Automated detection of white matter hyperintensities of all sizes in cerebral small vessel disease

Purpose: White matter hyperintensities (WMH) are seen on FLAIR-MRI in several neurological disorders, including multiple sclerosis, dementia, Parkinsonism, stroke and cerebral small vessel disease (SVD). WMHs are often used as biomarkers for prognosis or disease progression in these diseases, and ad...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) Vol. 43; no. 12; pp. 6246 - 6258
Main Authors: Ghafoorian, Mohsen, Karssemeijer, Nico, van Uden, Inge W. M., de Leeuw, Frank-Erik, Heskes, Tom, Marchiori, Elena, Platel, Bram
Format: Journal Article
Language:English
Published: United States American Association of Physicists in Medicine 01.12.2016
Subjects:
ISSN:0094-2405, 2473-4209, 2473-4209
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose: White matter hyperintensities (WMH) are seen on FLAIR-MRI in several neurological disorders, including multiple sclerosis, dementia, Parkinsonism, stroke and cerebral small vessel disease (SVD). WMHs are often used as biomarkers for prognosis or disease progression in these diseases, and additionally longitudinal quantification of WMHs is used to evaluate therapeutic strategies. Human readers show considerable disagreement and inconsistency on detection of small lesions. A multitude of automated detection algorithms for WMHs exists, but since most of the current automated approaches are tuned to optimize segmentation performance according to Jaccard or Dice scores, smaller WMHs often go undetected in these approaches. In this paper, the authors propose a method to accurately detect all WMHs, large as well as small. Methods: A two-stage learning approach was used to discriminate WMHs from normal brain tissue. Since small and larger WMHs have quite a different appearance, the authors have trained two probabilistic classifiers: one for the small WMHs (⩽3 mm effective diameter) and one for the larger WMHs (>3 mm in-plane effective diameter). For each size-specific classifier, an Adaboost is trained for five iterations, with random forests as the basic classifier. The feature sets consist of 22 features including intensities, location information, blob detectors, and second order derivatives. The outcomes of the two first-stage classifiers were combined into a single WMH likelihood by a second-stage classifier. Their method was trained and evaluated on a dataset with MRI scans of 362 SVD patients (312 subjects for training and validation annotated by one and 50 for testing annotated by two trained raters). To analyze performance on the separate test set, the authors performed a free-response receiving operating characteristic (FROC) analysis, instead of using segmentation based methods that tend to ignore the contribution of small WMHs. Results: Experimental results based on FROC analysis demonstrated a close performance of the proposed computer aided detection (CAD) system to human readers. While an independent reader had 0.78 sensitivity with 28 false positives per volume on average, their proposed CAD system reaches a sensitivity of 0.73 with the same number of false positives. Conclusions: The authors have developed a CAD system with all its ingredients being optimized for a better detection of WMHs of all size, which shows performance close to an independent reader.
AbstractList Purpose: White matter hyperintensities (WMH) are seen on FLAIR‐MRI in several neurological disorders, including multiple sclerosis, dementia, Parkinsonism, stroke and cerebral small vessel disease (SVD). WMHs are often used as biomarkers for prognosis or disease progression in these diseases, and additionally longitudinal quantification of WMHs is used to evaluate therapeutic strategies. Human readers show considerable disagreement and inconsistency on detection of small lesions. A multitude of automated detection algorithms for WMHs exists, but since most of the current automated approaches are tuned to optimize segmentation performance according to Jaccard or Dice scores, smaller WMHs often go undetected in these approaches. In this paper, the authors propose a method to accurately detect all WMHs, large as well as small. Methods: A two‐stage learning approach was used to discriminate WMHs from normal brain tissue. Since small and larger WMHs have quite a different appearance, the authors have trained two probabilistic classifiers: one for the small WMHs (⩽3 mm effective diameter) and one for the larger WMHs (>3 mm in‐plane effective diameter). For each size‐specific classifier, an Adaboost is trained for five iterations, with random forests as the basic classifier. The feature sets consist of 22 features including intensities, location information, blob detectors, and second order derivatives. The outcomes of the two first‐stage classifiers were combined into a single WMH likelihood by a second‐stage classifier. Their method was trained and evaluated on a dataset with MRI scans of 362 SVD patients (312 subjects for training and validation annotated by one and 50 for testing annotated by two trained raters). To analyze performance on the separate test set, the authors performed a free‐response receiving operating characteristic (FROC) analysis, instead of using segmentation based methods that tend to ignore the contribution of small WMHs. Results: Experimental results based on FROC analysis demonstrated a close performance of the proposed computer aided detection (CAD) system to human readers. While an independent reader had 0.78 sensitivity with 28 false positives per volume on average, their proposed CAD system reaches a sensitivity of 0.73 with the same number of false positives. Conclusions: The authors have developed a CAD system with all its ingredients being optimized for a better detection of WMHs of all size, which shows performance close to an independent reader.
White matter hyperintensities (WMH) are seen on FLAIR-MRI in several neurological disorders, including multiple sclerosis, dementia, Parkinsonism, stroke and cerebral small vessel disease (SVD). WMHs are often used as biomarkers for prognosis or disease progression in these diseases, and additionally longitudinal quantification of WMHs is used to evaluate therapeutic strategies. Human readers show considerable disagreement and inconsistency on detection of small lesions. A multitude of automated detection algorithms for WMHs exists, but since most of the current automated approaches are tuned to optimize segmentation performance according to Jaccard or Dice scores, smaller WMHs often go undetected in these approaches. In this paper, the authors propose a method to accurately detect all WMHs, large as well as small. A two-stage learning approach was used to discriminate WMHs from normal brain tissue. Since small and larger WMHs have quite a different appearance, the authors have trained two probabilistic classifiers: one for the small WMHs (⩽3 mm effective diameter) and one for the larger WMHs (>3 mm in-plane effective diameter). For each size-specific classifier, an Adaboost is trained for five iterations, with random forests as the basic classifier. The feature sets consist of 22 features including intensities, location information, blob detectors, and second order derivatives. The outcomes of the two first-stage classifiers were combined into a single WMH likelihood by a second-stage classifier. Their method was trained and evaluated on a dataset with MRI scans of 362 SVD patients (312 subjects for training and validation annotated by one and 50 for testing annotated by two trained raters). To analyze performance on the separate test set, the authors performed a free-response receiving operating characteristic (FROC) analysis, instead of using segmentation based methods that tend to ignore the contribution of small WMHs. Experimental results based on FROC analysis demonstrated a close performance of the proposed computer aided detection (CAD) system to human readers. While an independent reader had 0.78 sensitivity with 28 false positives per volume on average, their proposed CAD system reaches a sensitivity of 0.73 with the same number of false positives. The authors have developed a CAD system with all its ingredients being optimized for a better detection of WMHs of all size, which shows performance close to an independent reader.
White matter hyperintensities (WMH) are seen on FLAIR-MRI in several neurological disorders, including multiple sclerosis, dementia, Parkinsonism, stroke and cerebral small vessel disease (SVD). WMHs are often used as biomarkers for prognosis or disease progression in these diseases, and additionally longitudinal quantification of WMHs is used to evaluate therapeutic strategies. Human readers show considerable disagreement and inconsistency on detection of small lesions. A multitude of automated detection algorithms for WMHs exists, but since most of the current automated approaches are tuned to optimize segmentation performance according to Jaccard or Dice scores, smaller WMHs often go undetected in these approaches. In this paper, the authors propose a method to accurately detect all WMHs, large as well as small.PURPOSEWhite matter hyperintensities (WMH) are seen on FLAIR-MRI in several neurological disorders, including multiple sclerosis, dementia, Parkinsonism, stroke and cerebral small vessel disease (SVD). WMHs are often used as biomarkers for prognosis or disease progression in these diseases, and additionally longitudinal quantification of WMHs is used to evaluate therapeutic strategies. Human readers show considerable disagreement and inconsistency on detection of small lesions. A multitude of automated detection algorithms for WMHs exists, but since most of the current automated approaches are tuned to optimize segmentation performance according to Jaccard or Dice scores, smaller WMHs often go undetected in these approaches. In this paper, the authors propose a method to accurately detect all WMHs, large as well as small.A two-stage learning approach was used to discriminate WMHs from normal brain tissue. Since small and larger WMHs have quite a different appearance, the authors have trained two probabilistic classifiers: one for the small WMHs (⩽3 mm effective diameter) and one for the larger WMHs (>3 mm in-plane effective diameter). For each size-specific classifier, an Adaboost is trained for five iterations, with random forests as the basic classifier. The feature sets consist of 22 features including intensities, location information, blob detectors, and second order derivatives. The outcomes of the two first-stage classifiers were combined into a single WMH likelihood by a second-stage classifier. Their method was trained and evaluated on a dataset with MRI scans of 362 SVD patients (312 subjects for training and validation annotated by one and 50 for testing annotated by two trained raters). To analyze performance on the separate test set, the authors performed a free-response receiving operating characteristic (FROC) analysis, instead of using segmentation based methods that tend to ignore the contribution of small WMHs.METHODSA two-stage learning approach was used to discriminate WMHs from normal brain tissue. Since small and larger WMHs have quite a different appearance, the authors have trained two probabilistic classifiers: one for the small WMHs (⩽3 mm effective diameter) and one for the larger WMHs (>3 mm in-plane effective diameter). For each size-specific classifier, an Adaboost is trained for five iterations, with random forests as the basic classifier. The feature sets consist of 22 features including intensities, location information, blob detectors, and second order derivatives. The outcomes of the two first-stage classifiers were combined into a single WMH likelihood by a second-stage classifier. Their method was trained and evaluated on a dataset with MRI scans of 362 SVD patients (312 subjects for training and validation annotated by one and 50 for testing annotated by two trained raters). To analyze performance on the separate test set, the authors performed a free-response receiving operating characteristic (FROC) analysis, instead of using segmentation based methods that tend to ignore the contribution of small WMHs.Experimental results based on FROC analysis demonstrated a close performance of the proposed computer aided detection (CAD) system to human readers. While an independent reader had 0.78 sensitivity with 28 false positives per volume on average, their proposed CAD system reaches a sensitivity of 0.73 with the same number of false positives.RESULTSExperimental results based on FROC analysis demonstrated a close performance of the proposed computer aided detection (CAD) system to human readers. While an independent reader had 0.78 sensitivity with 28 false positives per volume on average, their proposed CAD system reaches a sensitivity of 0.73 with the same number of false positives.The authors have developed a CAD system with all its ingredients being optimized for a better detection of WMHs of all size, which shows performance close to an independent reader.CONCLUSIONSThe authors have developed a CAD system with all its ingredients being optimized for a better detection of WMHs of all size, which shows performance close to an independent reader.
Author Ghafoorian, Mohsen
van Uden, Inge W. M.
Platel, Bram
de Leeuw, Frank-Erik
Karssemeijer, Nico
Heskes, Tom
Marchiori, Elena
Author_xml – sequence: 1
  givenname: Mohsen
  surname: Ghafoorian
  fullname: Ghafoorian, Mohsen
  email: mohsen.ghafoorian@radboudumc.nl
  organization: Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen 6525, The Netherlands and Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 GA, The Netherlands
– sequence: 2
  givenname: Nico
  surname: Karssemeijer
  fullname: Karssemeijer, Nico
  organization: Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen 6525, The Netherlands
– sequence: 3
  givenname: Inge W. M.
  surname: van Uden
  fullname: van Uden, Inge W. M.
  organization: Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
– sequence: 4
  givenname: Frank-Erik
  surname: de Leeuw
  fullname: de Leeuw, Frank-Erik
  organization: Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen 6525 EN, The Netherlands
– sequence: 5
  givenname: Tom
  surname: Heskes
  fullname: Heskes, Tom
  organization: Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, The Netherlands
– sequence: 6
  givenname: Elena
  surname: Marchiori
  fullname: Marchiori, Elena
  organization: Institute for Computing and Information Sciences, Radboud University, Nijmegen 6525 EC, The Netherlands
– sequence: 7
  givenname: Bram
  surname: Platel
  fullname: Platel, Bram
  organization: Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen 6525, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27908171$$D View this record in MEDLINE/PubMed
BookMark eNp90E1rGzEQBmBRHBo77aF_oOyxDWwyo5VXq2MwaRNISA7tWWilWaKyH64kxzi_vmtsQwlxTkKjZ17EO2OTfuiJsS8IF4hYXeKFUGUJXH1gUy5kkQsOasKmAErkXMD8lM1i_AMAZTGHj-yUSwUVSpyy-mqVhs4kcpmjRDb5oc-GJls_-UTZ-JAoZE-bJQXfJ-qjT57iFpi2zaJ_GS--zywFqoMZJ912_kwxUps5H8lE-sROGtNG-rw_z9jvH9e_Fjf53cPP28XVXW4Fr1RezUtZFM4WDhsJjbKuRCOdEyBRgjICFccapW0aPgIlSguEWI60Bm6xOGPfdrnLMPxdUUy689FS25qehlXUWIl5xSWHaqRf93RVd-T0MvjOhI0-9DKCyx2wYYgxUKOtT2ZbTgrGtxpBb5vXqPfNjxvfX20cQt-y-c6ufUub41DfP-79-c7Hwy_eDT-Kn4fwX_jSNcU_TymsBQ
CODEN MPHYA6
CitedBy_id crossref_primary_10_1002_hbm_25273
crossref_primary_10_1016_j_media_2021_102215
crossref_primary_10_1109_TMI_2017_2693978
crossref_primary_10_3389_fneur_2025_1628787
crossref_primary_10_1161_STROKEAHA_121_038099
crossref_primary_10_1016_j_nicl_2021_102667
crossref_primary_10_1002_hipo_23039
crossref_primary_10_1212_WNL_0000000000007095
crossref_primary_10_1161_STROKEAHA_122_039903
crossref_primary_10_1016_j_nicl_2017_12_007
crossref_primary_10_1097_CCM_0000000000005313
crossref_primary_10_1016_j_nicl_2017_10_007
crossref_primary_10_1038_s41598_019_52966_0
crossref_primary_10_1016_j_nicl_2018_02_033
crossref_primary_10_1212_WNL_0000000000004490
crossref_primary_10_1109_TMI_2019_2905770
crossref_primary_10_1007_s11357_024_01238_5
crossref_primary_10_1177_23969873221100331
crossref_primary_10_1176_appi_ajp_20220380
crossref_primary_10_1136_jnnp_2019_321767
crossref_primary_10_1016_j_media_2021_102184
crossref_primary_10_1016_j_cccb_2025_100396
crossref_primary_10_1212_WNL_0000000000008364
crossref_primary_10_1212_WNL_0000000000008002
crossref_primary_10_1161_STROKEAHA_117_019810
crossref_primary_10_3233_JAD_200496
crossref_primary_10_1038_s41598_017_05300_5
crossref_primary_10_1007_s11357_024_01306_w
crossref_primary_10_1016_j_parkreldis_2018_11_010
crossref_primary_10_1016_j_cmpb_2018_04_011
crossref_primary_10_1016_j_jocn_2019_06_038
crossref_primary_10_1212_WNL_0000000000209306
crossref_primary_10_1212_WNL_0000000000209701
crossref_primary_10_1212_WNL_0000000000209148
crossref_primary_10_1186_s12883_024_04010_6
crossref_primary_10_3390_app15052830
crossref_primary_10_1016_j_neuroimage_2017_06_009
crossref_primary_10_3390_app11041675
crossref_primary_10_1136_bmjopen_2020_042660
crossref_primary_10_1002_ana_26615
crossref_primary_10_1016_j_nicl_2022_102955
crossref_primary_10_1016_j_nicl_2019_102048
crossref_primary_10_1038_s41598_021_87013_4
crossref_primary_10_1177_1747493020984090
crossref_primary_10_1136_jnnp_2021_326571
crossref_primary_10_1016_j_compmedimag_2018_05_001
crossref_primary_10_1161_STROKEAHA_118_020980
crossref_primary_10_1161_STROKEAHA_118_021993
crossref_primary_10_1136_jnnp_2022_330091
Cites_doi 10.1016/j.neuroimage.2009.09.005
10.1038/s41598-017-05300-5
10.1117/12.2007940
10.1006/jcss.1997.1504
10.1136/jnnp.70.1.9
10.1109/EMBC.2012.6347208
10.1097/00004728‐197906000‐00001
10.1212/01.WNL.0000132635.75819.E5
10.1016/j.biopsych.2008.03.024
10.1212/WNL.57.6.990
10.1109/42.938237
10.1016/j.neuroimage.2005.06.061
10.1016/j.nicl.2015.05.003
10.1016/j.neuroimage.2011.04.053
10.1016/j.compbiomed.2007.12.005
10.1002/mds.870130119
10.1056/NEJMoa022066
10.1007/s12021‐015‐9260‐y
10.1016/j.neuroimage.2003.10.012
10.1016/j.jagp.2014.07.002
10.1109/TBME.2011.2181167
10.1371/journal.pone.0104011
10.1161/STROKEAHA.113.000947
10.1136/jamia.2001.0080401
10.1109/TMI.2014.2382561
10.1016/S1474‐4422(13)70124‐8
10.1016/j.imavis.2008.09.003
10.1023/A:1010933404324
10.1007/978-3-642-15705-9_14
10.1002/hbm.22472
10.1159/000081050
10.1212/WNL.54.4.838
10.1212/01.wnl.0000305959.46197.e6
10.1016/j.jneumeth.2012.12.014
10.1016/j.media.2012.09.004
10.1002/hbm.10062
10.1111/j.1600‐0404.2005.00553.x
10.1186/1471‐2377‐11‐29
10.1016/j.neuroimage.2009.01.011
10.1109/TMI.2012.2186639
10.1117/12.2081597
10.1002/1531‐8249(200002)47:2<145::AID‐ANA3>3.0.CO;2‐P
10.1016/j.neuroimage.2011.11.032
10.1161/01.STR.31.9.2182
10.1117/12.955926
10.1002/hbm.22332
10.1016/S1361‐8415(01)00036‐6
10.1136/jnnp.2007.124651
10.1016/j.nicl.2013.10.003
10.1109/42.906424
10.1109/NNSP.1991.239541
10.1109/ISBI.2016.7493532
10.1214/aos/1016218223
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2016 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2016 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1118/1.4966029
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 6258
ExternalDocumentID 27908171
10_1118_1_4966029
MP6029
Genre article
Journal Article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ABUFD
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4289-856733dc3d1f70f9cd61a7dd4071709a41921b17cff2f70946c0e1160f9b02c13
IEDL.DBID DRFUL
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000390237200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-2405
2473-4209
IngestDate Sun Nov 09 11:57:14 EST 2025
Wed Feb 19 01:57:18 EST 2025
Sat Nov 29 06:02:28 EST 2025
Tue Nov 18 21:26:09 EST 2025
Wed Jan 22 16:30:48 EST 2025
Fri Jun 21 00:14:44 EDT 2024
Sun Jul 14 10:28:27 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Small vessel disease
automated detection
adaboost
computer aided detection
white matter hyperintensity
Language English
License 0094-2405/2016/43(12)/6246/13/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4289-856733dc3d1f70f9cd61a7dd4071709a41921b17cff2f70946c0e1160f9b02c13
Notes mohsen.ghafoorian@radboudumc.nl
Electronic mail
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1118/1.4966029
PMID 27908171
PQID 1845827208
PQPubID 23479
PageCount 13
ParticipantIDs crossref_citationtrail_10_1118_1_4966029
crossref_primary_10_1118_1_4966029
scitation_primary_10_1118_1_4966029
pubmed_primary_27908171
wiley_primary_10_1118_1_4966029_MP6029
proquest_miscellaneous_1845827208
PublicationCentury 2000
PublicationDate 20161200
December 2016
2016-12-00
2016-Dec
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 20161200
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2016
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References García-Lorenzo, Francis, Narayanan, Arnold, Collins (c37) 2013
Schoonheim, Vigeveno, Lopes, Pouwels, Polman, Barkhof, Geurts (c10) 2014
Baezner, Blahak, Poggesi, Pantoni, Inzitari, Chabriat, Erkinjuntti, Fazekas, Ferro, Langhorne, O’Brien, Scheltens, Visser, Wahlund, Waldemar, Wallin, Hennerici (c3) 2008
Caligiuri, Perrotta, Augimeri, Rocca, Quattrone, Cherubini (c36) 2015
Vermeer, Prins, den Heijer, Hofman, Koudstaal, Breteler (c7) 2003
Freund, Schapire (c52) 1997
van Zagten, Lodder, Kessels (c6) 1998
De Leeuw, de Groot, Achten, Oudkerk, Ramos, Heijboer, Hofman, Jolles, Van Gijn, Breteler (c1) 2001
van Norden, de Laat, Gons, van Uden, van Dijk, van Oudheusden, Esselink, Bloem, van Engelen, Zwarts, Tendolkar, Olde-Rikkert, van der Vlugt, Zwiers, Norris, de Leeuw (c9) 2011
Friedman, Hastie, Tibshirani (c53) 2000
Jenkinson, Smith (c43) 2001
Weinstein, Beiser, DeCarli, Au, Wolf, Seshadri (c13) 2013
Shi, Wang, Liu, Pu, Wang, Chu, Ahuja, Wang (c20) 2013
Smith, Snowdon, Wang, Markesbery (c12) 2000
Whitman, Tang, Lin, Baloh (c15) 2001
Tsai, Peng, Chen, Wang, Li, Wang, Chen, Lin, Smith, Wu, Sung, Yeh, Hsin (c26) 2014
Zhang, Brady, Smith (c46) 2001
de Groot, Oudkerk, Gijn, Hofman, Jolles, Breteler (c4) 2000
Klöppel, Abdulkadir, Hadjidemetriou, Issleib, Frings, Thanh, Mader, Teipel, Hüll, Ronneberger (c27) 2011
Mazziotta, Toga, Evans, Fox, Lancaster, Zilles, Woods, Paus, Simpson, Pike, Holmes, Collins, Thompson, MacDonald, Iacoboni, Schormann, Amunts, Palomero-Gallagher, Geyer, Parsons, Narr, Kabani, Le Goualher, Feidler, Smith, Boomsma, Pol, Cannon, Kawashima, Mazoyer (c44) 2001
Wardlaw, Smith, Biessels, Cordonnier, Fazekas, Frayne, Lindley, O’Brien, Barkhof, Benavente, Black, Brayne, Breteler, Chabriat, Decarli, de Leeuw, Doubal, Duering, Fox, Greenberg, Hachinski, Kilimann, Mok, Oostenbrugge, Pantoni, Speck, Stephan, Teipel, Viswanathan, Werring, Chen, Smith, van Buchem, Norrving, Gorelick, Dichgans (c2) 2013
de Boer, Vrooman, van der Lijn, Vernooij, Ikram, van der Lugt, Breteler, Niessen (c24) 2009
Khayati, Vafadust, Towhidkhah, Nabavi (c23) 2008
Ghafoorian, Karssemeijer, van Uden, de Leeuw, Heskes, Marchiori, Platel (c48) 2015
Karimaghaloo, Shah, Francis, Arnold, Collins, Arbel (c31) 2012
Hirono, Kitagaki, Kazui, Hashimoto, Mori (c11) 2000
Steenwijk, Pouwels, Daams, van Dalen, Caan, Richard, Barkhof, Vrenken (c34) 2013
Kuijper (c50) 2009
Smith (c45) 2002
Marshall, Shchelchkov, Kaufer, Ivanco, Bohnen (c14) 2006
Van Leemput, Maes, Vandermeulen, Colchester, Suetens (c22) 2001
Hoffman, Huang, Phelps (c39) 1979
Schmidt, Scheltens, Erkinjuntti, Pantoni, Markus, Wallin, Barkhof, Fazekas (c38) 2004
Ithapu, Singh, Lindner, Austin, Hinrichs, Carlsson, Bendlin, Johnson (c28) 2014
Shiee, Bazin, Ozturk, Reich, Calabresi, Pham (c21) 2010
Pantoni, Basile, Pracucci, Asplund, Bogousslavsky, Chabriat, Erkinjuntti, Fazekas, Ferro, Hennerici, O’Brien, Scheltens, Visser, Wahlund, Waldemar, Wallin, Inzitari (c8) 2004
Herrmann, Le Masurier, Ebmeier (c16) 2008
Schmidt, Gaser, Arsic, Buck, Förschler, Berthele, Hoshi, Ilg, Schmid, Zimmer, Hemmer, Mhlau (c25) 2012
Karimaghaloo, Rivaz, Arnold, Collins, Arbel (c35) 2015
Zijdenbos, Dawant (c30) 1993
Kim, MacFall, Payne (c42) 2008
Admiraal-Behloul, Van Den Heuvel, Olofsen, van Osch, van der Grond, Van Buchem, Reiber (c17) 2005
Jain, Sima, Ribbens, Cambron, Maertens, Van Hecke, De Mey, Barkhof, Steenwijk, Daams, Maes, Van Huffel, Vrenken, Smeets (c18) 2015
Anbeek, Vincken, van Osch, Bisschops, van der Grond (c33) 2004
Riad, Platel, de Leeuw, Karssemeijer (c29) 2013
Breiman (c51) 2001
van Uden, Tuladhar, de Laat, van Norden, Norris, van Dijk, Tendolkar, de Leeuw (c5) 2015
Khademi, Venetsanopoulos, Moody (c19) 2012
Bunch, Hamilton, Sanderson, Simmons (c41) 1977
2009; 45
2004; 21
2015; 34
2002; 17
2004; 63
2013; 3
2000; 47
1993; 22
2008; 38
2004; 24
2011; 11
2008; 79
2011; 57
2012; 59
2001; 45
2008; 70
2005; 28
2013; 17
1997; 55
2013; 12
2000; 54
1979; 3
2008; 64
2014; 9
2001; 57
1998; 13
1988
2015; 13
2001; 70
2000; 28
2013; 44
2012
2010
2013; 8670
1991
2015; 9414
2015; 8
2009; 27
2012; 31
2001; 20
2006; 113
2015; 23
2010; 49
2003; 348
2001; 5
2000; 31
2001; 8
2013; 213
2014; 35
2016
1977; 0127
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
McLachlan G. J. (e_1_2_8_48_1) 1988
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Zijdenbos A. P. (e_1_2_8_31_1) 1993; 22
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – start-page: 145
  year: 2000
  ident: c4
  article-title: Cerebral white matter lesions and cognitive function: The rotterdam scan study
  publication-title: Ann. Neurol.
– start-page: 138
  year: 2013
  ident: c20
  article-title: Automated quantification of white matter lesion in magnetic resonance imaging of patients with acute infarction
  publication-title: J. Neurosci. Methods
– start-page: 4219
  year: 2014
  ident: c28
  article-title: Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer’s disease risk and aging studies
  publication-title: Hum. Brain Mapp.
– start-page: 416
  year: 2011
  ident: c27
  article-title: A comparison of different automated methods for the detection of white matter lesions in MRI data
  publication-title: NeuroImage
– start-page: 1215
  year: 2003
  ident: c7
  article-title: Silent brain infarcts and the risk of dementia and cognitive decline
  publication-title: N. Engl. J. Med.
– start-page: 867014
  year: 2013
  ident: c29
  article-title: Detection of white matter lesions in cerebral small vessel disease
  publication-title: Proc. SPIE
– start-page: 9
  year: 2001
  ident: c1
  article-title: Prevalence of cerebral white matter lesions in elderly people: A population based magnetic resonance imaging study. The rotterdam scan study
  publication-title: J. Neurol., Neurosurg. Psychiatry
– start-page: 119
  year: 1997
  ident: c52
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– start-page: 677
  year: 2001
  ident: c22
  article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1524
  year: 2010
  ident: c21
  article-title: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions
  publication-title: NeuroImage
– start-page: 299
  year: 1979
  ident: c39
  article-title: Quantitation in positron emission computed tomography: 1. Effect of object size
  publication-title: J. Comput. Assisted Tomogr.
– start-page: 401
  year: 2001
  ident: c44
  article-title: A four-dimensional probabilistic atlas of the human brain
  publication-title: J. Am. Med. Inf. Associat.
– start-page: 990
  year: 2001
  ident: c15
  article-title: A prospective study of cerebral white matter abnormalities in older people with gait dysfunction
  publication-title: Neurology
– start-page: 124
  year: 1977
  ident: c41
  article-title: A free response approach to the measurement and characterization of radiographic observer performance
  publication-title: Proc. SPIE
– start-page: 935
  year: 2008
  ident: c3
  article-title: Association of gait and balance disorders with age-related white matter changes the ladis study
  publication-title: Neurology
– start-page: 941411
  year: 2015
  ident: c48
  article-title: Small white matter lesion detection in cerebral small vessel disease
  publication-title: Proc. SPIE
– start-page: 1181
  year: 2012
  ident: c31
  article-title: Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields
  publication-title: IEEE Trans. Med. Imaging
– start-page: 87
  year: 2006
  ident: c14
  article-title: White matter hyperintensities and cortical acetylcholinesterase activity in parkinsonian dementia
  publication-title: Acta Neurol. Scand.
– start-page: 860
  year: 2012
  ident: c19
  article-title: Robust white matter lesion segmentation in flair MRI
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 367
  year: 2015
  ident: c18
  article-title: Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images
  publication-title: NeuroImage: Clin.
– start-page: 1
  year: 2013
  ident: c37
  article-title: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging
  publication-title: Med. Image Anal.
– start-page: 607
  year: 2005
  ident: c17
  article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly
  publication-title: NeuroImage
– start-page: 822
  year: 2013
  ident: c2
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration
  publication-title: Lancet Neurol.
– start-page: 379
  year: 2008
  ident: c23
  article-title: Fully automatic segmentation of multiple sclerosis lesions in brain MR flair images using adaptive mixtures method and markov random field model
  publication-title: Comput. Biol. Med.
– start-page: 89
  year: 1998
  ident: c6
  article-title: Gait disorder and parkinsonian signs in patients with stroke related to small deep infarcts and white matter lesions
  publication-title: Mov. Disord.
– start-page: 619
  year: 2008
  ident: c16
  article-title: White matter hyperintensities in late life depression: A systematic review
  publication-title: J. Neurol., Neurosurg. Psychiatry
– start-page: 1037
  year: 2004
  ident: c33
  article-title: Probabilistic segmentation of white matter lesions in MR imaging
  publication-title: NeuroImage
– start-page: 45
  year: 2001
  ident: c46
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation–maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
– start-page: 273
  year: 2008
  ident: c42
  article-title: Classification of white matter lesions on magnetic resonance imaging in elderly persons
  publication-title: Biol. Psychiatry
– start-page: 525
  year: 2015
  ident: c5
  article-title: White matter integrity and depressive symptoms in cerebral small vessel disease: The run DMC study
  publication-title: Am. J. Geriatr. Psychiatry
– start-page: 1151
  year: 2009
  ident: c24
  article-title: White matter lesion extension to automatic brain tissue segmentation on MRI
  publication-title: NeuroImage
– start-page: 51
  year: 2004
  ident: c8
  article-title: Impact of age-related cerebral white matter changes on the transition to disability—The LADIS study: Rationale, design and methodology
  publication-title: Neuroepidemiology
– start-page: 2182
  year: 2000
  ident: c11
  article-title: Impact of white matter changes on clinical manifestation of Alzheimer’s disease a quantitative study
  publication-title: Stroke
– start-page: 462
  year: 2013
  ident: c34
  article-title: Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs)
  publication-title: NeuroImage: Clin.
– start-page: 143
  year: 2001
  ident: c43
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
– start-page: 2348
  year: 2014
  ident: c10
  article-title: Sex-specific extent and severity of white matter damage in multiple sclerosis: Implications for cognitive decline
  publication-title: Hum. Brain Mapp.
– start-page: 838
  year: 2000
  ident: c12
  article-title: White matter volumes and periventricular white matter hyperintensities in aging and dementia
  publication-title: Neurology
– start-page: 2787
  year: 2013
  ident: c13
  article-title: Brain imaging and cognitive predictors of stroke and Alzheimer disease in the framingham heart study
  publication-title: Stroke
– start-page: 1023
  year: 2009
  ident: c50
  article-title: Geometrical pdes based on second-order derivatives of gauge coordinates in image processing
  publication-title: Image Vis. Comput.
– start-page: 139
  year: 2004
  ident: c38
  article-title: White matter lesion progression a surrogate endpoint for trials in cerebral small-vessel disease
  publication-title: Neurology
– start-page: 401
  year: 1993
  ident: c30
  article-title: Brain segmentation and white matter lesion detection in MR images
  publication-title: Crit. Rev. Biomed. Eng.
– start-page: 1
  year: 2015
  ident: c36
  article-title: Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: A review
  publication-title: Neuroinformatics
– start-page: 1227
  year: 2015
  ident: c35
  article-title: Temporal hierarchical adaptive texture crf for automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI
  publication-title: IEEE Trans. Med. Imaging
– start-page: 29
  year: 2011
  ident: c9
  article-title: Causes and consequences of cerebral small vessel disease. The run DMC study: A prospective cohort study. Study rationale and protocol
  publication-title: BMC Neurol.
– start-page: 3774
  year: 2012
  ident: c25
  article-title: An automated tool for detection of flair-hyperintense white-matter lesions in multiple sclerosis
  publication-title: NeuroImage
– start-page: 143
  year: 2002
  ident: c45
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– start-page: 337
  year: 2000
  ident: c53
  article-title: Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)
  publication-title: Ann. Stat.
– start-page: e104011
  year: 2014
  ident: c26
  article-title: Automated segmentation and quantification of white matter hyperintensities in acute ischemic stroke patients with cerebral infarction
  publication-title: PloS One
– start-page: 5
  year: 2001
  ident: c51
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 3
  start-page: 299
  issue: 3
  year: 1979
  end-page: 308
  article-title: Quantitation in positron emission computed tomography: 1. Effect of object size
  publication-title: J. Comput. Assisted Tomogr.
– start-page: 1414
  year: 2016
  end-page: 1417
  article-title: Non‐uniform patch sampling with deep convolutional neural networks for white matter hyperintensity segmentation
– volume: 8
  start-page: 367
  year: 2015
  end-page: 375
  article-title: Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images
  publication-title: NeuroImage: Clin.
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– start-page: 5372
  year: 2012
  end-page: 5375
  article-title: Automated segmentation of free‐lying cell nuclei in pap smears for malignancy‐associated change analysis
– volume: 57
  start-page: 990
  issue: 6
  year: 2001
  end-page: 994
  article-title: A prospective study of cerebral white matter abnormalities in older people with gait dysfunction
  publication-title: Neurology
– volume: 28
  start-page: 607
  issue: 3
  year: 2005
  end-page: 617
  article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly
  publication-title: NeuroImage
– volume: 113
  start-page: 87
  issue: 2
  year: 2006
  end-page: 91
  article-title: White matter hyperintensities and cortical acetylcholinesterase activity in parkinsonian dementia
  publication-title: Acta Neurol. Scand.
– volume: 27
  start-page: 1023
  issue: 8
  year: 2009
  end-page: 1034
  article-title: Geometrical pdes based on second‐order derivatives of gauge coordinates in image processing
  publication-title: Image Vis. Comput.
– start-page: 1
  year: 1988
– volume: 17
  start-page: 1
  issue: 1
  year: 2013
  end-page: 18
  article-title: Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging
  publication-title: Med. Image Anal.
– volume: 59
  start-page: 3774
  issue: 4
  year: 2012
  end-page: 3783
  article-title: An automated tool for detection of flair‐hyperintense white‐matter lesions in multiple sclerosis
  publication-title: NeuroImage
– volume: 5
  start-page: 143
  issue: 2
  year: 2001
  end-page: 156
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med. Image Anal.
– volume: 34
  start-page: 1227
  issue: 6
  year: 2015
  end-page: 1241
  article-title: Temporal hierarchical adaptive texture crf for automatic detection of gadolinium‐enhancing multiple sclerosis lesions in brain MRI
  publication-title: IEEE Trans. Med. Imaging
– volume: 20
  start-page: 677
  issue: 8
  year: 2001
  end-page: 688
  article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection
  publication-title: IEEE Trans. Med. Imaging
– volume: 348
  start-page: 1215
  issue: 13
  year: 2003
  end-page: 1222
  article-title: Silent brain infarcts and the risk of dementia and cognitive decline
  publication-title: N. Engl. J. Med.
– volume: 24
  start-page: 51
  issue: 1‐2
  year: 2004
  end-page: 62
  article-title: Impact of age‐related cerebral white matter changes on the transition to disability—The LADIS study: Rationale, design and methodology
  publication-title: Neuroepidemiology
– volume: 31
  start-page: 1181
  issue: 6
  year: 2012
  end-page: 1194
  article-title: Automatic detection of gadolinium‐enhancing multiple sclerosis lesions in brain MRI using conditional random fields
  publication-title: IEEE Trans. Med. Imaging
– volume: 47
  start-page: 145
  issue: 2
  year: 2000
  end-page: 151
  article-title: Cerebral white matter lesions and cognitive function: The rotterdam scan study
  publication-title: Ann. Neurol.
– volume: 12
  start-page: 822
  issue: 8
  year: 2013
  end-page: 838
  article-title: Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration
  publication-title: Lancet Neurol.
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  end-page: 139
  article-title: A decision‐theoretic generalization of on‐line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– volume: 35
  start-page: 2348
  issue: 5
  year: 2014
  end-page: 2358
  article-title: Sex‐specific extent and severity of white matter damage in multiple sclerosis: Implications for cognitive decline
  publication-title: Hum. Brain Mapp.
– volume: 3
  start-page: 462
  year: 2013
  end-page: 469
  article-title: Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN‐TTPs)
  publication-title: NeuroImage: Clin.
– volume: 11
  start-page: 29
  issue: 1
  year: 2011
  end-page: 39
  article-title: Causes and consequences of cerebral small vessel disease. The run DMC study: A prospective cohort study. Study rationale and protocol
  publication-title: BMC Neurol.
– start-page: 1
  year: 1991
  end-page: 10
  article-title: Note on generalization, regularization and architecture selection in nonlinear learning systems
– volume: 35
  start-page: 4219
  issue: 8
  year: 2014
  end-page: 4235
  article-title: Extracting and summarizing white matter hyperintensities using supervised segmentation methods in Alzheimer's disease risk and aging studies
  publication-title: Hum. Brain Mapp.
– volume: 13
  start-page: 1
  issue: 3
  year: 2015
  end-page: 16
  article-title: Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: A review
  publication-title: Neuroinformatics
– volume: 44
  start-page: 2787
  issue: 10
  year: 2013
  end-page: 2794
  article-title: Brain imaging and cognitive predictors of stroke and Alzheimer disease in the framingham heart study
  publication-title: Stroke
– volume: 70
  start-page: 935
  issue: 12
  year: 2008
  end-page: 942
  article-title: Association of gait and balance disorders with age‐related white matter changes the ladis study
  publication-title: Neurology
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 8670
  start-page: 867014
  year: 2013
  article-title: Detection of white matter lesions in cerebral small vessel disease
  publication-title: Proc. SPIE
– volume: 57
  start-page: 416
  issue: 2
  year: 2011
  end-page: 422
  article-title: A comparison of different automated methods for the detection of white matter lesions in MRI data
  publication-title: NeuroImage
– volume: 8
  start-page: 401
  issue: 5
  year: 2001
  end-page: 430
  article-title: A four‐dimensional probabilistic atlas of the human brain
  publication-title: J. Am. Med. Inf. Associat.
– volume: 31
  start-page: 2182
  issue: 9
  year: 2000
  end-page: 2188
  article-title: Impact of white matter changes on clinical manifestation of Alzheimer's disease a quantitative study
  publication-title: Stroke
– start-page: 111
  year: 2010
  end-page: 118
  article-title: Spatial decision forests for MS lesion segmentation in multi‐channel MR images
– volume: 63
  start-page: 139
  issue: 1
  year: 2004
  end-page: 144
  article-title: White matter lesion progression a surrogate endpoint for trials in cerebral small‐vessel disease
  publication-title: Neurology
– volume: 9
  start-page: e104011
  issue: 8
  year: 2014
  article-title: Automated segmentation and quantification of white matter hyperintensities in acute ischemic stroke patients with cerebral infarction
  publication-title: PloS One
– volume: 9414
  start-page: 941411
  year: 2015
  article-title: Small white matter lesion detection in cerebral small vessel disease
  publication-title: Proc. SPIE
– volume: 0127
  start-page: 124
  year: 1977
  end-page: 135
  article-title: A free response approach to the measurement and characterization of radiographic observer performance
  publication-title: Proc. SPIE
– year: 2016
– volume: 70
  start-page: 9
  issue: 1
  year: 2001
  end-page: 14
  article-title: Prevalence of cerebral white matter lesions in elderly people: A population based magnetic resonance imaging study. The rotterdam scan study
  publication-title: J. Neurol., Neurosurg. Psychiatry
– volume: 13
  start-page: 89
  issue: 1
  year: 1998
  end-page: 95
  article-title: Gait disorder and parkinsonian signs in patients with stroke related to small deep infarcts and white matter lesions
  publication-title: Mov. Disord.
– volume: 213
  start-page: 138
  issue: 1
  year: 2013
  end-page: 146
  article-title: Automated quantification of white matter lesion in magnetic resonance imaging of patients with acute infarction
  publication-title: J. Neurosci. Methods
– volume: 64
  start-page: 273
  issue: 4
  year: 2008
  end-page: 280
  article-title: Classification of white matter lesions on magnetic resonance imaging in elderly persons
  publication-title: Biol. Psychiatry
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  end-page: 57
  article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation–maximization algorithm
  publication-title: IEEE Trans. Med. Imaging
– volume: 45
  start-page: 1151
  issue: 4
  year: 2009
  end-page: 1161
  article-title: White matter lesion extension to automatic brain tissue segmentation on MRI
  publication-title: NeuroImage
– volume: 54
  start-page: 838
  issue: 4
  year: 2000
  end-page: 842
  article-title: White matter volumes and periventricular white matter hyperintensities in aging and dementia
  publication-title: Neurology
– volume: 38
  start-page: 379
  issue: 3
  year: 2008
  end-page: 390
  article-title: Fully automatic segmentation of multiple sclerosis lesions in brain MR flair images using adaptive mixtures method and markov random field model
  publication-title: Comput. Biol. Med.
– volume: 59
  start-page: 860
  issue: 3
  year: 2012
  end-page: 871
  article-title: Robust white matter lesion segmentation in flair MRI
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 21
  start-page: 1037
  issue: 3
  year: 2004
  end-page: 1044
  article-title: Probabilistic segmentation of white matter lesions in MR imaging
  publication-title: NeuroImage
– volume: 49
  start-page: 1524
  issue: 2
  year: 2010
  end-page: 1535
  article-title: A topology‐preserving approach to the segmentation of brain images with multiple sclerosis lesions
  publication-title: NeuroImage
– volume: 23
  start-page: 525
  issue: 5
  year: 2015
  end-page: 535
  article-title: White matter integrity and depressive symptoms in cerebral small vessel disease: The run DMC study
  publication-title: Am. J. Geriatr. Psychiatry
– volume: 28
  start-page: 337
  issue: 2
  year: 2000
  end-page: 407
  article-title: Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)
  publication-title: Ann. Stat.
– volume: 22
  start-page: 401
  issue: 5‐6
  year: 1993
  end-page: 465
  article-title: Brain segmentation and white matter lesion detection in MR images
  publication-title: Crit. Rev. Biomed. Eng.
– volume: 79
  start-page: 619
  issue: 6
  year: 2008
  end-page: 624
  article-title: White matter hyperintensities in late life depression: A systematic review
  publication-title: J. Neurol., Neurosurg. Psychiatry
– ident: e_1_2_8_22_1
  doi: 10.1016/j.neuroimage.2009.09.005
– ident: e_1_2_8_56_1
  doi: 10.1038/s41598-017-05300-5
– ident: e_1_2_8_30_1
  doi: 10.1117/12.2007940
– ident: e_1_2_8_53_1
  doi: 10.1006/jcss.1997.1504
– ident: e_1_2_8_2_1
  doi: 10.1136/jnnp.70.1.9
– ident: e_1_2_8_50_1
  doi: 10.1109/EMBC.2012.6347208
– ident: e_1_2_8_40_1
  doi: 10.1097/00004728‐197906000‐00001
– ident: e_1_2_8_39_1
  doi: 10.1212/01.WNL.0000132635.75819.E5
– ident: e_1_2_8_43_1
  doi: 10.1016/j.biopsych.2008.03.024
– ident: e_1_2_8_16_1
  doi: 10.1212/WNL.57.6.990
– ident: e_1_2_8_23_1
  doi: 10.1109/42.938237
– ident: e_1_2_8_18_1
  doi: 10.1016/j.neuroimage.2005.06.061
– ident: e_1_2_8_19_1
  doi: 10.1016/j.nicl.2015.05.003
– ident: e_1_2_8_28_1
  doi: 10.1016/j.neuroimage.2011.04.053
– ident: e_1_2_8_24_1
  doi: 10.1016/j.compbiomed.2007.12.005
– ident: e_1_2_8_7_1
  doi: 10.1002/mds.870130119
– ident: e_1_2_8_8_1
  doi: 10.1056/NEJMoa022066
– ident: e_1_2_8_37_1
  doi: 10.1007/s12021‐015‐9260‐y
– ident: e_1_2_8_34_1
  doi: 10.1016/j.neuroimage.2003.10.012
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jagp.2014.07.002
– ident: e_1_2_8_20_1
  doi: 10.1109/TBME.2011.2181167
– ident: e_1_2_8_27_1
  doi: 10.1371/journal.pone.0104011
– ident: e_1_2_8_14_1
  doi: 10.1161/STROKEAHA.113.000947
– ident: e_1_2_8_45_1
  doi: 10.1136/jamia.2001.0080401
– ident: e_1_2_8_36_1
  doi: 10.1109/TMI.2014.2382561
– ident: e_1_2_8_3_1
  doi: 10.1016/S1474‐4422(13)70124‐8
– ident: e_1_2_8_51_1
  doi: 10.1016/j.imavis.2008.09.003
– ident: e_1_2_8_52_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_8_33_1
  doi: 10.1007/978-3-642-15705-9_14
– ident: e_1_2_8_29_1
  doi: 10.1002/hbm.22472
– ident: e_1_2_8_9_1
  doi: 10.1159/000081050
– ident: e_1_2_8_13_1
  doi: 10.1212/WNL.54.4.838
– ident: e_1_2_8_4_1
  doi: 10.1212/01.wnl.0000305959.46197.e6
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jneumeth.2012.12.014
– ident: e_1_2_8_38_1
  doi: 10.1016/j.media.2012.09.004
– ident: e_1_2_8_46_1
  doi: 10.1002/hbm.10062
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1600‐0404.2005.00553.x
– ident: e_1_2_8_10_1
  doi: 10.1186/1471‐2377‐11‐29
– ident: e_1_2_8_25_1
  doi: 10.1016/j.neuroimage.2009.01.011
– ident: e_1_2_8_32_1
  doi: 10.1109/TMI.2012.2186639
– ident: e_1_2_8_49_1
  doi: 10.1117/12.2081597
– ident: e_1_2_8_5_1
  doi: 10.1002/1531‐8249(200002)47:2<145::AID‐ANA3>3.0.CO;2‐P
– ident: e_1_2_8_26_1
  doi: 10.1016/j.neuroimage.2011.11.032
– ident: e_1_2_8_12_1
  doi: 10.1161/01.STR.31.9.2182
– ident: e_1_2_8_42_1
  doi: 10.1117/12.955926
– ident: e_1_2_8_11_1
  doi: 10.1002/hbm.22332
– ident: e_1_2_8_44_1
  doi: 10.1016/S1361‐8415(01)00036‐6
– ident: e_1_2_8_17_1
  doi: 10.1136/jnnp.2007.124651
– volume: 22
  start-page: 401
  issue: 5
  year: 1993
  ident: e_1_2_8_31_1
  article-title: Brain segmentation and white matter lesion detection in MR images
  publication-title: Crit. Rev. Biomed. Eng.
– start-page: 1
  volume-title: Mixture Models. Inference and Applications to Clustering, Statistics: Textbooks and Monographs
  year: 1988
  ident: e_1_2_8_48_1
– ident: e_1_2_8_35_1
  doi: 10.1016/j.nicl.2013.10.003
– ident: e_1_2_8_47_1
  doi: 10.1109/42.906424
– ident: e_1_2_8_41_1
  doi: 10.1109/NNSP.1991.239541
– ident: e_1_2_8_55_1
  doi: 10.1109/ISBI.2016.7493532
– ident: e_1_2_8_54_1
  doi: 10.1214/aos/1016218223
SSID ssj0006350
Score 2.4620287
Snippet Purpose: White matter hyperintensities (WMH) are seen on FLAIR-MRI in several neurological disorders, including multiple sclerosis, dementia, Parkinsonism,...
Purpose: White matter hyperintensities (WMH) are seen on FLAIR‐MRI in several neurological disorders, including multiple sclerosis, dementia, Parkinsonism,...
White matter hyperintensities (WMH) are seen on FLAIR-MRI in several neurological disorders, including multiple sclerosis, dementia, Parkinsonism, stroke and...
SourceID proquest
pubmed
crossref
wiley
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6246
SubjectTerms adaboost
automated detection
Automation
Biological material, e.g. blood, urine; Haemocytometers
biological tissues
biomedical MRI
brain
Cerebral Small Vessel Diseases - diagnostic imaging
computer aided detection
Dementia
Digital computing or data processing equipment or methods, specially adapted for specific applications
diseases
Humans
Image data processing or generation, in general
Image Processing, Computer-Assisted - methods
image segmentation
In which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
Inference methods or devices
Involving electronic [emr] or nuclear [nmr] magnetic resonance, e.g. magnetic resonance imaging
Learning
learning (artificial intelligence)
Machine learning
Magnetic Resonance Imaging
medical disorders
medical image processing
Medical magnetic resonance imaging
neurophysiology
Segmentation
Small vessel disease
Systems analysis
Testing procedures
Tissues
White Matter - diagnostic imaging
white matter hyperintensity
Title Automated detection of white matter hyperintensities of all sizes in cerebral small vessel disease
URI http://dx.doi.org/10.1118/1.4966029
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.4966029
https://www.ncbi.nlm.nih.gov/pubmed/27908171
https://www.proquest.com/docview/1845827208
Volume 43
WOSCitedRecordID wos000390237200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB61W47ywFGOhqMyh1BfArGTTWzxVAErHtqqQhTtWxRf6krbpNoLwa9nJs4GVRSExFOU6IsTZTz2TL7xZ4BX1trMpORIIiFRbZHGWjkfJyaVzheZ1-067q-HxfGxHI_VyQa8W6-FCfoQ_Q838ox2vCYHr3S3CwmnwnX-JiNlSaE2YUtgv80GsPXh8-j0sB-IcS4NK1BURiTCsBMWwtvf9jdfno5-izFvwU2ciQIpfjl8beef0Z3_evO7cLsLO9lB6Cf3YMPVO3DjqCPWd-B6Wwlq5vdBHywXDYaxzjLrFm2hVs0az74R38DOWzlOdvadBJJD9TspshKgmk7ZfPIDTyY1M25GjDReOafrK1Ion7KODXoAp6OPX95_iruNGGKD2YmK5TAv0tSa1HJfJF4Zm_OqQCtTMpioiphkrnlhvBcIUFluEsd5jlCdCMPThzCom9rtAhMSAY5Lk2LcKYXXTmdKp5hFYuhhhYlgf22Pcv3habOMaRmyFVnysvt6EbzooRdBmuMq0PO1UUt0HGJDqto1y3mJqe1QEgstI3gUrN03IwqFoVLBI3jZm_9vz7gCtWpmvxDlhfURvG47xZ_bKY9O6PD4X4FPYBvDtzwU1zyFwWK2dM_gmlktJvPZHmwWY7nX-cRPHs4Itw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6VLVB44ChXOM0hxEsgtrNJLPFSAasidlcValHfrI0PsdI2qfZC8OuZibNBFQUh8RQl-pxEGY8942_8BeCFtTY1khxJJCSqLWRcKufjxMjC-Tz1ZbOP-8swH4-L42N1sAVvN3thgj5Et-BGntGM1-TgtCDdejlVrvPXKUlLCnUBtlPsRv0ebL__PDgadiMxTqZhC4pKiUXot8pC2PxN1_jsfPRbkHkVdnAqCqz42fi1mYAG1__v1W_AtTbwZHuhp9yELVftwuVRS63vwqWmFtQsbkG5t1rWGMg6y6xbNqVaFas9-0aMAztpBDnZ1-8kkRzq30mTlQCT2Ywtpj_wZFox4-bESeOVE7q-Jo3yGWv5oNtwNPhw-G4_bn_FEBvMT1Rc9LNcSmuk5T5PvDI245Mc7UzpYKImxCXzkufGe4EAlWYmcZxnCC0TYbi8A72qrtw9YKJAgOOFkRh5FsKXrkxVKTGPxODDChPBq41B9ObL0-8yZjrkK4Xmuv16ETzroKdBnOM80NONVTW6DvEhk8rVq4XG5LZfEA9dRHA3mLu7jcgVBks5j-B5Z_-_PeMc1Lqe_0LoU-sjeNn0ij_fR48O6HD_X4FPYGf_cDTUw4_jTw_gCgZzWSi1eQi95XzlHsFFs15OF_PHrWv8BMLBC78
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6VFgo8cLQc4TSHEC-B2M4mtsRLRVmB2K5WiFZ9szY-1JW2SbUXgl_PTJINqigIiaco0eck8njimXzjzwAvnXOpleRIIiFRbSHjQvsQJ1YqH_I0FPU67qNBPhyq42M92oB367UwjT5E98ONPKP-XpOD-zMXWi-nynX-JiVpSaEvwVba0xm65db-l_7hoPsS42TaLEHRKbEIvVZZCJu_7Rqfn49-CzKvw1WcihpW_Hz8Wk9A_Zv_9-q34EYbeLK9ZqTchg1f7sD2QUut78CVuhbUzneh2FsuKgxkvWPOL-pSrZJVgX0jxoGd1oKc7OQ7SSQ39e-kyUqA8XTK5pMfeDIpmfUz4qTxyildX5FG-ZS1fNAdOOx_-Pr-Y9xuxRBbzE90rHpZLqWz0vGQJ0Fbl_FxjnamdDDRY-KSecFzG4JAgE4zm3jOM4QWibBc3oXNsir9fWBCIcBzZSVGnkqEwhepLiTmkRh8OGEjeL02iFn3PG2XMTVNvqIMN23vRfC8g5414hwXgZ6trWrQdYgPGZe-Ws4NJrc9RTy0iuBeY-7uNiLXGCzlPIIXnf3_9owLUKtq9gthcABE8KoeFX--jzkY0eHBvwKfwvZov28Gn4afH8I1jOWyptLmEWwuZkv_GC7b1WIynz1pPeMnOywLOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+of+white+matter+hyperintensities+of+all+sizes+in+cerebral+small+vessel+disease&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Ghafoorian%2C+Mohsen&rft.au=Karssemeijer%2C+Nico&rft.au=van+Uden%2C+Inge+W.+M.&rft.au=de+Leeuw%2C+Frank%E2%80%90Erik&rft.date=2016-12-01&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=43&rft.issue=12&rft.spage=6246&rft.epage=6258&rft_id=info:doi/10.1118%2F1.4966029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1118_1_4966029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon