Comparative study on NO2 and H2S sensing mechanisms of gas sensors based on WS2 nanosheets

•WS2 nanosheets with edge size about 10 nm were synthesized by the sulfurization of the WO3 nanomesh.•The sensor based on WS2 nanosheets exhibited p-type sensing properties and excellent selectivity to NO2 gas at a low temperature of 160 °C.•The different sensing mechanisms of WS2 nanosheets for NO2...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Vol. 303; p. 127114
Main Authors: Liu, Di, Tang, Zilong, Zhang, Zhongtai
Format: Journal Article
Language:English
Published: Lausanne Elsevier B.V 15.01.2020
Elsevier Science Ltd
Subjects:
ISSN:0925-4005, 1873-3077
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •WS2 nanosheets with edge size about 10 nm were synthesized by the sulfurization of the WO3 nanomesh.•The sensor based on WS2 nanosheets exhibited p-type sensing properties and excellent selectivity to NO2 gas at a low temperature of 160 °C.•The different sensing mechanisms of WS2 nanosheets for NO2 and H2S sensing were proposed based on the experimental results. Due to their high intrinsic conductivity and narrow band gap, nanostructured metal sulfides have attracted considerable attention as promising gas sensing materials. Here, we report the WS2 nanosheets with edge size only about 10 nm synthesized by sulfurization of the WO3 nanomesh. The WS2 nanosheets exhibit p-type sensing characteristics and excellent selectivity to NO2 at a low temperature of 160 °C, which can be attributed to the strong physical affinity of the WS2 nanosheets to the NO2 gas molecules. Importantly, by designing sensing experiments under different background gases, we found that WS2 nanosheets do not require oxygen for NO2 sensing, while oxygen is required for H2S sensing. Therefore, based on the adsorption and desorption and charge transfer between WS2 nanosheets and adsorbed gas molecules, we propose different sensing mechanisms of WS2 nanosheets for NO2 and H2S sensing.
AbstractList Due to their high intrinsic conductivity and narrow band gap, nanostructured metal sulfides have attracted considerable attention as promising gas sensing materials. Here, we report the WS2 nanosheets with edge size only about 10 nm synthesized by sulfurization of the WO3 nanomesh. The WS2 nanosheets exhibit p-type sensing characteristics and excellent selectivity to NO2 at a low temperature of 160 °C, which can be attributed to the strong physical affinity of the WS2 nanosheets to the NO2 gas molecules. Importantly, by designing sensing experiments under different background gases, we found that WS2 nanosheets do not require oxygen for NO2 sensing, while oxygen is required for H2S sensing. Therefore, based on the adsorption and desorption and charge transfer between WS2 nanosheets and adsorbed gas molecules, we propose different sensing mechanisms of WS2 nanosheets for NO2 and H2S sensing.
•WS2 nanosheets with edge size about 10 nm were synthesized by the sulfurization of the WO3 nanomesh.•The sensor based on WS2 nanosheets exhibited p-type sensing properties and excellent selectivity to NO2 gas at a low temperature of 160 °C.•The different sensing mechanisms of WS2 nanosheets for NO2 and H2S sensing were proposed based on the experimental results. Due to their high intrinsic conductivity and narrow band gap, nanostructured metal sulfides have attracted considerable attention as promising gas sensing materials. Here, we report the WS2 nanosheets with edge size only about 10 nm synthesized by sulfurization of the WO3 nanomesh. The WS2 nanosheets exhibit p-type sensing characteristics and excellent selectivity to NO2 at a low temperature of 160 °C, which can be attributed to the strong physical affinity of the WS2 nanosheets to the NO2 gas molecules. Importantly, by designing sensing experiments under different background gases, we found that WS2 nanosheets do not require oxygen for NO2 sensing, while oxygen is required for H2S sensing. Therefore, based on the adsorption and desorption and charge transfer between WS2 nanosheets and adsorbed gas molecules, we propose different sensing mechanisms of WS2 nanosheets for NO2 and H2S sensing.
ArticleNumber 127114
Author Zhang, Zhongtai
Liu, Di
Tang, Zilong
Author_xml – sequence: 1
  givenname: Di
  surname: Liu
  fullname: Liu, Di
– sequence: 2
  givenname: Zilong
  surname: Tang
  fullname: Tang, Zilong
  email: tzl@tsinghua.edu.cn
– sequence: 3
  givenname: Zhongtai
  surname: Zhang
  fullname: Zhang, Zhongtai
BookMark eNp9kMFOAjEQhhuDiYA-gLcmnhfbbtmWeDJExYTIAY2Jl6bbnYUSaLGzkPD2LuLJA6c5zP_9k_l6pBNiAEJuORtwxov71QBDORCMjwZcKM7lBelyrfIsZ0p1SJeNxDCTjA2vSA9xxRiTecG65GscN1ubbOP3QLHZVQcaA32bCWpDRSdiThEC-rCgG3BLGzxukMaaLiz-bmJCWlqE6oh9zgUNNkRcAjR4TS5ru0a4-Zt98vH89D6eZNPZy-v4cZo5KXSTcatcVSolueYgYFjXWoDUpSpkpVRd6EJXOWgonCqFUCNWlNIJkecjBRaczvvk7tS7TfF7B9iYVdyl0J40bUoKpnQ-bFP8lHIpIiaozTb5jU0Hw5k5KjQr0yo0R4XmpLBl1D_G-aZVFUOTrF-fJR9OJLSP7z0kg85DcFD5BK4xVfRn6B-KtIv9
CitedBy_id crossref_primary_10_1016_j_jallcom_2022_166868
crossref_primary_10_1016_j_snb_2024_136018
crossref_primary_10_1088_1402_4896_ad91f7
crossref_primary_10_1016_j_sna_2023_114860
crossref_primary_10_1016_j_jallcom_2022_167950
crossref_primary_10_1039_D2QI01378A
crossref_primary_10_1016_j_snb_2021_129566
crossref_primary_10_1007_s12596_023_01192_z
crossref_primary_10_20517_cs_2024_138
crossref_primary_10_1002_smll_202304307
crossref_primary_10_1016_j_apsusc_2021_151535
crossref_primary_10_1016_j_colsurfa_2024_135550
crossref_primary_10_1016_j_apsusc_2022_152508
crossref_primary_10_1016_j_cej_2025_163418
crossref_primary_10_1016_j_matchemphys_2023_128491
crossref_primary_10_1016_j_ceramint_2022_05_175
crossref_primary_10_1016_j_physb_2024_415936
crossref_primary_10_1007_s11224_025_02488_5
crossref_primary_10_1016_j_surfin_2023_103518
crossref_primary_10_1016_j_snb_2020_128993
crossref_primary_10_1016_j_inoche_2021_108752
crossref_primary_10_1002_sstr_202500044
crossref_primary_10_1016_j_snb_2022_133137
crossref_primary_10_1016_j_snb_2020_128194
crossref_primary_10_1016_j_flatc_2024_100666
crossref_primary_10_1016_j_mtchem_2025_102998
crossref_primary_10_1016_j_sna_2023_114854
crossref_primary_10_1016_j_matchemphys_2020_124181
crossref_primary_10_1109_JSEN_2021_3104615
crossref_primary_10_3390_chemosensors10040132
crossref_primary_10_1109_JSEN_2021_3103925
crossref_primary_10_1016_j_rinp_2025_108232
crossref_primary_10_1063_5_0179343
crossref_primary_10_1002_adma_202507829
crossref_primary_10_1016_j_apsusc_2021_151162
crossref_primary_10_1016_j_tsf_2022_139097
crossref_primary_10_3390_chemosensors10100401
crossref_primary_10_1016_j_cej_2025_161219
crossref_primary_10_1016_j_physb_2021_413176
crossref_primary_10_1016_j_colsurfa_2024_135414
crossref_primary_10_1016_j_snb_2023_134212
crossref_primary_10_1140_epjp_s13360_022_03112_9
crossref_primary_10_1007_s10853_021_06047_1
crossref_primary_10_1016_j_sna_2024_115905
crossref_primary_10_1016_j_vacuum_2021_110733
crossref_primary_10_1016_j_snb_2025_137819
crossref_primary_10_1016_j_mseb_2023_116781
crossref_primary_10_1016_j_snb_2020_128813
crossref_primary_10_1016_j_cclet_2022_107981
crossref_primary_10_1007_s10854_021_07246_x
crossref_primary_10_1039_D3NR05424A
crossref_primary_10_1039_D2NJ02683J
crossref_primary_10_1016_j_jallcom_2020_154151
crossref_primary_10_1016_j_matchemphys_2024_129594
crossref_primary_10_1088_1361_6528_ac46b2
crossref_primary_10_1016_j_colsurfa_2024_134979
crossref_primary_10_1016_j_scitotenv_2022_153934
crossref_primary_10_1016_j_snb_2023_133341
crossref_primary_10_3390_nano12203651
crossref_primary_10_1109_JSEN_2025_3559181
crossref_primary_10_1016_j_snb_2024_135481
crossref_primary_10_1016_j_snb_2021_130907
crossref_primary_10_1016_j_jhazmat_2023_131591
crossref_primary_10_1016_j_apmt_2021_101355
crossref_primary_10_1007_s10854_024_12991_w
crossref_primary_10_1016_j_ceramint_2025_07_420
crossref_primary_10_1002_smll_202303654
crossref_primary_10_1016_j_snb_2021_131049
crossref_primary_10_1063_5_0051394
crossref_primary_10_1016_j_snb_2022_132481
crossref_primary_10_1016_j_snb_2021_129493
crossref_primary_10_1039_D5CS00251F
crossref_primary_10_1016_j_snb_2022_131552
crossref_primary_10_1016_j_snb_2023_134843
crossref_primary_10_3389_fchem_2021_629329
crossref_primary_10_1016_j_jece_2024_113367
crossref_primary_10_1016_j_snb_2021_131061
crossref_primary_10_1016_j_mssp_2022_106990
crossref_primary_10_3390_chemosensors13040120
crossref_primary_10_1088_1361_648X_abf477
crossref_primary_10_1016_j_pmatsci_2020_100716
crossref_primary_10_1063_5_0274966
crossref_primary_10_1016_j_sna_2024_115306
crossref_primary_10_1016_j_cej_2023_146800
crossref_primary_10_1007_s11664_021_08761_7
crossref_primary_10_1016_j_seppur_2024_129367
crossref_primary_10_1016_j_sna_2024_115384
crossref_primary_10_1016_j_snb_2022_131539
crossref_primary_10_46670_JSST_2025_34_4_375
crossref_primary_10_1016_j_snb_2021_131111
crossref_primary_10_1021_acssensors_5c02126
crossref_primary_10_1002_smtd_202200470
crossref_primary_10_1016_j_snb_2021_131197
crossref_primary_10_1016_j_mseb_2023_116978
crossref_primary_10_1016_j_snb_2025_138665
crossref_primary_10_1109_JSEN_2022_3187445
crossref_primary_10_1016_j_snb_2024_135379
Cites_doi 10.1016/j.snb.2017.12.070
10.1016/j.snb.2017.07.052
10.1016/j.snb.2018.02.117
10.1021/acsnano.5b05040
10.1039/C4TC00510D
10.1021/nl2043612
10.1039/C4TC00423J
10.1038/srep08052
10.1021/acsphotonics.8b01675
10.1016/j.snb.2018.06.031
10.1021/acssensors.8b00146
10.1039/C6TA11019C
10.1021/acsnano.5b04343
10.1016/j.apsusc.2017.03.290
10.1016/j.snb.2018.11.069
10.1039/C7NR01016H
10.1016/j.snb.2016.07.177
10.1002/anie.201509933
10.1021/acs.chemmater.7b03523
10.1021/acssensors.7b00731
10.1016/j.snb.2015.10.088
10.1016/j.jallcom.2017.06.105
10.1063/1.4893020
10.1016/j.snb.2017.08.091
10.1007/s12274-018-2009-9
10.1016/j.snb.2017.05.085
10.1016/j.snb.2018.07.002
10.1016/j.snb.2017.10.045
10.1039/C5NR06121K
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Jan 15, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jan 15, 2020
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2019.127114
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
ExternalDocumentID 10_1016_j_snb_2019_127114
S0925400519313139
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SCH
SEW
WUQ
~HD
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-c428t-1a7cdb774181e2e5ff82e48b764d77f6868d3e8e6c7b227906b4c223397eaec83
ISICitedReferencesCount 125
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000500370900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-4005
IngestDate Sun Oct 05 00:27:29 EDT 2025
Sat Nov 29 07:14:52 EST 2025
Tue Nov 18 21:39:28 EST 2025
Fri Feb 23 02:31:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords WS2 nanosheets
Sulfurization
Gas sensing
Mechanism
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-1a7cdb774181e2e5ff82e48b764d77f6868d3e8e6c7b227906b4c223397eaec83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2334207835
PQPubID 2047454
ParticipantIDs proquest_journals_2334207835
crossref_primary_10_1016_j_snb_2019_127114
crossref_citationtrail_10_1016_j_snb_2019_127114
elsevier_sciencedirect_doi_10_1016_j_snb_2019_127114
PublicationCentury 2000
PublicationDate 2020-01-15
PublicationDateYYYYMMDD 2020-01-15
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Zhang, Zhang, Su, Wei (bib0035) 2015; 7
Wu, Wu, Jia, Wang, Yuan, Zeng (bib0005) 2019; 6
Xu, Pei, Liu, Wu, Shi, Xu (bib0065) 2017; 725
Navale, Navale, Ramgir, Stadler, Gupta, Aswal (bib0145) 2017; 251
Koo, Cha, Jung, Choi, Jang, Kim (bib0105) 2018; 28
Zhang, Lai, Tan, Zhang (bib0050) 2016; 55
Cho, Hahm, Choi, Yoon, Kim, Lee (bib0085) 2015; 5
Kim, Jung, Choi, Jang, Koo, Kim (bib0135) 2018; 273
Kwon, Na, Kang, Choi, Bang, Kim (bib0155) 2017; 239
Chen, Chen, Ge, Chi, Chen, Wu (bib0010) 2017; 29
Zhang, Cheng, Liu, Gao, Zhao, Li (bib0125) 2018; 263
Li, Song, Li, Chen, Li, Li (bib0090) 2019; 282
Kwon, Mirzaei, Kang, Choi, Bang, Kim (bib0150) 2017; 413
Qin, Ouyang, Zhang, Wan, Wang, Xie (bib0110) 2017; 253
Cha, Choi, Yu, Kim (bib0070) 2017; 5
Zhang (bib0020) 2015; 9
Liu, Tang, Zhang (bib0075) 2018; 273
Liu, Zhang, Lee, Lin, Chang, Su (bib0015) 2012; 12
Agrawal, Kumar, Venkatesan, Zakhidov, Yang, Bao (bib0030) 2018
Tan, Yu, Li, Fu, Zhu (bib0040) 2014; 116
Cho, Yoon, Hahm, Kim, Kim, Kahng (bib0140) 2014; 2
Gu, Li, Wang, Li, Xi, Chen (bib0025) 2018; 256
Kumar, Goel, Kumar (bib0095) 2017; 2
Tan, Yu, Yang, Zhang, Cong, Yin (bib0045) 2014; 2
Xu, Liu, Pei, Chen, Jiang, Shi (bib0100) 2018; 259
Yaqoob, Uddin, Chung (bib0130) 2016; 224
Asres, Baldovi, Dombovari, Jarvinen, Lorite, Mohl (bib0115) 2018; 11
Kim, Phan, Ahn, Nam, Park, Jeon (bib0055) 2018; 255
Chen, Chen, Zhang, Zhang, Zhou, Huang (bib0080) 2018; 28
Guo, Lan, Zhou, Sun, Wei, Li (bib0120) 2017; 9
Ou, Ge, Carey, Daeneke, Rotbart, Shan (bib0060) 2015; 9
Cho (10.1016/j.snb.2019.127114_bib0085) 2015; 5
Ou (10.1016/j.snb.2019.127114_bib0060) 2015; 9
Li (10.1016/j.snb.2019.127114_bib0090) 2019; 282
Koo (10.1016/j.snb.2019.127114_bib0105) 2018; 28
Chen (10.1016/j.snb.2019.127114_bib0010) 2017; 29
Liu (10.1016/j.snb.2019.127114_bib0075) 2018; 273
Chen (10.1016/j.snb.2019.127114_bib0080) 2018; 28
Kwon (10.1016/j.snb.2019.127114_bib0150) 2017; 413
Cho (10.1016/j.snb.2019.127114_bib0140) 2014; 2
Tan (10.1016/j.snb.2019.127114_bib0045) 2014; 2
Xu (10.1016/j.snb.2019.127114_bib0065) 2017; 725
Cha (10.1016/j.snb.2019.127114_bib0070) 2017; 5
Guo (10.1016/j.snb.2019.127114_bib0120) 2017; 9
Kumar (10.1016/j.snb.2019.127114_bib0095) 2017; 2
Qin (10.1016/j.snb.2019.127114_bib0110) 2017; 253
Asres (10.1016/j.snb.2019.127114_bib0115) 2018; 11
Xu (10.1016/j.snb.2019.127114_bib0100) 2018; 259
Liu (10.1016/j.snb.2019.127114_bib0015) 2012; 12
Gu (10.1016/j.snb.2019.127114_bib0025) 2018; 256
Agrawal (10.1016/j.snb.2019.127114_bib0030) 2018
Tan (10.1016/j.snb.2019.127114_bib0040) 2014; 116
Zhang (10.1016/j.snb.2019.127114_bib0125) 2018; 263
Wu (10.1016/j.snb.2019.127114_bib0005) 2019; 6
Zhang (10.1016/j.snb.2019.127114_bib0035) 2015; 7
Yaqoob (10.1016/j.snb.2019.127114_bib0130) 2016; 224
Kim (10.1016/j.snb.2019.127114_bib0055) 2018; 255
Kim (10.1016/j.snb.2019.127114_bib0135) 2018; 273
Zhang (10.1016/j.snb.2019.127114_bib0020) 2015; 9
Navale (10.1016/j.snb.2019.127114_bib0145) 2017; 251
Kwon (10.1016/j.snb.2019.127114_bib0155) 2017; 239
Zhang (10.1016/j.snb.2019.127114_bib0050) 2016; 55
References_xml – volume: 55
  start-page: 8816
  year: 2016
  end-page: 8838
  ident: bib0050
  article-title: Solution‐processed two‐dimensional MoS
  publication-title: Angew. Chem. Int. Ed.
– volume: 263
  start-page: 387
  year: 2018
  end-page: 399
  ident: bib0125
  article-title: Room temperature NO
  publication-title: Sens. Actuators B Chem.
– volume: 11
  start-page: 4215
  year: 2018
  end-page: 4224
  ident: bib0115
  article-title: Ultrasensitive H
  publication-title: Nano Res.
– volume: 273
  start-page: 1269
  year: 2018
  end-page: 1277
  ident: bib0135
  article-title: Pt nanoparticles functionalized tungsten oxynitride hybrid chemiresistor: Low-temperature NO
  publication-title: Sens. Actuators B-Chem.
– volume: 29
  start-page: 10019
  year: 2017
  end-page: 10026
  ident: bib0010
  article-title: General strategy for two-dimensional transition metal dichalcogenides by ion exchange
  publication-title: Chem. Mater.
– volume: 2
  start-page: 1744
  year: 2017
  end-page: 1752
  ident: bib0095
  article-title: UV-activated MoS2 based fast and reversible NO2 sensor at room temperature
  publication-title: ACS Sens.
– volume: 239
  start-page: 180
  year: 2017
  end-page: 192
  ident: bib0155
  article-title: Attachment of Co
  publication-title: Sens. Actuators B-Chem.
– volume: 12
  start-page: 1538
  year: 2012
  end-page: 1544
  ident: bib0015
  article-title: Growth of large-area and highly crystalline MoS
  publication-title: Nano Lett.
– volume: 9
  start-page: 9451
  year: 2015
  end-page: 9469
  ident: bib0020
  article-title: Ultrathin two-dimensional nanomaterials
  publication-title: ACS Nano
– volume: 282
  start-page: 259
  year: 2019
  end-page: 267
  ident: bib0090
  article-title: Hierarchical hollow MoS
  publication-title: Sens. Actuators B Chem.
– volume: 9
  start-page: 6246
  year: 2017
  end-page: 6253
  ident: bib0120
  article-title: Transparent, flexible, and stretchable WS
  publication-title: Nanoscale
– volume: 2
  start-page: 5280
  year: 2014
  end-page: 5285
  ident: bib0140
  article-title: Graphene-based gas sensor: metal decoration effect and application to a flexible device
  publication-title: J. Mater. Chem. C
– volume: 28
  year: 2018
  ident: bib0105
  article-title: Few-layered WS
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 10313
  year: 2015
  end-page: 10323
  ident: bib0060
  article-title: Physisorption-based charge transfer in two-dimensional SnS
  publication-title: ACS Nano
– volume: 253
  start-page: 1034
  year: 2017
  end-page: 1042
  ident: bib0110
  article-title: 2D WS
  publication-title: Sens. Actuators B-Chem.
– volume: 2
  start-page: 5422
  year: 2014
  end-page: 5430
  ident: bib0045
  article-title: The combinations of hollow MoS2 micro@nano-spheres: one-step synthesis, excellent photocatalytic and humidity sensing properties
  publication-title: J. Mater. Chem. C
– volume: 413
  start-page: 242
  year: 2017
  end-page: 252
  ident: bib0150
  article-title: Synthesis, characterization and gas sensing properties of ZnO-decorated MWCNTs
  publication-title: Appl. Surf. Sci.
– year: 2018
  ident: bib0030
  article-title: Photoactivated mixed in-plane and edge-enriched p-Type MoS
  publication-title: ACS Sens.
– volume: 116
  start-page: 64305
  year: 2014
  ident: bib0040
  article-title: MoS
  publication-title: J. Appl. Phys.
– volume: 255
  start-page: 616
  year: 2018
  end-page: 621
  ident: bib0055
  article-title: Two-dimensional SnS
  publication-title: Sens. Actuators B-Chem.
– volume: 224
  start-page: 738
  year: 2016
  end-page: 746
  ident: bib0130
  article-title: A high-performance flexible NO
  publication-title: Sens. Actuators B-Chem.
– volume: 28
  year: 2018
  ident: bib0080
  article-title: Suspended SnS
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 18364
  year: 2015
  end-page: 18378
  ident: bib0035
  article-title: Synthesis and sensor applications of MoS
  publication-title: Nanoscale
– volume: 259
  start-page: 789
  year: 2018
  end-page: 796
  ident: bib0100
  article-title: The ultra-high NO
  publication-title: Sens. Actuators B-Chem.
– volume: 5
  start-page: 8725
  year: 2017
  end-page: 8732
  ident: bib0070
  article-title: 2D WS
  publication-title: J. Mater. Chem. A
– volume: 256
  start-page: 992
  year: 2018
  end-page: 1000
  ident: bib0025
  article-title: Light enhanced VOCs sensing of WS
  publication-title: Sens. Actuators B-Chem.
– volume: 6
  start-page: 565
  year: 2019
  end-page: 572
  ident: bib0005
  article-title: In situ fabrication of 2D WS
  publication-title: ACS Photonics
– volume: 251
  start-page: 551
  year: 2017
  end-page: 563
  ident: bib0145
  article-title: Zinc oxide hierarchical nanostructures as potential NO
  publication-title: Sens. Actuators B Chem.
– volume: 725
  start-page: 253
  year: 2017
  end-page: 259
  ident: bib0065
  article-title: High-response NO
  publication-title: J. Alloys. Compd.
– volume: 5
  year: 2015
  ident: bib0085
  article-title: Charge-transfer-based gas sensing using atomic-layer MoS
  publication-title: Sci. Rep.
– volume: 273
  start-page: 473
  year: 2018
  end-page: 479
  ident: bib0075
  article-title: Nanoplates-assembled SnS
  publication-title: Sens. Actuators B-Chem.
– volume: 259
  start-page: 789
  year: 2018
  ident: 10.1016/j.snb.2019.127114_bib0100
  article-title: The ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2017.12.070
– volume: 253
  start-page: 1034
  year: 2017
  ident: 10.1016/j.snb.2019.127114_bib0110
  article-title: 2D WS2 nanosheets with TiO2 quantum dots decoration for high-performance ammonia gas sensing at room temperature
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2017.07.052
– volume: 263
  start-page: 387
  year: 2018
  ident: 10.1016/j.snb.2019.127114_bib0125
  article-title: Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.02.117
– volume: 9
  start-page: 9451
  year: 2015
  ident: 10.1016/j.snb.2019.127114_bib0020
  article-title: Ultrathin two-dimensional nanomaterials
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05040
– volume: 2
  start-page: 5280
  year: 2014
  ident: 10.1016/j.snb.2019.127114_bib0140
  article-title: Graphene-based gas sensor: metal decoration effect and application to a flexible device
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00510D
– volume: 12
  start-page: 1538
  year: 2012
  ident: 10.1016/j.snb.2019.127114_bib0015
  article-title: Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates
  publication-title: Nano Lett.
  doi: 10.1021/nl2043612
– volume: 2
  start-page: 5422
  year: 2014
  ident: 10.1016/j.snb.2019.127114_bib0045
  article-title: The combinations of hollow MoS2 micro@nano-spheres: one-step synthesis, excellent photocatalytic and humidity sensing properties
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00423J
– volume: 5
  year: 2015
  ident: 10.1016/j.snb.2019.127114_bib0085
  article-title: Charge-transfer-based gas sensing using atomic-layer MoS2
  publication-title: Sci. Rep.
  doi: 10.1038/srep08052
– volume: 6
  start-page: 565
  year: 2019
  ident: 10.1016/j.snb.2019.127114_bib0005
  article-title: In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b01675
– volume: 273
  start-page: 473
  year: 2018
  ident: 10.1016/j.snb.2019.127114_bib0075
  article-title: Nanoplates-assembled SnS2 nanoflowers for ultrasensitive ppb-level NO2 detection
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2018.06.031
– year: 2018
  ident: 10.1016/j.snb.2019.127114_bib0030
  article-title: Photoactivated mixed in-plane and edge-enriched p-Type MoS2 flake-based NO2 sensor working at room temperature
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.8b00146
– volume: 5
  start-page: 8725
  year: 2017
  ident: 10.1016/j.snb.2019.127114_bib0070
  article-title: 2D WS2-edge functionalized multi-channel carbon nanofibers: effect of WS2 edge-abundant structure on room temperature NO2 sensing
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA11019C
– volume: 9
  start-page: 10313
  year: 2015
  ident: 10.1016/j.snb.2019.127114_bib0060
  article-title: Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04343
– volume: 413
  start-page: 242
  year: 2017
  ident: 10.1016/j.snb.2019.127114_bib0150
  article-title: Synthesis, characterization and gas sensing properties of ZnO-decorated MWCNTs
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.03.290
– volume: 282
  start-page: 259
  year: 2019
  ident: 10.1016/j.snb.2019.127114_bib0090
  article-title: Hierarchical hollow MoS2 microspheres as materials for conductometric NO2 gas sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.11.069
– volume: 9
  start-page: 6246
  year: 2017
  ident: 10.1016/j.snb.2019.127114_bib0120
  article-title: Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin
  publication-title: Nanoscale
  doi: 10.1039/C7NR01016H
– volume: 239
  start-page: 180
  year: 2017
  ident: 10.1016/j.snb.2019.127114_bib0155
  article-title: Attachment of Co3O4 layer to SnO2 nanowires for enhanced gas sensing properties
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2016.07.177
– volume: 28
  year: 2018
  ident: 10.1016/j.snb.2019.127114_bib0105
  article-title: Few-layered WS2 nanoplates confined in Co, N-doped hollow carbon nanocages: abundant WS2 edges for highly sensitive gas sensors
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 8816
  year: 2016
  ident: 10.1016/j.snb.2019.127114_bib0050
  article-title: Solution‐processed two‐dimensional MoS2 nanosheets: preparation, hybridization, and applications
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201509933
– volume: 29
  start-page: 10019
  year: 2017
  ident: 10.1016/j.snb.2019.127114_bib0010
  article-title: General strategy for two-dimensional transition metal dichalcogenides by ion exchange
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03523
– volume: 28
  year: 2018
  ident: 10.1016/j.snb.2019.127114_bib0080
  article-title: Suspended SnS2 layers by light assistance for ultrasensitive ammonia detection at room temperature
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1744
  year: 2017
  ident: 10.1016/j.snb.2019.127114_bib0095
  article-title: UV-activated MoS2 based fast and reversible NO2 sensor at room temperature
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00731
– volume: 224
  start-page: 738
  year: 2016
  ident: 10.1016/j.snb.2019.127114_bib0130
  article-title: A high-performance flexible NO2 sensor based on WO3 NPs decorated on MWCNTs and RGO hybrids on PI/PET substrates
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2015.10.088
– volume: 725
  start-page: 253
  year: 2017
  ident: 10.1016/j.snb.2019.127114_bib0065
  article-title: High-response NO2 resistive gas sensor based on bilayer MoS2 grown by a new two-step chemical vapor deposition method
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2017.06.105
– volume: 116
  start-page: 64305
  year: 2014
  ident: 10.1016/j.snb.2019.127114_bib0040
  article-title: MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4893020
– volume: 255
  start-page: 616
  year: 2018
  ident: 10.1016/j.snb.2019.127114_bib0055
  article-title: Two-dimensional SnS2 materials as high-performance NO2 sensors with fast response and high sensitivity
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2017.08.091
– volume: 11
  start-page: 4215
  year: 2018
  ident: 10.1016/j.snb.2019.127114_bib0115
  article-title: Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2009-9
– volume: 251
  start-page: 551
  year: 2017
  ident: 10.1016/j.snb.2019.127114_bib0145
  article-title: Zinc oxide hierarchical nanostructures as potential NO2 sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.05.085
– volume: 273
  start-page: 1269
  year: 2018
  ident: 10.1016/j.snb.2019.127114_bib0135
  article-title: Pt nanoparticles functionalized tungsten oxynitride hybrid chemiresistor: Low-temperature NO2 sensing
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2018.07.002
– volume: 256
  start-page: 992
  year: 2018
  ident: 10.1016/j.snb.2019.127114_bib0025
  article-title: Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/j.snb.2017.10.045
– volume: 7
  start-page: 18364
  year: 2015
  ident: 10.1016/j.snb.2019.127114_bib0035
  article-title: Synthesis and sensor applications of MoS2-based nanocomposites
  publication-title: Nanoscale
  doi: 10.1039/C5NR06121K
SSID ssj0004360
Score 2.6244247
Snippet •WS2 nanosheets with edge size about 10 nm were synthesized by the sulfurization of the WO3 nanomesh.•The sensor based on WS2 nanosheets exhibited p-type...
Due to their high intrinsic conductivity and narrow band gap, nanostructured metal sulfides have attracted considerable attention as promising gas sensing...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127114
SubjectTerms Charge transfer
Comparative studies
Detection
Gas sensing
Gas sensors
Gases
Hydrogen sulfide
Low temperature
Mechanism
Metal sulfides
Nanosheets
Nanostructure
Nitrogen dioxide
Selectivity
Sulfurization
Tungsten disulfide
WS2 nanosheets
Title Comparative study on NO2 and H2S sensing mechanisms of gas sensors based on WS2 nanosheets
URI https://dx.doi.org/10.1016/j.snb.2019.127114
https://www.proquest.com/docview/2334207835
Volume 303
WOSCitedRecordID wos000500370900041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004360
  issn: 0925-4005
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg4wEeEJ_aYCA_8ESUKnGc2Hkc09BAqCB1iKovUeJetkybMy0d2p_P-SNN1IkJkFClqHXtpPX9fD6f734m5F2ZZJDKOAtLEEnIMwVhyRMRgoTKEJrlCdhE4S9iOpXzef7Nh_J29jgBobW8uckv_6uosQyFbVJn_0Lc65tiAb5HoeMVxY7XPxL8wYjPu3OU0TqYfmV2m-CIzYLOxKzrk-ACTNZv013YaI6TsrPfmMN3zNS2NM1-zFigS912pwCO8qk3ZGe-quV6NUko5tSeSfDBbeE7EoJ1sE9zbVVbM7gJnIZZNOetnznHvuvFKZauymbskWAmsC10OZnOTXYrVcb5G1mKi9XI1QOnbSXiA5WMGKvjxHIe3FbtzstwNul0ZSLy8knMROwSUDcYs2fmWdwZpzG-8vtkm4k0R6W3vf_pcP55SJxNbBr5-rf12942AHDjQb8zXDamcGuXHD8hj_2Cgu47IDwl90A_I49GNJPPyWIECWohQVtNERIUpUcREtRDgg6QoG1NERLUQ4JaSJhmCAk6QOIF-f7x8PjgKPRnaoQKF5qrMC6FWlbCcBbFwCCta8mAy0pkfClEnclMLhMcqJkSlSGXjLKKKzQh0WyFEpRMXpIt3WrYIZTVkVJcQFyrimdo9PASlhI_RkKVtWC7JOo7rFCecN6ce3Je9JGFZwX2cWH6uHB9vEver5tcOraVuyrzXgqFNxedGVggZO5qttdLrPDDtivwD3JmdrTTV_9219fk4TAU9sjW6uoa3pAH6ueq6a7eetz9AoNllWc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+study+on+NO2+and+H2S+sensing+mechanisms+of+gas+sensors+based+on+WS2+nanosheets&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Liu%2C+Di&rft.au=Tang%2C+Zilong&rft.au=Zhang%2C+Zhongtai&rft.date=2020-01-15&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=303&rft_id=info:doi/10.1016%2Fj.snb.2019.127114&rft.externalDocID=S0925400519313139
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon