Artificial Intelligence-Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device

Heart rate-corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome, and/or systemic diseases including SARS-CoV-2-mediated coronavirus disease 2019 (COVID-19), can predispose to ventricular arrhythmias and sudden cardiac death. Currently,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Circulation (New York, N.Y.) Ročník 143; číslo 13; s. 1274
Hlavní autori: Giudicessi, John R, Schram, Matthew, Bos, J Martijn, Galloway, Conner D, Shreibati, Jacqueline B, Johnson, Patrick W, Carter, Rickey E, Disrud, Levi W, Kleiman, Robert, Attia, Zachi I, Noseworthy, Peter A, Friedman, Paul A, Albert, David E, Ackerman, Michael J
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 30.03.2021
Predmet:
ISSN:1524-4539, 1524-4539
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Heart rate-corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome, and/or systemic diseases including SARS-CoV-2-mediated coronavirus disease 2019 (COVID-19), can predispose to ventricular arrhythmias and sudden cardiac death. Currently, QTc assessment and monitoring relies largely on 12-lead electrocardiography. As such, we sought to train and validate an artificial intelligence (AI)-enabled 12-lead ECG algorithm to determine the QTc, and then prospectively test this algorithm on tracings acquired from a mobile ECG (mECG) device in a population enriched for repolarization abnormalities. Using >1.6 million 12-lead ECGs from 538 200 patients, a deep neural network (DNN) was derived (patients for training, n = 250 767; patients for testing, n = 107 920) and validated (n = 179 513 patients) to predict the QTc using cardiologist-overread QTc values as the "gold standard". The ability of this DNN to detect clinically-relevant QTc prolongation (eg, QTc ≥500 ms) was then tested prospectively on 686 patients with genetic heart disease (50% with long QT syndrome) with QTc values obtained from both a 12-lead ECG and a prototype mECG device equivalent to the commercially-available AliveCor KardiaMobile 6L. In the validation sample, strong agreement was observed between human over-read and DNN-predicted QTc values (-1.76±23.14 ms). Similarly, within the prospective, genetic heart disease-enriched dataset, the difference between DNN-predicted QTc values derived from mECG tracings and those annotated from 12-lead ECGs by a QT expert (-0.45±24.73 ms) and a commercial core ECG laboratory [10.52±25.64 ms] was nominal. When applied to mECG tracings, the DNN's ability to detect a QTc value ≥500 ms yielded an area under the curve, sensitivity, and specificity of 0.97, 80.0%, and 94.4%, respectively. Using smartphone-enabled electrodes, an AI DNN can predict accurately the QTc of a standard 12-lead ECG. QTc estimation from an AI-enabled mECG device may provide a cost-effective means of screening for both acquired and congenital long QT syndrome in a variety of clinical settings where standard 12-lead electrocardiography is not accessible or cost-effective.
AbstractList Heart rate-corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome, and/or systemic diseases including SARS-CoV-2-mediated coronavirus disease 2019 (COVID-19), can predispose to ventricular arrhythmias and sudden cardiac death. Currently, QTc assessment and monitoring relies largely on 12-lead electrocardiography. As such, we sought to train and validate an artificial intelligence (AI)-enabled 12-lead ECG algorithm to determine the QTc, and then prospectively test this algorithm on tracings acquired from a mobile ECG (mECG) device in a population enriched for repolarization abnormalities.BACKGROUNDHeart rate-corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome, and/or systemic diseases including SARS-CoV-2-mediated coronavirus disease 2019 (COVID-19), can predispose to ventricular arrhythmias and sudden cardiac death. Currently, QTc assessment and monitoring relies largely on 12-lead electrocardiography. As such, we sought to train and validate an artificial intelligence (AI)-enabled 12-lead ECG algorithm to determine the QTc, and then prospectively test this algorithm on tracings acquired from a mobile ECG (mECG) device in a population enriched for repolarization abnormalities.Using >1.6 million 12-lead ECGs from 538 200 patients, a deep neural network (DNN) was derived (patients for training, n = 250 767; patients for testing, n = 107 920) and validated (n = 179 513 patients) to predict the QTc using cardiologist-overread QTc values as the "gold standard". The ability of this DNN to detect clinically-relevant QTc prolongation (eg, QTc ≥500 ms) was then tested prospectively on 686 patients with genetic heart disease (50% with long QT syndrome) with QTc values obtained from both a 12-lead ECG and a prototype mECG device equivalent to the commercially-available AliveCor KardiaMobile 6L.METHODSUsing >1.6 million 12-lead ECGs from 538 200 patients, a deep neural network (DNN) was derived (patients for training, n = 250 767; patients for testing, n = 107 920) and validated (n = 179 513 patients) to predict the QTc using cardiologist-overread QTc values as the "gold standard". The ability of this DNN to detect clinically-relevant QTc prolongation (eg, QTc ≥500 ms) was then tested prospectively on 686 patients with genetic heart disease (50% with long QT syndrome) with QTc values obtained from both a 12-lead ECG and a prototype mECG device equivalent to the commercially-available AliveCor KardiaMobile 6L.In the validation sample, strong agreement was observed between human over-read and DNN-predicted QTc values (-1.76±23.14 ms). Similarly, within the prospective, genetic heart disease-enriched dataset, the difference between DNN-predicted QTc values derived from mECG tracings and those annotated from 12-lead ECGs by a QT expert (-0.45±24.73 ms) and a commercial core ECG laboratory [10.52±25.64 ms] was nominal. When applied to mECG tracings, the DNN's ability to detect a QTc value ≥500 ms yielded an area under the curve, sensitivity, and specificity of 0.97, 80.0%, and 94.4%, respectively.RESULTSIn the validation sample, strong agreement was observed between human over-read and DNN-predicted QTc values (-1.76±23.14 ms). Similarly, within the prospective, genetic heart disease-enriched dataset, the difference between DNN-predicted QTc values derived from mECG tracings and those annotated from 12-lead ECGs by a QT expert (-0.45±24.73 ms) and a commercial core ECG laboratory [10.52±25.64 ms] was nominal. When applied to mECG tracings, the DNN's ability to detect a QTc value ≥500 ms yielded an area under the curve, sensitivity, and specificity of 0.97, 80.0%, and 94.4%, respectively.Using smartphone-enabled electrodes, an AI DNN can predict accurately the QTc of a standard 12-lead ECG. QTc estimation from an AI-enabled mECG device may provide a cost-effective means of screening for both acquired and congenital long QT syndrome in a variety of clinical settings where standard 12-lead electrocardiography is not accessible or cost-effective.CONCLUSIONSUsing smartphone-enabled electrodes, an AI DNN can predict accurately the QTc of a standard 12-lead ECG. QTc estimation from an AI-enabled mECG device may provide a cost-effective means of screening for both acquired and congenital long QT syndrome in a variety of clinical settings where standard 12-lead electrocardiography is not accessible or cost-effective.
Heart rate-corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome, and/or systemic diseases including SARS-CoV-2-mediated coronavirus disease 2019 (COVID-19), can predispose to ventricular arrhythmias and sudden cardiac death. Currently, QTc assessment and monitoring relies largely on 12-lead electrocardiography. As such, we sought to train and validate an artificial intelligence (AI)-enabled 12-lead ECG algorithm to determine the QTc, and then prospectively test this algorithm on tracings acquired from a mobile ECG (mECG) device in a population enriched for repolarization abnormalities. Using >1.6 million 12-lead ECGs from 538 200 patients, a deep neural network (DNN) was derived (patients for training, n = 250 767; patients for testing, n = 107 920) and validated (n = 179 513 patients) to predict the QTc using cardiologist-overread QTc values as the "gold standard". The ability of this DNN to detect clinically-relevant QTc prolongation (eg, QTc ≥500 ms) was then tested prospectively on 686 patients with genetic heart disease (50% with long QT syndrome) with QTc values obtained from both a 12-lead ECG and a prototype mECG device equivalent to the commercially-available AliveCor KardiaMobile 6L. In the validation sample, strong agreement was observed between human over-read and DNN-predicted QTc values (-1.76±23.14 ms). Similarly, within the prospective, genetic heart disease-enriched dataset, the difference between DNN-predicted QTc values derived from mECG tracings and those annotated from 12-lead ECGs by a QT expert (-0.45±24.73 ms) and a commercial core ECG laboratory [10.52±25.64 ms] was nominal. When applied to mECG tracings, the DNN's ability to detect a QTc value ≥500 ms yielded an area under the curve, sensitivity, and specificity of 0.97, 80.0%, and 94.4%, respectively. Using smartphone-enabled electrodes, an AI DNN can predict accurately the QTc of a standard 12-lead ECG. QTc estimation from an AI-enabled mECG device may provide a cost-effective means of screening for both acquired and congenital long QT syndrome in a variety of clinical settings where standard 12-lead electrocardiography is not accessible or cost-effective.
Author Disrud, Levi W
Galloway, Conner D
Shreibati, Jacqueline B
Attia, Zachi I
Ackerman, Michael J
Giudicessi, John R
Friedman, Paul A
Noseworthy, Peter A
Carter, Rickey E
Johnson, Patrick W
Kleiman, Robert
Albert, David E
Schram, Matthew
Bos, J Martijn
Author_xml – sequence: 1
  givenname: John R
  surname: Giudicessi
  fullname: Giudicessi, John R
  organization: Clinician-Investigator Training Program (J.R.G.), Mayo Clinic, Rochester, MN
– sequence: 2
  givenname: Matthew
  surname: Schram
  fullname: Schram, Matthew
  organization: AliveCor Inc., Mountain View, CA. (M.S., C.D.G., J.B.S., D.E.A.)
– sequence: 3
  givenname: J Martijn
  surname: Bos
  fullname: Bos, J Martijn
  organization: Department of Cardiovascular Medicine; Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics (J.M.B., M.J.A.), Mayo Clinic, Rochester, MN
– sequence: 4
  givenname: Conner D
  surname: Galloway
  fullname: Galloway, Conner D
  organization: AliveCor Inc., Mountain View, CA. (M.S., C.D.G., J.B.S., D.E.A.)
– sequence: 5
  givenname: Jacqueline B
  surname: Shreibati
  fullname: Shreibati, Jacqueline B
  organization: AliveCor Inc., Mountain View, CA. (M.S., C.D.G., J.B.S., D.E.A.)
– sequence: 6
  givenname: Patrick W
  surname: Johnson
  fullname: Johnson, Patrick W
  organization: Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Jacksonville, FL (P.W.J., R.E.C.)
– sequence: 7
  givenname: Rickey E
  surname: Carter
  fullname: Carter, Rickey E
  organization: Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Jacksonville, FL (P.W.J., R.E.C.)
– sequence: 8
  givenname: Levi W
  surname: Disrud
  fullname: Disrud, Levi W
  organization: Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (L.W.D., Z.I.A., P.A.N., P.A.F., M.J.A.), Mayo Clinic, Rochester, MN
– sequence: 9
  givenname: Robert
  surname: Kleiman
  fullname: Kleiman, Robert
  organization: eResearch Technology Inc, Philadelphia, PA (R.K.)
– sequence: 10
  givenname: Zachi I
  surname: Attia
  fullname: Attia, Zachi I
  organization: Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (L.W.D., Z.I.A., P.A.N., P.A.F., M.J.A.), Mayo Clinic, Rochester, MN
– sequence: 11
  givenname: Peter A
  surname: Noseworthy
  fullname: Noseworthy, Peter A
  organization: Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (L.W.D., Z.I.A., P.A.N., P.A.F., M.J.A.), Mayo Clinic, Rochester, MN
– sequence: 12
  givenname: Paul A
  surname: Friedman
  fullname: Friedman, Paul A
  organization: Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (L.W.D., Z.I.A., P.A.N., P.A.F., M.J.A.), Mayo Clinic, Rochester, MN
– sequence: 13
  givenname: David E
  surname: Albert
  fullname: Albert, David E
  organization: AliveCor Inc., Mountain View, CA. (M.S., C.D.G., J.B.S., D.E.A.)
– sequence: 14
  givenname: Michael J
  surname: Ackerman
  fullname: Ackerman, Michael J
  organization: Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.J.A.), Mayo Clinic, Rochester, MN
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33517677$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1LwzAUhoNMnJv-BYl33nQmadKPy1KnK0yHY7suaXMyI20zk26gv96iE7w6h8PzPnDeCRp1tgOEbimZURrR-7xY59tltilWL9kim1FGZkQQFtIzdEkF4wEXYTr6t4_RxPt3QkgUxuICjcNQ0DiK40v0lbneaFMb2eCi66FpzA66GoJ5J6sGFM68B-9b6HpsNe7fAC9Auh6vZQ84t85B3Q_Y6-Yn7o6DZ-tNt8MSP9vKNIDnzYA4W0unjN052eIHOJoartC5lo2H69Ocou3jfJMvguXqqcizZVBzlrAAOK1YGvKIx0opAVQSHeqYA01SoSJNIwZMJrpSVFeCSFVJosJkuGuoRJKwKbr79e6d_TiA78vW-Hr4VHZgD75kPOE04iyNBvTmhB6qFlS5d6aV7rP864t9A67mcp0
CitedBy_id crossref_primary_10_1016_j_csm_2022_02_004
crossref_primary_10_1093_eurheartj_ehab611
crossref_primary_10_1017_S1047951122002244
crossref_primary_10_3389_fcvm_2023_1172451
crossref_primary_10_1016_j_bspc_2025_107704
crossref_primary_10_1016_j_cvdhj_2022_09_001
crossref_primary_10_1016_j_measurement_2023_113856
crossref_primary_10_1016_j_heliyon_2025_e42662
crossref_primary_10_1016_j_jacep_2024_01_022
crossref_primary_10_1016_j_cpcardiol_2023_101750
crossref_primary_10_1002_btm2_10553
crossref_primary_10_1161_CIRCULATIONAHA_121_053733
crossref_primary_10_1016_j_jacep_2022_09_021
crossref_primary_10_1016_j_jacc_2024_03_400
crossref_primary_10_1093_ije_dyad089
crossref_primary_10_1007_s11936_024_01040_8
crossref_primary_10_1016_j_cvdhj_2021_07_001
crossref_primary_10_1007_s12471_023_01797_w
crossref_primary_10_3390_hearts2040037
crossref_primary_10_1016_j_ccep_2021_04_011
crossref_primary_10_1371_journal_pdig_0000539
crossref_primary_10_1016_j_tcm_2024_11_002
crossref_primary_10_1038_s43856_021_00052_w
crossref_primary_10_1111_bcp_15188
crossref_primary_10_1093_eurheartj_ehab649
crossref_primary_10_1186_s42444_022_00075_x
crossref_primary_10_1016_j_chest_2022_09_043
crossref_primary_10_1016_j_measurement_2025_117347
crossref_primary_10_1111_bcp_15580
crossref_primary_10_1016_j_heliyon_2024_e25318
crossref_primary_10_32604_chd_2024_045953
crossref_primary_10_1038_s41440_023_01469_7
crossref_primary_10_3390_hearts5010007
crossref_primary_10_2174_011573403X334095241205041550
crossref_primary_10_2196_41241
crossref_primary_10_1016_j_hrthm_2023_07_001
crossref_primary_10_5588_ijtldopen_23_0623
crossref_primary_10_1002_jac5_1435
crossref_primary_10_1038_s41746_022_00690_x
crossref_primary_10_1161_CIRCRESAHA_121_319876
crossref_primary_10_1002_joa3_13052
crossref_primary_10_1016_j_mcpdig_2023_07_007
crossref_primary_10_1136_openhrt_2021_001874
crossref_primary_10_1016_j_engappai_2022_105218
crossref_primary_10_1016_j_jacadv_2024_101202
crossref_primary_10_1016_j_ins_2023_01_055
crossref_primary_10_2298_TSCI2402321Q
crossref_primary_10_1016_j_cjca_2021_07_016
crossref_primary_10_1016_j_cvdhj_2023_03_001
crossref_primary_10_3390_computers10060082
crossref_primary_10_1016_j_tcm_2022_01_011
crossref_primary_10_1016_j_jacep_2022_02_017
crossref_primary_10_1016_j_path_2022_09_014
crossref_primary_10_1007_s12471_022_01716_5
crossref_primary_10_1007_s12170_023_00726_1
crossref_primary_10_1016_j_jacep_2022_06_017
crossref_primary_10_3389_fcvm_2023_1172666
crossref_primary_10_1016_j_jaccas_2023_101898
crossref_primary_10_1016_j_mayocp_2024_07_016
crossref_primary_10_1016_j_hrthm_2021_12_029
crossref_primary_10_1111_exsy_70068
crossref_primary_10_1145_3749457
crossref_primary_10_1109_TBME_2022_3221339
crossref_primary_10_3389_fcvm_2022_906079
crossref_primary_10_1007_s11886_024_02062_1
crossref_primary_10_1016_j_cpcardiol_2023_102097
crossref_primary_10_1016_j_mcpdig_2023_11_003
crossref_primary_10_1089_dtom_2025_0034
crossref_primary_10_1093_europace_euac038
crossref_primary_10_1016_j_jacc_2021_11_012
crossref_primary_10_1016_j_jjcc_2021_11_017
crossref_primary_10_1016_j_cjca_2024_07_003
crossref_primary_10_1016_j_jelectrocard_2025_154082
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/CIRCULATIONAHA.120.050231
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
ExternalDocumentID 33517677
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.-D
.3C
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAUEB
AAWTL
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACIJW
ACILI
ACLDA
ACOAL
ACRKK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADCYY
ADGGA
ADHPY
AE3
AE6
AEBDS
AENEX
AFBFQ
AFCHL
AFDTB
AFEXH
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BYPQX
C45
CGR
CS3
CUY
CVF
DIK
DIWNM
DU5
E3Z
EBS
ECM
EEVPB
EIF
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
NPM
N~7
N~B
O9-
OAG
OAH
OBH
OCB
ODMTH
OGEVE
OHH
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
YSK
YYM
YZZ
ZFV
ZY1
~H1
7X8
AAFWJ
ABPXF
ABUFD
ACBKD
ADKSD
ADSXY
ID FETCH-LOGICAL-c4282-e41b2934647ddd5e1a0f3f74e1895d6f162e2a8fbd1fb50adba0d38f16feb5882
IEDL.DBID 7X8
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=00003017-202103300-00002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-4539
IngestDate Sun Nov 09 11:17:01 EST 2025
Thu Apr 03 06:49:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords long QT syndrome
machine learning
artificial intelligence
electrocardiography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4282-e41b2934647ddd5e1a0f3f74e1895d6f162e2a8fbd1fb50adba0d38f16feb5882
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33517677
PQID 2484164296
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2484164296
pubmed_primary_33517677
PublicationCentury 2000
PublicationDate 2021-03-30
20210330
PublicationDateYYYYMMDD 2021-03-30
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2021
References 33779269 - Circulation. 2021 Mar 30;143(13):1299-1301
References_xml – reference: 33779269 - Circulation. 2021 Mar 30;143(13):1299-1301
SSID ssj0006375
Score 2.6152556
Snippet Heart rate-corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome, and/or systemic diseases...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1274
SubjectTerms Adult
Aged
Area Under Curve
Artificial Intelligence
COVID-19 - physiopathology
COVID-19 - virology
Electrocardiography - instrumentation
Electrocardiography - methods
Female
Heart Diseases - diagnosis
Heart Diseases - physiopathology
Heart Rate - physiology
Humans
Long QT Syndrome - diagnosis
Long QT Syndrome - physiopathology
Male
Middle Aged
Prospective Studies
ROC Curve
SARS-CoV-2 - isolation & purification
Sensitivity and Specificity
Smartphone
Title Artificial Intelligence-Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device
URI https://www.ncbi.nlm.nih.gov/pubmed/33517677
https://www.proquest.com/docview/2484164296
Volume 143
WOSCitedRecordID wos00003017-202103300-00002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PSxwxFH5YLeLFWm390SpPKL2lJjOZJHuSZbuyQnexorC3JZkk0ENnrKuC_ev7khlrL4VCL3MYeDBkXr5870e-B_DBEMRFxQMzSlgmtXHMRSdYratA4KiU5N2wCT2bmfl8cNEn3JZ9W-UTJmag9m2dcuQnhUwFMkJPdXrzg6WpUam62o_QeAFrJVGZ5NV6_qwWrsostEtHlGSyKgfrcJxBQomT0fnl6PpLJzg7SRlB_olXSQvt70wznzhnr_73W7dgs-eaOOyc4zWshGYbdoYNxdnfH_Ej5u7PnFbfhvVpX2TfgZ_JoBOWwPM_FDvZON-z8jj8reaJbURikDih_XKHl8RbcZTGfdTEY_HrVTa_JV_G3JmAFqetIxjCcTd8p87NsKk_DD-HBFlv4PpsfDWasH5EA6spbilYkMIRYZBKau99FYTlsYxaBmEGlVdRqCIU1kTnRXQVt95Z7ktD72NwFbH7t7DatE3YA1RBcGfVwBtrZFlY4m3c89rZFLR6U-zD8dNiL2gLpLqGbUJ7v1w8L_c-7HZ_bHHTaXUsyrISWml98A_W72CjSB0r6cYhfw9rkQAgHMLL-uHu2_L2KPsWPWcX01-1w9iU
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence-Enabled+Assessment+of+the+Heart+Rate+Corrected+QT+Interval+Using+a+Mobile+Electrocardiogram+Device&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Giudicessi%2C+John+R&rft.au=Schram%2C+Matthew&rft.au=Bos%2C+J+Martijn&rft.au=Galloway%2C+Conner+D&rft.date=2021-03-30&rft.issn=1524-4539&rft.eissn=1524-4539&rft.volume=143&rft.issue=13&rft.spage=1274&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.120.050231&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-4539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-4539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-4539&client=summon