjoye (bib109) 2019; 10
Dyke, Saulnier, Pastinen, Bourque, Joly (bib104) 2016; 1
Tison, Sanchez, Ballinger (bib45) 2018; 3
Dickinson, Allen, Albert (bib73) 2018; 24
Kannel (bib78) 1976; 37
Groeneveld, Rumsfeld (bib68) 2016; 9
Zhang, Gajjala, Agrawal (bib28) 2018; 138
McKinney, Sieniek, Godbole (bib90) 2020; 577
Abrams (bib101)
Yancy, Jessup, Bozkurt (bib61) 2017; 136
Tariq, Daniels, Schwartz, Washington, Kalantarian, Wall (bib92) 2018; 15
Bozkurt, Gimenez, Burnside, Gulkesen, Rubin (bib21) 2016; 62
Samad, Ulloa, Wehner (bib25) 2019; 12
Murff, FitzHenry, Matheny (bib19) 2011; 306
Gulshan, Peng, Coram (bib96) 2016; 316
Goldstein (10.1016/j.mayocp.2020.01.038_bib9) 2017; 38
Kwon (10.1016/j.mayocp.2020.01.038_bib26) 2019; 36
Chan (10.1016/j.mayocp.2020.01.038_bib52) 2019; 2
Attia (10.1016/j.mayocp.2020.01.038_bib47) 2018; 13
Tashea (10.1016/j.mayocp.2020.01.038_bib100)
Pons (10.1016/j.mayocp.2020.01.038_bib11) 2016; 279
Yim (10.1016/j.mayocp.2020.01.038_bib12) 2016; 2
Demner-Fushman (10.1016/j.mayocp.2020.01.038_bib14) 2009; 42
Sengupta (10.1016/j.mayocp.2020.01.038_bib33) 2016; 9
Cimino (10.1016/j.mayocp.2020.01.038_bib83) 2013; 309
Shead (10.1016/j.mayocp.2020.01.038_bib112)
Rodríguez-Ruiz (10.1016/j.mayocp.2020.01.038_bib3) 2019; 290
Sandhu (10.1016/j.mayocp.2020.01.038_bib59) 2014; 84
Garcia (10.1016/j.mayocp.2020.01.038_bib40)
Budds (10.1016/j.mayocp.2020.01.038_bib99)
Futoma (10.1016/j.mayocp.2020.01.038_bib69) 2015; 56
Afzal (10.1016/j.mayocp.2020.01.038_bib16) 2018; 111
Cheng (10.1016/j.mayocp.2020.01.038_bib22) 2010; 23
Ernande (10.1016/j.mayocp.2020.01.038_bib31) 2017; 70
Betancur (10.1016/j.mayocp.2020.01.038_bib39) 2018; 11
Cikes (10.1016/j.mayocp.2020.01.038_bib74) 2019; 21
Madani (10.1016/j.mayocp.2020.01.038_bib30) 2018; 1
Hall (10.1016/j.mayocp.2020.01.038_bib110) 2009; 301
Liu (10.1016/j.mayocp.2020.01.038_bib87) 2013; 2013
Østvik (10.1016/j.mayocp.2020.01.038_bib27) 2019; 45
Greene (10.1016/j.mayocp.2020.01.038_bib62) 2018; 72
Tariq (10.1016/j.mayocp.2020.01.038_bib92) 2018; 15
Kannel (10.1016/j.mayocp.2020.01.038_bib78) 1976; 37
Zack (10.1016/j.mayocp.2020.01.038_bib55) 2019; 12
Li (10.1016/j.mayocp.2020.01.038_bib89) 2018; 41
Rajalakshmi (10.1016/j.mayocp.2020.01.038_bib4) 2018; 32
Narula (10.1016/j.mayocp.2020.01.038_bib32) 2016; 68
Rodriguez-Ruiz (10.1016/j.mayocp.2020.01.038_bib2) 2019; 111
Gerber (10.1016/j.mayocp.2020.01.038_bib94) 2017; 6
Ambale-Venkatesh (10.1016/j.mayocp.2020.01.038_bib80) 2017; 121
Hagiwara (10.1016/j.mayocp.2020.01.038_bib44) 2018; 467
Arsanjani (10.1016/j.mayocp.2020.01.038_bib38) 2015; 22
Brinker (10.1016/j.mayocp.2020.01.038_bib91) 2018; 20
Nakagawa (10.1016/j.mayocp.2020.01.038_bib97) 2018; 108
Mortazavi (10.1016/j.mayocp.2020.01.038_bib71) 2016; 9
Myers (10.1016/j.mayocp.2020.01.038_bib56) 2017; 7
Barsh (10.1016/j.mayocp.2020.01.038_bib107) 2015; 11
Echouffo-Tcheugui (10.1016/j.mayocp.2020.01.038_bib64) 2015; 8
Liverani (10.1016/j.mayocp.2020.01.038_bib105) 2018; 14
Zollei (10.1016/j.mayocp.2020.01.038_bib48) 2001
Dickinson (10.1016/j.mayocp.2020.01.038_bib73) 2018; 24
Viskin (10.1016/j.mayocp.2020.01.038_bib46) 2005; 2
Samad (10.1016/j.mayocp.2020.01.038_bib25) 2019; 12
Gupta (10.1016/j.mayocp.2020.01.038_bib72) 2018; 20
Deo (10.1016/j.mayocp.2020.01.038_bib67) 2016; 9
Johnson (10.1016/j.mayocp.2020.01.038_bib93) 2018; 71
Arruda-Olson (10.1016/j.mayocp.2020.01.038_bib88) 2018; 7
Hardesty (10.1016/j.mayocp.2020.01.038_bib98)
Wang (10.1016/j.mayocp.2020.01.038_bib86) 2018; 77
Carter (10.1016/j.mayocp.2020.01.038_bib5) 2019; 3
Kreimeyer (10.1016/j.mayocp.2020.01.038_bib18) 2017; 73
Groeneveld (10.1016/j.mayocp.2020.01.038_bib68) 2016; 9
Wasserlauf (10.1016/j.mayocp.2020.01.038_bib42) 2019; 12
Rocher (10.1016/j.mayocp.2020.01.038_bib109) 2019; 10
Behnami (10.1016/j.mayocp.2020.01.038_bib24) 2019
Afzal (10.1016/j.mayocp.2020.01.038_bib17) 2017; 65
Cho (10.1016/j.mayocp.2020.01.038_bib58) 2019; 8
Davies (10.1016/j.mayocp.2020.01.038_bib57) 2018
Omar (10.1016/j.mayocp.2020.01.038_bib29) 2018
Gulshan (10.1016/j.mayocp.2020.01.038_bib96) 2016; 316
Slomka (10.1016/j.mayocp.2020.01.038_bib41) 2017; 14
Golas (10.1016/j.mayocp.2020.01.038_bib70) 2018; 18
Xiao (10.1016/j.mayocp.2020.01.038_bib53) 2018; 2018
Poplin (10.1016/j.mayocp.2020.01.038_bib81) 2018; 2
Tefft (10.1016/j.mayocp.2020.01.038_bib60) 2018; 24
Kalscheur (10.1016/j.mayocp.2020.01.038_bib75) 2018; 11
Murff (10.1016/j.mayocp.2020.01.038_bib19) 2011; 306
Shah (10.1016/j.mayocp.2020.01.038_bib76) 2015; 131
McCowan (10.1016/j.mayocp.2020.01.038_bib20) 2007; 14
Attia (10.1016/j.mayocp.2020.01.038_bib49) 2016; 5
Jha (10.1016/j.mayocp.2020.01.038_bib13) 2011; 306
Barbagelata (10.1016/j.mayocp.2020.01.038_bib51) 2018; 51
Tison (10.1016/j.mayocp.2020.01.038_bib45) 2018; 3
O'Gara (10.1016/j.mayocp.2020.01.038_bib50) 2013; 61
VanHouten (10.1016/j.mayocp.2020.01.038_bib54) 2014; 2014
Jensen (10.1016/j.mayocp.2020.01.038_bib10) 2012; 13
AbouEzzeddine (10.1016/j.mayocp.2020.01.038_bib63) 2016; 18
Attia (10.1016/j.mayocp.2020.01.038_bib6) 2019; 25
Zhang (10.1016/j.mayocp.2020.01.038_bib28) 2018; 138
Lauer (10.1016/j.mayocp.2020.01.038_bib95) 2017; 14
Garcia (10.1016/j.mayocp.2020.01.038_bib34) 2014; 21
Blumenthal (10.1016/j.mayocp.2020.01.038_bib84) 2010; 363
Alsharqi (10.1016/j.mayocp.2020.01.038_bib8) 2018; 5
Arsanjani (10.1016/j.mayocp.2020.01.038_bib36) 2013; 20
McKinney (10.1016/j.mayocp.2020.01.038_bib90) 2020; 577
Abrams (10.1016/j.mayocp.2020.01.038_bib101)
Arsanjani (10.1016/j.mayocp.2020.01.038_bib35) 2013; 54
Kakadiaris (10.1016/j.mayocp.2020.01.038_bib79) 2018; 7
Deo (10.1016/j.mayocp.2020.01.038_bib66) 2015; 132
Kaggal (10.1016/j.mayocp.2020.01.038_bib85) 2016; 8
Yancy (10.1016/j.mayocp.2020.01.038_bib61) 2017; 136
Ng (10.1016/j.mayocp.2020.01.038_bib65) 2016; 9
Kusunose (10.1016/j.mayocp.2020.01.038_bib23) 2020; 13
Singh (10.1016/j.mayocp.2020.01.038_bib43) 2018; 60
Bozkurt (10.1016/j.mayocp.2020.01.038_bib21) 2016; 62
Ahmad (10.1016/j.mayocp.2020.01.038_bib77) 2014; 64
Attia (10.1016/j.mayocp.2020.01.038_bib7) 2019; 30
Dyke (10.1016/j.mayocp.2020.01.038_bib104) 2016; 1
Betancur (10.1016/j.mayocp.2020.01.038_bib37) 2018; 11
Maor (10.1016/j.mayocp.2020.01.038_bib82) 2018; 93
Carter (10.1016/j.mayocp.2020.01.038_bib108) 2019; 2
Chang (10.1016/j.mayocp.2020.01.038_bib1) 2019; 53
References_xml – volume: 36
  start-page: 213
  year: 2019
  end-page: 218
  ident: bib26
  article-title: Deep learning for predicting in-hospital mortality among heart disease patients based on echocardiography
  publication-title: Echocardiography
– volume: 290
  start-page: 305
  year: 2019
  end-page: 314
  ident: bib3
  article-title: Detection of breast cancer with mammography: effect of an artificial intelligence support system
  publication-title: Radiology
– volume: 7
  start-page: 12692
  year: 2017
  ident: bib56
  article-title: Machine learning improves risk stratification after acute coronary syndrome
  publication-title: Sci Rep
– volume: 309
  start-page: 991
  year: 2013
  end-page: 992
  ident: bib83
  article-title: Improving the electronic health record—are clinicians getting what they wished for?
  publication-title: JAMA
– volume: 37
  start-page: 269
  year: 1976
  end-page: 282
  ident: bib78
  article-title: Some lessons in cardiovascular epidemiology from Framingham
  publication-title: Am J Cardiol
– year: Published November 3, 2018
  ident: bib112
  article-title: DeepMind is handing DeepMind Health over to Google.
– volume: 1
  start-page: 138
  year: 2016
  end-page: 147
  ident: bib104
  article-title: Evolving data access policy: the Canadian context
  publication-title: Facets (Ott)
– volume: 22
  start-page: 877
  year: 2015
  end-page: 884
  ident: bib38
  article-title: Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population
  publication-title: J Nucl Cardiol
– volume: 108
  start-page: 147
  year: 2018
  end-page: 154
  ident: bib97
  article-title: Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma
  publication-title: Eur J Radiol
– volume: 32
  start-page: 1138
  year: 2018
  end-page: 1144
  ident: bib4
  article-title: Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence
  publication-title: Eye (Lond)
– volume: 14
  start-page: 736
  year: 2007
  end-page: 745
  ident: bib20
  article-title: Collection of cancer stage data by classifying free-text medical reports
  publication-title: J Am Med Inform Assoc
– volume: 53
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib1
  article-title: Artificial intelligence in pathology
  publication-title: J Pathol Transl Med
– volume: 11
  start-page: 1000
  year: 2018
  end-page: 1009
  ident: bib39
  article-title: Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning
  publication-title: JACC Cardiovasc Imaging
– volume: 12
  start-page: e006834
  year: 2019
  ident: bib42
  article-title: Smartwatch performance for the detection and quantification of atrial fibrillation
  publication-title: Circ Arrhythm Electrophysiol
– volume: 93
  start-page: 840
  year: 2018
  end-page: 847
  ident: bib82
  article-title: Voice signal characteristics are independently associated with coronary artery disease
  publication-title: Mayo Clin Proc
– volume: 65
  start-page: 1753
  year: 2017
  end-page: 1761
  ident: bib17
  article-title: Mining peripheral arterial disease cases from narrative clinical notes using natural language processing
  publication-title: J Vasc Surg
– volume: 45
  start-page: 374
  year: 2019
  end-page: 384
  ident: bib27
  article-title: Real-time standard view classification in transthoracic echocardiography using convolutional neural networks
  publication-title: Ultrasound Med Biol
– volume: 24
  start-page: 1157
  year: 2018
  end-page: 1166
  ident: bib60
  article-title: Nanoparticle-mediated cell capture enables rapid endothelialization of a novel bare metal stent
  publication-title: Tissue Eng Part A
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: bib96
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 23
  start-page: 119
  year: 2010
  end-page: 132
  ident: bib22
  article-title: Discerning tumor status from unstructured MRI reports—completeness of information in existing reports and utility of automated natural language processing
  publication-title: J Digit Imaging
– volume: 42
  start-page: 760
  year: 2009
  end-page: 772
  ident: bib14
  article-title: What can natural language processing do for clinical decision support?
  publication-title: J Biomed Inform
– volume: 132
  start-page: 1920
  year: 2015
  end-page: 1930
  ident: bib66
  article-title: Machine learning in medicine
  publication-title: Circulation
– volume: 138
  start-page: 1623
  year: 2018
  end-page: 1635
  ident: bib28
  article-title: Fully automated echocardiogram interpretation in clinical practice
  publication-title: Circulation
– volume: 7
  start-page: e009680
  year: 2018
  ident: bib88
  article-title: Leveraging the electronic health record to create an automated real-time prognostic tool for peripheral arterial disease
  publication-title: J Am Heart Assoc
– volume: 2
  start-page: 52
  year: 2019
  ident: bib52
  article-title: Contactless cardiac arrest detection using smart devices
  publication-title: NPJ Digit Med
– volume: 12
  start-page: 681
  year: 2019
  end-page: 689
  ident: bib25
  article-title: Predicting survival from large echocardiography and electronic health record datasets: optimization with machine learning
  publication-title: J Am Coll Cardiol Img
– volume: 60
  start-page: 550
  year: 2018
  end-page: 559
  ident: bib43
  article-title: Clinical implications of technological advances in screening for atrial fibrillation
  publication-title: Prog Cardiovasc Dis
– volume: 24
  start-page: 682
  year: 2018
  end-page: 694
  ident: bib73
  article-title: Remote monitoring of patients with heart failure: a white paper from the Heart Failure Society of America Scientific Statements Committee
  publication-title: J Card Fail
– volume: 14
  start-page: 493
  year: 2017
  end-page: 501
  ident: bib95
  article-title: Efficient design of clinical trials and epidemiological research: is it possible?
  publication-title: Nat Rev Cardiol
– volume: 70
  start-page: 1704
  year: 2017
  end-page: 1716
  ident: bib31
  article-title: Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus
  publication-title: J Am Coll Cardiol
– ident: bib111
  article-title: Who owns medical records: 50 state comparison. Health Information & the Law website
– volume: 2018
  start-page: 256
  year: 2018
  end-page: 262
  ident: bib53
  article-title: A Deep Learning Approach to Examine Ischemic ST Changes in Ambulatory ECG Recordings
  publication-title: AMIA Jt Summits Transl Sci Proc
– volume: 11
  start-page: e005499
  year: 2018
  ident: bib75
  article-title: Machine learning algorithm predicts cardiac resynchronization therapy outcomes: lessons from the COMPANION trial
  publication-title: Circ Arrhythm Electrophysiol
– ident: bib102
  article-title: The Netflix prize. Netflix website
– volume: 10
  start-page: 3069
  year: 2019
  ident: bib109
  article-title: Estimating the success of re-identifications in incomplete datasets using generative models
  publication-title: Nat Commun
– volume: 56
  start-page: 229
  year: 2015
  end-page: 238
  ident: bib69
  article-title: A comparison of models for predicting early hospital readmissions
  publication-title: J Biomed Inform
– volume: 73
  start-page: 14
  year: 2017
  end-page: 29
  ident: bib18
  article-title: Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review
  publication-title: J Biomed Inform
– volume: 9
  start-page: 649
  year: 2016
  end-page: 658
  ident: bib65
  article-title: Early detection of heart failure using electronic health records: practical implications for time before diagnosis, data diversity, data quantity, and data density
  publication-title: Circ Cardiovasc Qual Outcomes
– volume: 2
  start-page: 42
  year: 2019
  ident: bib108
  article-title: Pragmatic considerations for fostering reproducible research in artificial intelligence
  publication-title: NPJ Digit Med
– volume: 11
  start-page: e1005716
  year: 2015
  ident: bib107
  article-title: data sharing policy: in pursuit of functional utility
  publication-title: PLoS Genet
– year: September 24, 2018
  ident: bib57
  article-title: CEREBRIA-1: machine learning vs expert human opinion to determine physiologically optimized coronary revascularization strategies. Paper presented at: Transcatheter Cardiovascular Therapeutics 2018
– ident: bib40
  article-title: Diagnostic performance of an artificial intelligence-driven cardiac-structured reporting system for myocardial perfusion SPECT imaging [published online ahead of print September 12, 2018)
– volume: 62
  start-page: 224
  year: 2016
  end-page: 231
  ident: bib21
  article-title: Using automatically extracted information from mammography reports for decision-support
  publication-title: J Biomed Inform
– volume: 2013
  start-page: 149
  year: 2013
  end-page: 153
  ident: bib87
  article-title: An information extraction framework for cohort identification using electronic health records
  publication-title: AMIA Jt Summits Transl Sci Proc
– volume: 13
  start-page: 374
  year: 2020
  end-page: 381
  ident: bib23
  article-title: A Deep Learning approach for assessment of regional wall motion abnormality from echocardiographic images
  publication-title: J Am Coll Cardiol Img
– volume: 21
  start-page: 427
  year: 2014
  end-page: 439
  ident: bib34
  article-title: Clinical decision support systems in myocardial perfusion imaging
  publication-title: J Nucl Cardiol
– year: Published February 11, 2018
  ident: bib98
  article-title: Study finds gender and skin-type bias in commercial artificial-intelligence systems. MIT News website
– volume: 279
  start-page: 329
  year: 2016
  end-page: 343
  ident: bib11
  article-title: Natural language processing in radiology: a systematic review
  publication-title: Radiology
– volume: 2014
  start-page: 1940
  year: 2014
  end-page: 1949
  ident: bib54
  article-title: Machine learning for risk prediction of acute coronary syndrome
  publication-title: AMIA Annu Symp Proc
– volume: 20
  start-page: e11936
  year: 2018
  ident: bib91
  article-title: Skin cancer classification using convolutional neural networks: systematic review
  publication-title: J Med Internet Res
– volume: 25
  start-page: 70
  year: 2019
  end-page: 74
  ident: bib6
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
  publication-title: Nat Med
– volume: 111
  start-page: 83
  year: 2018
  end-page: 89
  ident: bib16
  article-title: Natural language processing of clinical notes for identification of critical limb ischemia
  publication-title: Int J Med Inform
– volume: 5
  start-page: R115
  year: 2018
  end-page: R125
  ident: bib8
  article-title: Artificial intelligence and echocardiography
  publication-title: Echo Res Pract
– volume: 72
  start-page: 351
  year: 2018
  end-page: 366
  ident: bib62
  article-title: Medical therapy for heart failure with reduced ejection fraction: the CHAMP-HF registry
  publication-title: J Am Coll Cardiol
– volume: 12
  start-page: 1304
  year: 2019
  end-page: 1311
  ident: bib55
  article-title: Leveraging machine learning techniques to forecast patient prognosis after percutaneous coronary intervention
  publication-title: J Am Coll Cardiol Intv
– volume: 363
  start-page: 501
  year: 2010
  end-page: 504
  ident: bib84
  article-title: The "meaningful use" regulation for electronic health records
  publication-title: N Engl J Med
– volume: 8
  start-page: 438
  year: 2015
  end-page: 447
  ident: bib64
  article-title: Population risk prediction models for incident heart failure: a systematic review
  publication-title: Circ Heart Fail
– volume: 306
  start-page: 848
  year: 2011
  end-page: 855
  ident: bib19
  article-title: Automated identification of postoperative complications within an electronic medical record using natural language processing
  publication-title: JAMA
– volume: 3
  start-page: 409
  year: 2018
  end-page: 416
  ident: bib45
  article-title: Passive detection of atrial fibrillation using a commercially available smartwatch
  publication-title: JAMA Cardiol
– volume: 9
  start-page: e004330
  year: 2016
  ident: bib33
  article-title: Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy
  publication-title: Circ Cardiovasc Imaging
– volume: 136
  start-page: e137
  year: 2017
  end-page: e161
  ident: bib61
  article-title: 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America
  publication-title: Circulation
– volume: 13
  start-page: e0201059
  year: 2018
  ident: bib47
  article-title: Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: a proof of concept study
  publication-title: PLoS One
– volume: 3
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib5
  article-title: Classification of background parenchymal uptake on molecular breast imaging using a convolutional neural network
  publication-title: JCO Clin Cancer Inform
– volume: 15
  start-page: e1002705
  year: 2018
  ident: bib92
  article-title: Mobile detection of autism through machine learning on home video: a development and prospective validation study
  publication-title: PLoS Med
– volume: 301
  start-page: 1282
  year: 2009
  end-page: 1284
  ident: bib110
  article-title: Ownership of medical information
  publication-title: JAMA
– volume: 68
  start-page: 2287
  year: 2016
  end-page: 2295
  ident: bib32
  article-title: Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography
  publication-title: J Am Coll Cardiol
– volume: 71
  start-page: 2668
  year: 2018
  end-page: 2679
  ident: bib93
  article-title: Artificial intelligence in cardiology
  publication-title: J Am Coll Cardiol
– year: April 4-7, 2018
  ident: bib29
  article-title: Quantification of cardiac bull's-eye map based on principal strain analysis for myocardial wall motion assessment in stress echocardiography. Paper presented at: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– volume: 577
  start-page: 89
  year: 2020
  end-page: 94
  ident: bib90
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: Nature
– volume: 111
  start-page: 916
  year: 2019
  end-page: 922
  ident: bib2
  article-title: Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists
  publication-title: J Natl Cancer Inst
– volume: 54
  start-page: 549
  year: 2013
  end-page: 555
  ident: bib35
  article-title: Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm
  publication-title: J Nucl Med
– volume: 2
  start-page: 797
  year: 2016
  end-page: 804
  ident: bib12
  article-title: Natural language processing in oncology: a review
  publication-title: JAMA Oncol
– volume: 8
  start-page: 13
  year: 2016
  end-page: 22
  ident: bib85
  article-title: Toward a learning health-care system –knowledge delivery at the point of care empowered by big data and NLP
  publication-title: Biomed Inform Insights
– volume: 14
  start-page: 197
  year: 2017
  end-page: 212
  ident: bib41
  article-title: Cardiac imaging: working towards fully-automated machine analysis & interpretation
  publication-title: Expert Rev Med Devices
– volume: 467
  start-page: 99
  year: 2018
  end-page: 114
  ident: bib44
  article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: a review
  publication-title: Information Sciences
– volume: 18
  start-page: 1342
  year: 2016
  end-page: 1350
  ident: bib63
  article-title: Biomarker-based risk prediction in the community
  publication-title: Eur J Heart Fail
– ident: bib106
  article-title: Reporting standards and availability of data, materials, code and protocols. Nature Research website
– volume: 30
  start-page: 668
  year: 2019
  end-page: 674
  ident: bib7
  article-title: Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction
  publication-title: J Cardiovasc Electrophysiol
– volume: 9
  start-page: 679
  year: 2016
  end-page: 682
  ident: bib68
  article-title: Can big data fulfill its promise?
  publication-title: Circ Cardiovasc Qual Outcomes
– volume: 6
  start-page: e005958
  year: 2017
  ident: bib94
  article-title: Contemporary risk stratification after myocardial infarction in the community: performance of scores and incremental value of soluble suppression of tumorigenicity-2
  publication-title: J Am Heart Assoc
– volume: 20
  start-page: 1169
  year: 2018
  end-page: 1174
  ident: bib72
  article-title: The Hospital Readmissions Reduction Program—learning from failure of a healthcare policy
  publication-title: Eur J Heart Fail
– volume: 5
  start-page: e002746
  year: 2016
  ident: bib49
  article-title: Novel bloodless potassium determination using a signal-processed single-lead ECG
  publication-title: J Am Heart Assoc
– volume: 21
  start-page: 74
  year: 2019
  end-page: 85
  ident: bib74
  article-title: Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy
  publication-title: Eur J Heart Fail
– volume: 77
  start-page: 34
  year: 2018
  end-page: 49
  ident: bib86
  article-title: Clinical information extraction applications: a literature review
  publication-title: J Biomed Inform
– volume: 2
  start-page: 569
  year: 2005
  end-page: 574
  ident: bib46
  article-title: Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one
  publication-title: Heart Rhythm
– volume: 9
  start-page: 629
  year: 2016
  end-page: 640
  ident: bib71
  article-title: Analysis of machine learning techniques for heart failure readmissions
  publication-title: Circ Cardiovasc Qual Outcomes
– start-page: 696
  year: 2019
  end-page: 704
  ident: bib24
  article-title: Dual-view joint estimation of left ventricular ejection fraction with uncertainty modelling in echocardiograms
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
– volume: 61
  start-page: e78
  year: 2013
  end-page: e140
  ident: bib50
  article-title: 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines
  publication-title: J Am Coll Cardiol
– volume: 20
  start-page: 553
  year: 2013
  end-page: 562
  ident: bib36
  article-title: Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population
  publication-title: J Nucl Cardiol
– volume: 131
  start-page: 269
  year: 2015
  end-page: 279
  ident: bib76
  article-title: Phenomapping for novel classification of heart failure with preserved ejection fraction
  publication-title: Circulation
– volume: 41
  start-page: 2509
  year: 2018
  end-page: 2516
  ident: bib89
  article-title: An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs
  publication-title: Diabetes Care
– volume: 11
  start-page: 1654
  year: 2018
  end-page: 1663
  ident: bib37
  article-title: Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study
  publication-title: J Am Coll Cardiol Img
– volume: 84
  start-page: 660
  year: 2014
  end-page: 667
  ident: bib59
  article-title: Magnetic navigation facilitates percutaneous coronary intervention for complex lesions
  publication-title: Catheter Cardiovasc Interv
– year: Published July 25, 2017
  ident: bib99
  article-title: Biased AI is a threat to civil liberties: the ACLU has a plan to fix it. Fast Company & Inc website
– ident: bib103
  article-title: CMS Health Outcomes Challenge. Centers for Medicare and Medicaid Services website
– volume: 38
  start-page: 1805
  year: 2017
  end-page: 1814
  ident: bib9
  article-title: Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges
  publication-title: Eur Heart J
– year: 2020
  ident: bib15
  article-title: Natural language processing. Wikipedia website
– volume: 64
  start-page: 1765
  year: 2014
  end-page: 1774
  ident: bib77
  article-title: Clinical implications of chronic heart failure phenotypes defined by cluster analysis
  publication-title: J Am Coll Cardiol
– start-page: II
  year: 2001
  end-page: 696
  ident: bib48
  article-title: 2D-3D rigid registration of X-ray fluoroscopy and CT images using mutual information and sparsely sampled histogram estimators [abstract]
  publication-title: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition: CVPR 2001
– volume: 2
  start-page: 158
  year: 2018
  end-page: 164
  ident: bib81
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat Biomed Eng
– volume: 121
  start-page: 1092
  year: 2017
  end-page: 1101
  ident: bib80
  article-title: Cardiovascular event prediction by machine learning: the Multi-Ethnic Study of Atherosclerosis
  publication-title: Circ Res
– volume: 9
  start-page: 618
  year: 2016
  end-page: 620
  ident: bib67
  article-title: Learning about machine learning: the promise and pitfalls of big data and the electronic health record [editorial]
  publication-title: Circ Cardiovasc Qual Outcomes
– volume: 18
  start-page: 44
  year: 2018
  ident: bib70
  article-title: A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data
  publication-title: BMC Med Inform Decis Mak
– volume: 51
  start-page: 260
  year: 2018
  end-page: 264
  ident: bib51
  article-title: Smartphone ECG for evaluation of ST-segment elevation myocardial infarction (STEMI): design of the ST LEUIS International Multicenter Study
  publication-title: J Electrocardiol
– year: Published April 17, 2017
  ident: bib100
  article-title: Courts are using AI to sentence criminals: that must stop now. WIRED website
– ident: bib101
  article-title: Google’s effort to prevent blindness shows AI challenges. Wall Street Journal website
– volume: 13
  start-page: 395
  year: 2012
  end-page: 405
  ident: bib10
  article-title: Mining electronic health records: towards better research applications and clinical care
  publication-title: Nat Rev Genet
– volume: 14
  start-page: 94
  year: 2018
  ident: bib105
  article-title: Sharing public health data and information across borders: lessons from Southeast Asia
  publication-title: Global Health
– volume: 1
  start-page: 6
  year: 2018
  ident: bib30
  article-title: Fast and accurate view classification of echocardiograms using deep learning
  publication-title: NPJ Digit Med
– volume: 8
  start-page: e011685
  year: 2019
  ident: bib58
  article-title: Angiography-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions
  publication-title: J Am Heart Assoc
– volume: 7
  start-page: e009476
  year: 2018
  ident: bib79
  article-title: Machine learning outperforms ACC/AHA CVD Risk Calculator in MESA
  publication-title: J Am Heart Assoc
– volume: 306
  start-page: 880
  year: 2011
  end-page: 881
  ident: bib13
  article-title: The promise of electronic records: around the corner or down the road [editorial]?
  publication-title: JAMA
– volume: 64
  start-page: 1765
  issue: 17
  year: 2014
  ident: 10.1016/j.mayocp.2020.01.038_bib77
  article-title: Clinical implications of chronic heart failure phenotypes defined by cluster analysis
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2014.07.979
– volume: 138
  start-page: 1623
  issue: 16
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib28
  article-title: Fully automated echocardiogram interpretation in clinical practice
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.034338
– volume: 9
  start-page: 618
  issue: 6
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib67
  article-title: Learning about machine learning: the promise and pitfalls of big data and the electronic health record [editorial]
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.116.003308
– volume: 62
  start-page: 224
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib21
  article-title: Using automatically extracted information from mammography reports for decision-support
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2016.07.001
– volume: 15
  start-page: e1002705
  issue: 11
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib92
  article-title: Mobile detection of autism through machine learning on home video: a development and prospective validation study
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002705
– volume: 11
  start-page: 1000
  issue: 7
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib39
  article-title: Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning
  publication-title: JACC Cardiovasc Imaging
  doi: 10.1016/j.jcmg.2017.07.024
– volume: 8
  start-page: e011685
  issue: 4
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib58
  article-title: Angiography-based machine learning for predicting fractional flow reserve in intermediate coronary artery lesions
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.118.011685
– ident: 10.1016/j.mayocp.2020.01.038_bib40
– volume: 5
  start-page: e002746
  issue: 1
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib49
  article-title: Novel bloodless potassium determination using a signal-processed single-lead ECG
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.115.002746
– volume: 9
  start-page: 629
  issue: 6
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib71
  article-title: Analysis of machine learning techniques for heart failure readmissions
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.116.003039
– volume: 290
  start-page: 305
  issue: 2
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib3
  article-title: Detection of breast cancer with mammography: effect of an artificial intelligence support system
  publication-title: Radiology
  doi: 10.1148/radiol.2018181371
– volume: 9
  start-page: 649
  issue: 6
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib65
  article-title: Early detection of heart failure using electronic health records: practical implications for time before diagnosis, data diversity, data quantity, and data density
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.116.002797
– volume: 56
  start-page: 229
  year: 2015
  ident: 10.1016/j.mayocp.2020.01.038_bib69
  article-title: A comparison of models for predicting early hospital readmissions
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2015.05.016
– volume: 131
  start-page: 269
  issue: 3
  year: 2015
  ident: 10.1016/j.mayocp.2020.01.038_bib76
  article-title: Phenomapping for novel classification of heart failure with preserved ejection fraction
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.114.010637
– volume: 30
  start-page: 668
  issue: 5
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib7
  article-title: Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction
  publication-title: J Cardiovasc Electrophysiol
  doi: 10.1111/jce.13889
– volume: 9
  start-page: 679
  issue: 6
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib68
  article-title: Can big data fulfill its promise?
  publication-title: Circ Cardiovasc Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.116.003097
– volume: 24
  start-page: 682
  issue: 10
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib73
  article-title: Remote monitoring of patients with heart failure: a white paper from the Heart Failure Society of America Scientific Statements Committee
  publication-title: J Card Fail
  doi: 10.1016/j.cardfail.2018.08.011
– volume: 2
  start-page: 569
  issue: 6
  year: 2005
  ident: 10.1016/j.mayocp.2020.01.038_bib46
  article-title: Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2005.02.011
– volume: 8
  start-page: 438
  issue: 3
  year: 2015
  ident: 10.1016/j.mayocp.2020.01.038_bib64
  article-title: Population risk prediction models for incident heart failure: a systematic review
  publication-title: Circ Heart Fail
  doi: 10.1161/CIRCHEARTFAILURE.114.001896
– volume: 6
  start-page: e005958
  issue: 10
  year: 2017
  ident: 10.1016/j.mayocp.2020.01.038_bib94
  article-title: Contemporary risk stratification after myocardial infarction in the community: performance of scores and incremental value of soluble suppression of tumorigenicity-2
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.117.005958
– volume: 7
  start-page: 12692
  issue: 1
  year: 2017
  ident: 10.1016/j.mayocp.2020.01.038_bib56
  article-title: Machine learning improves risk stratification after acute coronary syndrome
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-12951-x
– volume: 2
  start-page: 42
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib108
  article-title: Pragmatic considerations for fostering reproducible research in artificial intelligence
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0120-2
– ident: 10.1016/j.mayocp.2020.01.038_bib100
– volume: 8
  start-page: 13
  issue: suppl 1
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib85
  article-title: Toward a learning health-care system –knowledge delivery at the point of care empowered by big data and NLP
  publication-title: Biomed Inform Insights
– volume: 41
  start-page: 2509
  issue: 12
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib89
  article-title: An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs
  publication-title: Diabetes Care
  doi: 10.2337/dc18-0147
– volume: 2
  start-page: 797
  issue: 6
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib12
  article-title: Natural language processing in oncology: a review
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2016.0213
– volume: 2
  start-page: 52
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib52
  article-title: Contactless cardiac arrest detection using smart devices
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0128-7
– volume: 7
  start-page: e009680
  issue: 23
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib88
  article-title: Leveraging the electronic health record to create an automated real-time prognostic tool for peripheral arterial disease
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.118.009680
– volume: 3
  start-page: 409
  issue: 5
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib45
  article-title: Passive detection of atrial fibrillation using a commercially available smartwatch
  publication-title: JAMA Cardiol
  doi: 10.1001/jamacardio.2018.0136
– volume: 11
  start-page: e005499
  issue: 1
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib75
  article-title: Machine learning algorithm predicts cardiac resynchronization therapy outcomes: lessons from the COMPANION trial
  publication-title: Circ Arrhythm Electrophysiol
  doi: 10.1161/CIRCEP.117.005499
– start-page: II
  year: 2001
  ident: 10.1016/j.mayocp.2020.01.038_bib48
  article-title: 2D-3D rigid registration of X-ray fluoroscopy and CT images using mutual information and sparsely sampled histogram estimators [abstract]
– volume: 309
  start-page: 991
  issue: 10
  year: 2013
  ident: 10.1016/j.mayocp.2020.01.038_bib83
  article-title: Improving the electronic health record—are clinicians getting what they wished for?
  publication-title: JAMA
  doi: 10.1001/jama.2013.890
– volume: 577
  start-page: 89
  issue: 7788
  year: 2020
  ident: 10.1016/j.mayocp.2020.01.038_bib90
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: Nature
  doi: 10.1038/s41586-019-1799-6
– volume: 42
  start-page: 760
  issue: 5
  year: 2009
  ident: 10.1016/j.mayocp.2020.01.038_bib14
  article-title: What can natural language processing do for clinical decision support?
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2009.08.007
– volume: 65
  start-page: 1753
  issue: 6
  year: 2017
  ident: 10.1016/j.mayocp.2020.01.038_bib17
  article-title: Mining peripheral arterial disease cases from narrative clinical notes using natural language processing
  publication-title: J Vasc Surg
  doi: 10.1016/j.jvs.2016.11.031
– volume: 54
  start-page: 549
  issue: 4
  year: 2013
  ident: 10.1016/j.mayocp.2020.01.038_bib35
  article-title: Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.112.111542
– volume: 11
  start-page: 1654
  issue: 11
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib37
  article-title: Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study
  publication-title: J Am Coll Cardiol Img
  doi: 10.1016/j.jcmg.2018.01.020
– ident: 10.1016/j.mayocp.2020.01.038_bib98
– volume: 25
  start-page: 70
  issue: 1
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib6
  article-title: Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0240-2
– volume: 1
  start-page: 6
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib30
  article-title: Fast and accurate view classification of echocardiograms using deep learning
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-017-0013-1
– volume: 18
  start-page: 1342
  issue: 11
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib63
  article-title: Biomarker-based risk prediction in the community
  publication-title: Eur J Heart Fail
  doi: 10.1002/ejhf.663
– volume: 10
  start-page: 3069
  issue: 1
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib109
  article-title: Estimating the success of re-identifications in incomplete datasets using generative models
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10933-3
– volume: 38
  start-page: 1805
  issue: 23
  year: 2017
  ident: 10.1016/j.mayocp.2020.01.038_bib9
  article-title: Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges
  publication-title: Eur Heart J
– volume: 13
  start-page: 374
  issue: 2, pt 1
  year: 2020
  ident: 10.1016/j.mayocp.2020.01.038_bib23
  article-title: A Deep Learning approach for assessment of regional wall motion abnormality from echocardiographic images
  publication-title: J Am Coll Cardiol Img
  doi: 10.1016/j.jcmg.2019.02.024
– volume: 306
  start-page: 880
  issue: 8
  year: 2011
  ident: 10.1016/j.mayocp.2020.01.038_bib13
  article-title: The promise of electronic records: around the corner or down the road [editorial]?
  publication-title: JAMA
  doi: 10.1001/jama.2011.1219
– volume: 21
  start-page: 74
  issue: 1
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib74
  article-title: Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy
  publication-title: Eur J Heart Fail
  doi: 10.1002/ejhf.1333
– volume: 61
  start-page: e78
  issue: 4
  year: 2013
  ident: 10.1016/j.mayocp.2020.01.038_bib50
  article-title: 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2012.11.019
– volume: 84
  start-page: 660
  issue: 4
  year: 2014
  ident: 10.1016/j.mayocp.2020.01.038_bib59
  article-title: Magnetic navigation facilitates percutaneous coronary intervention for complex lesions
  publication-title: Catheter Cardiovasc Interv
– volume: 22
  start-page: 877
  issue: 5
  year: 2015
  ident: 10.1016/j.mayocp.2020.01.038_bib38
  article-title: Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-014-0027-x
– volume: 53
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib1
  article-title: Artificial intelligence in pathology
  publication-title: J Pathol Transl Med
  doi: 10.4132/jptm.2018.12.16
– volume: 51
  start-page: 260
  issue: 2
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib51
  article-title: Smartphone ECG for evaluation of ST-segment elevation myocardial infarction (STEMI): design of the ST LEUIS International Multicenter Study
  publication-title: J Electrocardiol
  doi: 10.1016/j.jelectrocard.2017.10.011
– ident: 10.1016/j.mayocp.2020.01.038_bib101
– volume: 132
  start-page: 1920
  issue: 20
  year: 2015
  ident: 10.1016/j.mayocp.2020.01.038_bib66
  article-title: Machine learning in medicine
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.001593
– volume: 136
  start-page: e137
  issue: 6
  year: 2017
  ident: 10.1016/j.mayocp.2020.01.038_bib61
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000509
– volume: 121
  start-page: 1092
  issue: 9
  year: 2017
  ident: 10.1016/j.mayocp.2020.01.038_bib80
  article-title: Cardiovascular event prediction by machine learning: the Multi-Ethnic Study of Atherosclerosis
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.117.311312
– volume: 2
  start-page: 158
  issue: 3
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib81
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0195-0
– start-page: 696
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib24
  article-title: Dual-view joint estimation of left ventricular ejection fraction with uncertainty modelling in echocardiograms
– volume: 12
  start-page: 1304
  issue: 14
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib55
  article-title: Leveraging machine learning techniques to forecast patient prognosis after percutaneous coronary intervention
  publication-title: J Am Coll Cardiol Intv
  doi: 10.1016/j.jcin.2019.02.035
– volume: 45
  start-page: 374
  issue: 2
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib27
  article-title: Real-time standard view classification in transthoracic echocardiography using convolutional neural networks
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2018.07.024
– ident: 10.1016/j.mayocp.2020.01.038_bib112
– volume: 301
  start-page: 1282
  issue: 12
  year: 2009
  ident: 10.1016/j.mayocp.2020.01.038_bib110
  article-title: Ownership of medical information
  publication-title: JAMA
  doi: 10.1001/jama.2009.389
– volume: 24
  start-page: 1157
  issue: 13-14
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib60
  article-title: Nanoparticle-mediated cell capture enables rapid endothelialization of a novel bare metal stent
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2017.0404
– volume: 70
  start-page: 1704
  issue: 14
  year: 2017
  ident: 10.1016/j.mayocp.2020.01.038_bib31
  article-title: Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2017.07.792
– volume: 13
  start-page: 395
  issue: 6
  year: 2012
  ident: 10.1016/j.mayocp.2020.01.038_bib10
  article-title: Mining electronic health records: towards better research applications and clinical care
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3208
– volume: 14
  start-page: 736
  issue: 6
  year: 2007
  ident: 10.1016/j.mayocp.2020.01.038_bib20
  article-title: Collection of cancer stage data by classifying free-text medical reports
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M2130
– volume: 68
  start-page: 2287
  issue: 21
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib32
  article-title: Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2016.08.062
– volume: 108
  start-page: 147
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib97
  article-title: Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2018.09.017
– volume: 72
  start-page: 351
  issue: 4
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib62
  article-title: Medical therapy for heart failure with reduced ejection fraction: the CHAMP-HF registry
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.04.070
– volume: 2014
  start-page: 1940
  year: 2014
  ident: 10.1016/j.mayocp.2020.01.038_bib54
  article-title: Machine learning for risk prediction of acute coronary syndrome
  publication-title: AMIA Annu Symp Proc
– volume: 21
  start-page: 427
  issue: 3
  year: 2014
  ident: 10.1016/j.mayocp.2020.01.038_bib34
  article-title: Clinical decision support systems in myocardial perfusion imaging
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-014-9857-9
– volume: 2013
  start-page: 149
  year: 2013
  ident: 10.1016/j.mayocp.2020.01.038_bib87
  article-title: An information extraction framework for cohort identification using electronic health records
  publication-title: AMIA Jt Summits Transl Sci Proc
– volume: 60
  start-page: 550
  issue: 4-5
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib43
  article-title: Clinical implications of technological advances in screening for atrial fibrillation
  publication-title: Prog Cardiovasc Dis
  doi: 10.1016/j.pcad.2018.01.007
– volume: 20
  start-page: e11936
  issue: 10
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib91
  article-title: Skin cancer classification using convolutional neural networks: systematic review
  publication-title: J Med Internet Res
  doi: 10.2196/11936
– volume: 2018
  start-page: 256
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib53
  article-title: A Deep Learning Approach to Examine Ischemic ST Changes in Ambulatory ECG Recordings
  publication-title: AMIA Jt Summits Transl Sci Proc
– year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib57
– volume: 1
  start-page: 138
  issue: 1
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib104
  article-title: Evolving data access policy: the Canadian context
  publication-title: Facets (Ott)
– volume: 12
  start-page: 681
  issue: 4
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib25
  article-title: Predicting survival from large echocardiography and electronic health record datasets: optimization with machine learning
  publication-title: J Am Coll Cardiol Img
  doi: 10.1016/j.jcmg.2018.04.026
– volume: 467
  start-page: 99
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib44
  article-title: Computer-aided diagnosis of atrial fibrillation based on ECG signals: a review
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.07.063
– volume: 32
  start-page: 1138
  issue: 6
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib4
  article-title: Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence
  publication-title: Eye (Lond)
  doi: 10.1038/s41433-018-0064-9
– volume: 7
  start-page: e009476
  issue: 22
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib79
  article-title: Machine learning outperforms ACC/AHA CVD Risk Calculator in MESA
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.118.009476
– volume: 77
  start-page: 34
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib86
  article-title: Clinical information extraction applications: a literature review
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2017.11.011
– volume: 20
  start-page: 1169
  issue: 8
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib72
  article-title: The Hospital Readmissions Reduction Program—learning from failure of a healthcare policy
  publication-title: Eur J Heart Fail
  doi: 10.1002/ejhf.1212
– volume: 12
  start-page: e006834
  issue: 6
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib42
  article-title: Smartwatch performance for the detection and quantification of atrial fibrillation
  publication-title: Circ Arrhythm Electrophysiol
  doi: 10.1161/CIRCEP.118.006834
– volume: 111
  start-page: 83
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib16
  article-title: Natural language processing of clinical notes for identification of critical limb ischemia
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2017.12.024
– volume: 9
  start-page: e004330
  issue: 6
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib33
  article-title: Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.115.004330
– volume: 73
  start-page: 14
  year: 2017
  ident: 10.1016/j.mayocp.2020.01.038_bib18
  article-title: Natural language processing systems for capturing and standardizing unstructured clinical information: a systematic review
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2017.07.012
– volume: 111
  start-page: 916
  issue: 9
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib2
  article-title: Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djy222
– volume: 279
  start-page: 329
  issue: 2
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib11
  article-title: Natural language processing in radiology: a systematic review
  publication-title: Radiology
  doi: 10.1148/radiol.16142770
– volume: 71
  start-page: 2668
  issue: 23
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib93
  article-title: Artificial intelligence in cardiology
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.03.521
– volume: 13
  start-page: e0201059
  issue: 8
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib47
  article-title: Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: a proof of concept study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0201059
– volume: 18
  start-page: 44
  issue: 1
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib70
  article-title: A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-018-0620-z
– volume: 11
  start-page: e1005716
  issue: 12
  year: 2015
  ident: 10.1016/j.mayocp.2020.01.038_bib107
  article-title: PLOS Genetics data sharing policy: in pursuit of functional utility
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005716
– volume: 14
  start-page: 94
  issue: 1
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib105
  article-title: Sharing public health data and information across borders: lessons from Southeast Asia
  publication-title: Global Health
  doi: 10.1186/s12992-018-0415-0
– volume: 3
  start-page: 1
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib5
  article-title: Classification of background parenchymal uptake on molecular breast imaging using a convolutional neural network
  publication-title: JCO Clin Cancer Inform
  doi: 10.1200/CCI.18.00133
– volume: 36
  start-page: 213
  issue: 2
  year: 2019
  ident: 10.1016/j.mayocp.2020.01.038_bib26
  article-title: Deep learning for predicting in-hospital mortality among heart disease patients based on echocardiography
  publication-title: Echocardiography
  doi: 10.1111/echo.14220
– volume: 20
  start-page: 553
  issue: 4
  year: 2013
  ident: 10.1016/j.mayocp.2020.01.038_bib36
  article-title: Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-013-9706-2
– volume: 14
  start-page: 493
  issue: 8
  year: 2017
  ident: 10.1016/j.mayocp.2020.01.038_bib95
  article-title: Efficient design of clinical trials and epidemiological research: is it possible?
  publication-title: Nat Rev Cardiol
  doi: 10.1038/nrcardio.2017.60
– year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib29
– volume: 93
  start-page: 840
  issue: 7
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib82
  article-title: Voice signal characteristics are independently associated with coronary artery disease
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2017.12.025
– ident: 10.1016/j.mayocp.2020.01.038_bib99
– volume: 306
  start-page: 848
  issue: 8
  year: 2011
  ident: 10.1016/j.mayocp.2020.01.038_bib19
  article-title: Automated identification of postoperative complications within an electronic medical record using natural language processing
  publication-title: JAMA
  doi: 10.1001/jama.2011.1204
– volume: 23
  start-page: 119
  issue: 2
  year: 2010
  ident: 10.1016/j.mayocp.2020.01.038_bib22
  article-title: Discerning tumor status from unstructured MRI reports—completeness of information in existing reports and utility of automated natural language processing
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-009-9215-7
– volume: 5
  start-page: R115
  issue: 4
  year: 2018
  ident: 10.1016/j.mayocp.2020.01.038_bib8
  article-title: Artificial intelligence and echocardiography
  publication-title: Echo Res Pract
  doi: 10.1530/ERP-18-0056
– volume: 363
  start-page: 501
  issue: 6
  year: 2010
  ident: 10.1016/j.mayocp.2020.01.038_bib84
  article-title: The "meaningful use" regulation for electronic health records
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1006114
– volume: 37
  start-page: 269
  issue: 2
  year: 1976
  ident: 10.1016/j.mayocp.2020.01.038_bib78
  article-title: Some lessons in cardiovascular epidemiology from Framingham
  publication-title: Am J Cardiol
  doi: 10.1016/0002-9149(76)90323-4
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: 10.1016/j.mayocp.2020.01.038_bib96
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 14
  start-page: 197
  issue: 3
  year: 2017
  ident: 10.1016/j.mayocp.2020.01.038_bib41
  article-title: Cardiac imaging: working towards fully-automated machine analysis & interpretation
  publication-title: Expert Rev Med Devices
  doi: 10.1080/17434440.2017.1300057
SSID ssj0007994
Score 2.6265457
SecondaryResourceType review_article
Snippet Artificial intelligence (AI) is a nontechnical, popular term that refers to machine learning of various types but most often to deep neural networks....
SourceID proquest
gale
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1015
SubjectTerms Algorithms
Artificial intelligence
Cardiology
Electrocardiography
Learning algorithms
Machine learning
Natural language processing
Neural networks
Statistical analysis
Title Artificial Intelligence in Cardiology: Present and Future
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0025619620301385
https://dx.doi.org/10.1016/j.mayocp.2020.01.038
https://www.ncbi.nlm.nih.gov/pubmed/32370835
https://www.proquest.com/docview/2401328127
https://www.proquest.com/docview/2399236770
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Consumer Health Database
  customDbUrl:
  eissn: 1942-5546
  dateEnd: 20201231
  omitProxy: false
  ssIdentifier: ssj0007994
  issn: 0025-6196
  databaseCode: M0R
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/familyhealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1942-5546
  dateEnd: 20201231
  omitProxy: false
  ssIdentifier: ssj0007994
  issn: 0025-6196
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & allied health premium.
  customDbUrl:
  eissn: 1942-5546
  dateEnd: 20201231
  omitProxy: false
  ssIdentifier: ssj0007994
  issn: 0025-6196
  databaseCode: 7RV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1942-5546
  dateEnd: 20201231
  omitProxy: false
  ssIdentifier: ssj0007994
  issn: 0025-6196
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1942-5546
  dateEnd: 20201231
  omitProxy: false
  ssIdentifier: ssj0007994
  issn: 0025-6196
  databaseCode: 8C1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1942-5546
  dateEnd: 20201231
  omitProxy: false
  ssIdentifier: ssj0007994
  issn: 0025-6196
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0FemL3x_RWiMIPgWTzeVm44u0Rw996HEUlXtbsh-BFs21vavgf-_M7ia2RVrBl4WQncDuTOZjd-Y3AG-5rSpZDZ05K8ps5GSeaWwpSmlzYdtGOsTQbAJnM7lY1PN44LaKaZW9TvSK2i4Nn5G_FxwICDJH-PHkNOOuUXy7Glto3IbNgm03yTMefhs0Mdb1qG_ZSoHCuC-d8_ldP5pfS8OIlSL3wJ1cofJ303RVV1_xQL0lmt7_3zU8gHvRB013g9A8hFuuewR3D-It-2Oo-U1Alkg_X4DsTI-6dOLzV_ko_kM6D6VLadPZdOqxSZ7A1-n-l8mnLLZYyAzFHeusMBqFdmVVyFZa1JbxuupWV9hIK6tGuFoSEymGNoW1uTOa-wxVRkpNnodty6ew0S079xxSLMcjhp9zjkIsJL_HSKctMV4jUZVNAmW_u8pE_HFug_Fd9YlmxyrwRDFPVF4o4kkC2UB1EvA3bphf9YxTfW0paUNFBuIGOhzoou8RfIp_oHzN8qFC3eqgMNQuhYrI-P7jBN75GawyaMWmiZUPtG8MvnVp5nYvOCrqkpX6IzUJvBlekxbgq52mc8tzmsP4wuUYMU_gWRDOYbtKUSI72i-u__hL2OJVhWTObdhYn527V3DH_Fwfrc52_I_F4wL9KGmUk2IHNvf2Z_NDejrI_SjmvwG2qC7Y
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70egUCOBOEXNOpsdBwmhqrDqqu2qhyLtzcSPSEWQLd0tqH-K38hMHAeoEOXSA-d4Itv5PI945huA59xWlayGSb2TeTr0KksN1hSl1Jl0daU8Ymg2gdOpms3K_RX4HmthOK0y6sRWUbu55X_kG5IDAUnmCN8cfUm5axTfrsYWGgEWO_70G4Vsi9eTt_R9X0g5fnewtZ12XQVSS672Mh1Yg9L4vBioWjk0jimqytoUWCmnikr6UtG8KWy0A-cybw231imsUoaMratzeu8luEx6HDmFDGd9gJdhWQ5ji1gKTEaxVK_NJ_tcnc4tM2TKrCUK5YqYP5vCs7bhjMfbWr7xzf9tz27Bjc7HFpvhUNyGFd_cgat7XRbBXSj5SWDOEJNfKEnFYSO22vxcvmp4JfZDaZaoGifGLffKPXh_IRO_D6vNvPEPQWA-GjK9nvcUQiL5dVZ54wjYBkkqrxLI49fUtuNX5zYfn3RMpPuoAwY0Y0BnA00YSCDtpY4Cv8g544sIFB1rZ0nbazKA58hhL9f5VsFn-gfJdcajDnW5vULUmxQKI_cvGCXwsh3BKpFWbKuusoP2jcnFfhu5FoGqO1250D9RmsCz_jFpOb66qho_P6ExzJ-cjxCzBB6Ew9BvVy5z5EDi0d9fvg7Xtg_2dvXuZLrzGK7zCkPi6hqsLo9P_BO4Yr8uDxfHT9tDLeDDRZ-IH8trhgU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgqpeeD8MhRoJxMmqsxtn1kgIVS0RUWmUA0i9Ld6HpSLqlCYF9a_x65jxeg1UiHLpgbN3rOx6ntmZ7wN4xrSqFDVM5p2Q2dCrPDNYU5VS58LVlfKIgWwCp1N1cFDOVuB7nIXhtsroE1tH7eaW_yPfElwICApHuFV3bRGz3fHr4y8ZM0jxTWuk0wgqsufPvlH5tng12aVv_VyI8Zv3O2-zjmEgs5R2L7OBNSiMl8VA1cqhcQxXVdamwEo5VVTCl4r2QCWkHTiXe2uYZqewShkKvK6W9N4rcBWHRcHWtS9mfRTAshxGulgqUkZxbK_tLTuqzuaW0TJF3oKG8nTMn8Pi-ThxLvtto-D4xv98fjfhepd7p9vBWG7Bim9uw9p-111wB0p-EhA10skvUKXpYZPutH27fAXxMp2Fka20alw6bjFZ7sKHS_nh92C1mTf-AaQoR0OG3fOeSkukfM8qbxwpvEGSklUCMn5ZbTvcdab_-Kxjg90nHfRBsz7ofKBJHxLIeqnjgDtywfoiKo2OM7UUBTQFxgvksJfrcq6QS_2D5Cbrpg7zur2j1NtUIiPzGowSeNGuYFdJO7ZVN_FB58agY7-t3IhKqzsfutA_NTaBp_1j8n58pVU1fn5KaxhXWY4Q8wTuB8Poj0sKiVxgPPz7yzdhjQxBv5tM9x7BOm8w9LNuwOry5NQ_hmv26_JwcfKkte8UPl62QfwAXZaO0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+in+Cardiology%3A+Present+and+Future&rft.jtitle=Mayo+Clinic+proceedings&rft.au=Lopez-Jimenez%2C+Francisco&rft.au=Attia%2C+Zachi&rft.au=Arruda-Olson%2C+Adelaide+M&rft.au=Carter%2C+Rickey&rft.date=2020-05-01&rft.pub=Elsevier+Limited&rft.issn=0025-6196&rft.volume=95&rft.issue=5&rft.spage=1015&rft.epage=1039&rft_id=info:doi/10.1016%2Fj.mayocp.2020.01.038&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-6196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-6196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-6196&client=summon