Loss of Gut Microbiota Alters Immune System Composition and Cripples Postinfarction Cardiac Repair

The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Circulation (New York, N.Y.) Ročník 139; číslo 5; s. 647
Hlavní autoři: Tang, Tony W H, Chen, Hung-Chih, Chen, Chen-Yun, Yen, Christopher Y T, Lin, Chen-Ju, Prajnamitra, Ray P, Chen, Li-Lun, Ruan, Shu-Chian, Lin, Jen-Hao, Lin, Po-Ju, Lu, Hsueh-Han, Kuo, Chiung-Wen, Chang, Cindy M, Hall, Alexander D, Vivas, Eugenio I, Shui, Jr-Wen, Chen, Peilin, Hacker, Timothy A, Rey, Federico E, Kamp, Timothy J, Hsieh, Patrick C H
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 29.01.2019
Témata:
ISSN:1524-4539, 1524-4539
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role of the gut microbiota in the context of MI remains to be fully elucidated. To investigate the effects of gut microbiota on cardiac repair after MI, C57BL/6J mice were treated with antibiotics 7 days before MI to deplete mouse gut microbiota. Flow cytometry was applied to examine the changes in immune cell composition in the heart. 16S rDNA sequencing was conducted as a readout for changes in gut microbial composition. Short-chain fatty acid (SCFA) species altered after antibiotic treatment were identified by high-performance liquid chromatography. Fecal reconstitution, transplantation of monocytes, or dietary SCFA or Lactobacillus probiotic supplementation was conducted to evaluate the cardioprotective effects of microbiota on the mice after MI. Antibiotic-treated mice displayed drastic, dose-dependent mortality after MI. We observed an association between the gut microbiota depletion and significant reductions in the proportion of myeloid cells and SCFAs, more specifically acetate, butyrate, and propionate. Infiltration of CX3CR1+ monocytes to the peri-infarct zone after MI was also reduced, suggesting impairment of repair after MI. Accordingly, the physiological status and survival of mice were significantly improved after fecal reconstitution, transplantation of monocytes, or dietary SCFA supplementation. MI was associated with a reorganization of the gut microbial community such as a reduction in Lactobacillus. Supplementing antibiotic-treated mice with a Lactobacillus probiotic before MI restored myeloid cell proportions, yielded cardioprotective effects, and shifted the balance of SCFAs toward propionate. Gut microbiota-derived SCFAs play an important role in maintaining host immune composition and repair capacity after MI. This suggests that manipulation of these elements may provide opportunities to modulate pathological outcome after MI and indeed human health and disease as a whole.
AbstractList The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role of the gut microbiota in the context of MI remains to be fully elucidated. To investigate the effects of gut microbiota on cardiac repair after MI, C57BL/6J mice were treated with antibiotics 7 days before MI to deplete mouse gut microbiota. Flow cytometry was applied to examine the changes in immune cell composition in the heart. 16S rDNA sequencing was conducted as a readout for changes in gut microbial composition. Short-chain fatty acid (SCFA) species altered after antibiotic treatment were identified by high-performance liquid chromatography. Fecal reconstitution, transplantation of monocytes, or dietary SCFA or Lactobacillus probiotic supplementation was conducted to evaluate the cardioprotective effects of microbiota on the mice after MI. Antibiotic-treated mice displayed drastic, dose-dependent mortality after MI. We observed an association between the gut microbiota depletion and significant reductions in the proportion of myeloid cells and SCFAs, more specifically acetate, butyrate, and propionate. Infiltration of CX3CR1+ monocytes to the peri-infarct zone after MI was also reduced, suggesting impairment of repair after MI. Accordingly, the physiological status and survival of mice were significantly improved after fecal reconstitution, transplantation of monocytes, or dietary SCFA supplementation. MI was associated with a reorganization of the gut microbial community such as a reduction in Lactobacillus. Supplementing antibiotic-treated mice with a Lactobacillus probiotic before MI restored myeloid cell proportions, yielded cardioprotective effects, and shifted the balance of SCFAs toward propionate. Gut microbiota-derived SCFAs play an important role in maintaining host immune composition and repair capacity after MI. This suggests that manipulation of these elements may provide opportunities to modulate pathological outcome after MI and indeed human health and disease as a whole.
The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role of the gut microbiota in the context of MI remains to be fully elucidated.BACKGROUNDThe impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role of the gut microbiota in the context of MI remains to be fully elucidated.To investigate the effects of gut microbiota on cardiac repair after MI, C57BL/6J mice were treated with antibiotics 7 days before MI to deplete mouse gut microbiota. Flow cytometry was applied to examine the changes in immune cell composition in the heart. 16S rDNA sequencing was conducted as a readout for changes in gut microbial composition. Short-chain fatty acid (SCFA) species altered after antibiotic treatment were identified by high-performance liquid chromatography. Fecal reconstitution, transplantation of monocytes, or dietary SCFA or Lactobacillus probiotic supplementation was conducted to evaluate the cardioprotective effects of microbiota on the mice after MI.METHODSTo investigate the effects of gut microbiota on cardiac repair after MI, C57BL/6J mice were treated with antibiotics 7 days before MI to deplete mouse gut microbiota. Flow cytometry was applied to examine the changes in immune cell composition in the heart. 16S rDNA sequencing was conducted as a readout for changes in gut microbial composition. Short-chain fatty acid (SCFA) species altered after antibiotic treatment were identified by high-performance liquid chromatography. Fecal reconstitution, transplantation of monocytes, or dietary SCFA or Lactobacillus probiotic supplementation was conducted to evaluate the cardioprotective effects of microbiota on the mice after MI.Antibiotic-treated mice displayed drastic, dose-dependent mortality after MI. We observed an association between the gut microbiota depletion and significant reductions in the proportion of myeloid cells and SCFAs, more specifically acetate, butyrate, and propionate. Infiltration of CX3CR1+ monocytes to the peri-infarct zone after MI was also reduced, suggesting impairment of repair after MI. Accordingly, the physiological status and survival of mice were significantly improved after fecal reconstitution, transplantation of monocytes, or dietary SCFA supplementation. MI was associated with a reorganization of the gut microbial community such as a reduction in Lactobacillus. Supplementing antibiotic-treated mice with a Lactobacillus probiotic before MI restored myeloid cell proportions, yielded cardioprotective effects, and shifted the balance of SCFAs toward propionate.RESULTSAntibiotic-treated mice displayed drastic, dose-dependent mortality after MI. We observed an association between the gut microbiota depletion and significant reductions in the proportion of myeloid cells and SCFAs, more specifically acetate, butyrate, and propionate. Infiltration of CX3CR1+ monocytes to the peri-infarct zone after MI was also reduced, suggesting impairment of repair after MI. Accordingly, the physiological status and survival of mice were significantly improved after fecal reconstitution, transplantation of monocytes, or dietary SCFA supplementation. MI was associated with a reorganization of the gut microbial community such as a reduction in Lactobacillus. Supplementing antibiotic-treated mice with a Lactobacillus probiotic before MI restored myeloid cell proportions, yielded cardioprotective effects, and shifted the balance of SCFAs toward propionate.Gut microbiota-derived SCFAs play an important role in maintaining host immune composition and repair capacity after MI. This suggests that manipulation of these elements may provide opportunities to modulate pathological outcome after MI and indeed human health and disease as a whole.CONCLUSIONSGut microbiota-derived SCFAs play an important role in maintaining host immune composition and repair capacity after MI. This suggests that manipulation of these elements may provide opportunities to modulate pathological outcome after MI and indeed human health and disease as a whole.
Author Lu, Hsueh-Han
Chen, Li-Lun
Tang, Tony W H
Ruan, Shu-Chian
Hsieh, Patrick C H
Yen, Christopher Y T
Kamp, Timothy J
Rey, Federico E
Kuo, Chiung-Wen
Prajnamitra, Ray P
Chen, Hung-Chih
Chen, Chen-Yun
Lin, Chen-Ju
Chen, Peilin
Vivas, Eugenio I
Shui, Jr-Wen
Chang, Cindy M
Hacker, Timothy A
Lin, Jen-Hao
Lin, Po-Ju
Hall, Alexander D
Author_xml – sequence: 1
  givenname: Tony W H
  surname: Tang
  fullname: Tang, Tony W H
  organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan
– sequence: 2
  givenname: Hung-Chih
  surname: Chen
  fullname: Chen, Hung-Chih
  organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan
– sequence: 3
  givenname: Chen-Yun
  surname: Chen
  fullname: Chen, Chen-Yun
  organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan
– sequence: 4
  givenname: Christopher Y T
  surname: Yen
  fullname: Yen, Christopher Y T
  organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan
– sequence: 5
  givenname: Chen-Ju
  surname: Lin
  fullname: Lin, Chen-Ju
  organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan
– sequence: 6
  givenname: Ray P
  surname: Prajnamitra
  fullname: Prajnamitra, Ray P
  organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan
– sequence: 7
  givenname: Li-Lun
  surname: Chen
  fullname: Chen, Li-Lun
  organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan
– sequence: 8
  givenname: Shu-Chian
  surname: Ruan
  fullname: Ruan, Shu-Chian
  organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan
– sequence: 9
  givenname: Jen-Hao
  surname: Lin
  fullname: Lin, Jen-Hao
  organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan
– sequence: 10
  givenname: Po-Ju
  surname: Lin
  fullname: Lin, Po-Ju
  organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan
– sequence: 11
  givenname: Hsueh-Han
  surname: Lu
  fullname: Lu, Hsueh-Han
  organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan
– sequence: 12
  givenname: Chiung-Wen
  surname: Kuo
  fullname: Kuo, Chiung-Wen
  organization: Research Center for Applied Sciences (C.-W.K., P.C.), Academia Sinica, Taipei, Taiwan
– sequence: 13
  givenname: Cindy M
  surname: Chang
  fullname: Chang, Cindy M
  organization: Department of Medicine (C.M.C., A.D.H., T.A.H., T.J.K., P.C.H.H.), University of Wisconsin-Madison
– sequence: 14
  givenname: Alexander D
  surname: Hall
  fullname: Hall, Alexander D
  organization: Department of Medicine (C.M.C., A.D.H., T.A.H., T.J.K., P.C.H.H.), University of Wisconsin-Madison
– sequence: 15
  givenname: Eugenio I
  surname: Vivas
  fullname: Vivas, Eugenio I
  organization: Department of Bacteriology (E.I.V., F.E.R.), University of Wisconsin-Madison
– sequence: 16
  givenname: Jr-Wen
  surname: Shui
  fullname: Shui, Jr-Wen
  organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan
– sequence: 17
  givenname: Peilin
  surname: Chen
  fullname: Chen, Peilin
  organization: Research Center for Applied Sciences (C.-W.K., P.C.), Academia Sinica, Taipei, Taiwan
– sequence: 18
  givenname: Timothy A
  surname: Hacker
  fullname: Hacker, Timothy A
  organization: Department of Medicine (C.M.C., A.D.H., T.A.H., T.J.K., P.C.H.H.), University of Wisconsin-Madison
– sequence: 19
  givenname: Federico E
  surname: Rey
  fullname: Rey, Federico E
  organization: Department of Bacteriology (E.I.V., F.E.R.), University of Wisconsin-Madison
– sequence: 20
  givenname: Timothy J
  surname: Kamp
  fullname: Kamp, Timothy J
  organization: Stem Cell and Regenerative Medicine Center (T.J.K., P.C.H.H.), University of Wisconsin-Madison
– sequence: 21
  givenname: Patrick C H
  surname: Hsieh
  fullname: Hsieh, Patrick C H
  organization: Stem Cell and Regenerative Medicine Center (T.J.K., P.C.H.H.), University of Wisconsin-Madison
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30586712$$D View this record in MEDLINE/PubMed
BookMark eNpNUF1LwzAADDJxH_oXJL750pnvpo-l6DaoTub2XNI0hUjb1KR92L-36ASf7rg7Du6WYNa5zgDwgNEaY4Gfst0hO-Xpcbd_S7fppMk1opxQfgUWmBMWMU6T2T8-B8sQPhFCgsb8Bswp4lLEmCxAmbsQoKvhZhzgq9XeldYNCqbNYHyAu7YdOwM_zmEwLcxc27tgB-s6qLoKZt72fWMCfHdhsF2tvP7xMuUrqzQ8mF5Zfwuua9UEc3fBFTi9PB-zbZTvN7sszSPNiMSRoIybuETltEMTTJkSBkueUIp5qZhKECal1rVkVcmFqFAsaMINJVRKk9CKrMDjb2_v3ddowlC0NmjTNKozbgwFma5DgkvGp-j9JTqWramK3ttW-XPx9wv5BrGyaJ0
CitedBy_id crossref_primary_10_1016_j_foodres_2020_109489
crossref_primary_10_1016_j_gendis_2025_101592
crossref_primary_10_1093_cvr_cvad023
crossref_primary_10_3389_fmicb_2021_641084
crossref_primary_10_1016_j_imlet_2023_01_007
crossref_primary_10_1111_jcmm_70406
crossref_primary_10_1016_j_cpcardiol_2024_102562
crossref_primary_10_1007_s12223_021_00926_5
crossref_primary_10_3390_microorganisms12020319
crossref_primary_10_1002_advs_202307233
crossref_primary_10_1016_j_jacc_2019_03_024
crossref_primary_10_1016_j_molmet_2020_100976
crossref_primary_10_1161_CIRCULATIONAHA_118_037384
crossref_primary_10_3389_fcvm_2021_759735
crossref_primary_10_1093_eurheartj_ehab644
crossref_primary_10_3390_nu13010228
crossref_primary_10_1007_s11427_021_2056_1
crossref_primary_10_1186_s40104_023_00974_6
crossref_primary_10_1007_s10495_024_02046_0
crossref_primary_10_1016_j_biopha_2020_110503
crossref_primary_10_3390_biomedicines10112712
crossref_primary_10_1155_2020_5394096
crossref_primary_10_3389_fimmu_2024_1321395
crossref_primary_10_5527_wjn_v13_i4_98719
crossref_primary_10_22207_JPAM_16_4_19
crossref_primary_10_3390_bioengineering9120798
crossref_primary_10_1007_s00395_025_01134_9
crossref_primary_10_1093_eurheartj_ehz942
crossref_primary_10_1016_j_aaf_2025_01_006
crossref_primary_10_1016_j_yjmcc_2020_09_006
crossref_primary_10_3389_fcvm_2022_900381
crossref_primary_10_1016_j_phrs_2020_104752
crossref_primary_10_1371_journal_pone_0291022
crossref_primary_10_1016_j_archger_2024_105639
crossref_primary_10_3390_ijms252212465
crossref_primary_10_3390_molecules30071634
crossref_primary_10_3389_fcimb_2021_687827
crossref_primary_10_1016_j_lfs_2025_123606
crossref_primary_10_2147_JIR_S337031
crossref_primary_10_3390_metabo13060760
crossref_primary_10_1093_cvr_cvae128
crossref_primary_10_1093_cvr_cvae248
crossref_primary_10_1186_s12967_024_05232_5
crossref_primary_10_3390_ijms241713294
crossref_primary_10_3389_fimmu_2024_1460282
crossref_primary_10_1016_j_clnu_2024_09_045
crossref_primary_10_1016_j_neubiorev_2025_106177
crossref_primary_10_1097_CP9_0000000000000126
crossref_primary_10_1016_j_jacc_2023_02_045
crossref_primary_10_3389_fcvm_2024_1333005
crossref_primary_10_1007_s13668_025_00679_4
crossref_primary_10_1016_j_trsl_2022_06_003
crossref_primary_10_1097_CM9_0000000000002206
crossref_primary_10_1016_j_trsl_2020_08_007
crossref_primary_10_1186_s40168_022_01390_0
crossref_primary_10_1186_s42523_021_00113_4
crossref_primary_10_1016_j_vph_2025_107522
crossref_primary_10_3389_fnut_2021_693412
crossref_primary_10_3389_fcvm_2025_1604962
crossref_primary_10_1186_s12872_022_02508_w
crossref_primary_10_3389_fcvm_2022_915102
crossref_primary_10_3389_fcimb_2024_1371543
crossref_primary_10_1080_87559129_2024_2437410
crossref_primary_10_1038_s44161_024_00446_8
crossref_primary_10_1002_cpt_1637
crossref_primary_10_1002_cph4_70024
crossref_primary_10_1016_j_heliyon_2024_e25995
crossref_primary_10_1111_bph_70131
crossref_primary_10_1161_ATVBAHA_119_313414
crossref_primary_10_7555_JBR_39_20250036
crossref_primary_10_1016_j_jep_2023_116529
crossref_primary_10_1161_HYPERTENSIONAHA_120_14473
crossref_primary_10_3389_fcimb_2025_1537576
crossref_primary_10_1038_s41579_020_0433_9
crossref_primary_10_1111_jcmm_14164
crossref_primary_10_1016_j_arr_2020_101141
crossref_primary_10_1002_advs_202417827
crossref_primary_10_1007_s11274_022_03469_0
crossref_primary_10_1038_s41581_022_00654_0
crossref_primary_10_1096_fj_202300184R
crossref_primary_10_1007_s11010_023_04683_6
crossref_primary_10_1186_s12951_024_02935_1
crossref_primary_10_1002_ehf2_14991
crossref_primary_10_1038_s44161_023_00270_6
crossref_primary_10_1016_j_arr_2024_102196
crossref_primary_10_1016_j_mib_2019_09_007
crossref_primary_10_1016_j_chom_2023_07_008
crossref_primary_10_1038_s41467_023_43167_5
crossref_primary_10_3389_fcimb_2023_1191936
crossref_primary_10_1016_j_cellsig_2020_109828
crossref_primary_10_1016_j_lfs_2023_121947
crossref_primary_10_1002_imt2_220
crossref_primary_10_1093_eurheartj_ehad367
crossref_primary_10_1111_1440_1681_13727
crossref_primary_10_1016_j_jnutbio_2023_109370
crossref_primary_10_2147_IDR_S390582
crossref_primary_10_1128_spectrum_02302_24
crossref_primary_10_1016_j_jare_2024_10_017
crossref_primary_10_3389_fcvm_2025_1625299
crossref_primary_10_1038_s41467_025_58107_8
crossref_primary_10_3390_ijms21144929
crossref_primary_10_1093_ckj_sfad303
crossref_primary_10_3390_jpm11111113
crossref_primary_10_1007_s00467_025_06780_8
crossref_primary_10_1016_j_isci_2025_113247
crossref_primary_10_1016_j_yjmcc_2020_12_001
crossref_primary_10_1016_j_biopha_2024_116567
crossref_primary_10_1007_s42399_020_00436_4
crossref_primary_10_3390_foods11182863
crossref_primary_10_1007_s00063_023_00993_1
crossref_primary_10_1016_j_healun_2022_12_009
crossref_primary_10_1002_cti2_70029
crossref_primary_10_1186_s40168_021_01157_z
crossref_primary_10_1161_CIRCULATIONAHA_120_052671
crossref_primary_10_1186_s40168_022_01271_6
crossref_primary_10_1007_s11427_023_2595_5
crossref_primary_10_1016_j_jhep_2024_08_008
crossref_primary_10_20900_immunometab20210004
crossref_primary_10_34067_KID_0006792020
crossref_primary_10_1080_19490976_2024_2361490
crossref_primary_10_3390_nu14214650
crossref_primary_10_1007_s10741_025_10546_7
crossref_primary_10_2147_DDDT_S404479
crossref_primary_10_1016_j_phrs_2022_106570
crossref_primary_10_2217_rme_2022_0209
crossref_primary_10_3389_fcvm_2022_949859
crossref_primary_10_3390_cancers13040782
crossref_primary_10_1016_j_isci_2023_108556
crossref_primary_10_1155_2019_5164298
crossref_primary_10_1016_j_micpath_2023_105984
crossref_primary_10_1093_intimm_dxad002
crossref_primary_10_1097_FJC_0000000000001387
crossref_primary_10_1007_s12275_024_00164_7
crossref_primary_10_1177_0310057X20903732
crossref_primary_10_1007_s12012_024_09928_4
crossref_primary_10_1016_j_tjnut_2024_02_011
crossref_primary_10_1002_ptr_8005
crossref_primary_10_1016_j_clnu_2021_01_031
crossref_primary_10_1097_CM9_0000000000000330
crossref_primary_10_1007_s13668_024_00564_6
crossref_primary_10_3389_fphar_2020_01265
crossref_primary_10_3390_ijerph21020237
crossref_primary_10_1371_journal_pone_0289364
crossref_primary_10_1016_j_jhazmat_2021_125239
crossref_primary_10_1038_s41536_024_00378_8
crossref_primary_10_1111_apha_14193
crossref_primary_10_1097_FJC_0000000000001273
crossref_primary_10_1186_s13063_023_07443_5
crossref_primary_10_1016_j_biomaterials_2022_121807
crossref_primary_10_1016_j_phymed_2023_154885
crossref_primary_10_1016_j_ijbiomac_2021_07_008
crossref_primary_10_1242_dmm_049742
crossref_primary_10_3390_biomedicines11061588
crossref_primary_10_1152_ajpheart_00291_2025
crossref_primary_10_3233_JAD_220313
crossref_primary_10_1016_j_ejphar_2022_175355
crossref_primary_10_1016_j_bja_2022_01_012
crossref_primary_10_1016_j_scitotenv_2020_141030
crossref_primary_10_1016_j_apsb_2024_10_010
crossref_primary_10_3390_nu15030607
crossref_primary_10_18632_aging_206279
crossref_primary_10_1161_CIRCHEARTFAILURE_124_012524
crossref_primary_10_1016_j_biopha_2023_116079
crossref_primary_10_1186_s12933_024_02217_y
crossref_primary_10_1186_s12967_024_05425_y
crossref_primary_10_3389_fmicb_2023_1140498
crossref_primary_10_1039_D1FO02040D
crossref_primary_10_1016_j_ebiom_2020_102649
crossref_primary_10_1038_s41467_024_52398_z
crossref_primary_10_3389_fcimb_2022_1059349
crossref_primary_10_1161_HYPERTENSIONAHA_119_11786
crossref_primary_10_1038_s41598_021_98986_7
crossref_primary_10_1016_j_mvr_2021_104235
crossref_primary_10_3390_ijms21228729
crossref_primary_10_1016_j_biopha_2024_117319
crossref_primary_10_1161_ATVBAHA_124_321201
crossref_primary_10_1161_CIRCRESAHA_125_325516
crossref_primary_10_1161_CIRCRESAHA_125_325637
crossref_primary_10_1007_s11906_020_01046_0
crossref_primary_10_1007_s11154_025_09971_8
crossref_primary_10_3389_fphar_2025_1581413
crossref_primary_10_3389_fimmu_2025_1538384
crossref_primary_10_1161_CIRCRESAHA_120_316242
crossref_primary_10_3390_ijms26052242
crossref_primary_10_1016_j_bbadis_2023_166664
crossref_primary_10_1016_j_expneurol_2023_114351
crossref_primary_10_1093_cvr_cvaa137
crossref_primary_10_1016_j_chemosphere_2022_135324
crossref_primary_10_1016_j_intimp_2022_109618
crossref_primary_10_1111_febs_16319
crossref_primary_10_1007_s11684_024_1055_9
crossref_primary_10_1371_journal_ppat_1011683
crossref_primary_10_1016_j_prmcm_2025_100659
crossref_primary_10_1186_s40168_021_01046_5
crossref_primary_10_3389_fbioe_2022_935415
crossref_primary_10_1161_CIRCHEARTFAILURE_120_008220
crossref_primary_10_1371_journal_ppat_1013069
crossref_primary_10_3390_ani15142108
crossref_primary_10_1016_j_exger_2024_112409
crossref_primary_10_3389_fmicb_2023_1202768
crossref_primary_10_3389_fcvm_2021_718674
crossref_primary_10_1128_spectrum_01053_21
crossref_primary_10_1155_2020_8815349
ContentType Journal Article
DBID NPM
7X8
DOI 10.1161/CIRCULATIONAHA.118.035235
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
ExternalDocumentID 30586712
Genre Journal Article
GroupedDBID ---
.-D
.3C
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAUEB
AAWTL
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABQRW
ABVCZ
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFO
ACGFS
ACIJW
ACILI
ACLDA
ACOAL
ACRKK
ACWDW
ACWRI
ACXJB
ACXNZ
ADBBV
ADCYY
ADGGA
ADHPY
AE3
AE6
AEBDS
AENEX
AFCHL
AFDTB
AFEXH
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
ASPBG
AVWKF
AWKKM
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BYPQX
C45
CS3
DIK
DIWNM
DU5
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
NPM
N~7
N~B
O9-
OAG
OAH
OBH
OCB
ODA
ODMTH
OGEVE
OHH
OHYEH
OJAPA
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RHF
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
YSK
YYM
YZZ
ZFV
ZY1
~H1
7X8
AAFWJ
ABPXF
ABXYN
ABZZY
ACDOF
ACZKN
ADKSD
ADSXY
AFBFQ
AFMBP
AFNMH
AHQVU
AOQMC
ID FETCH-LOGICAL-c4281-6345e7b0b235c2134a6e18593315ba4a9012bccf84db566d076395e32388e93d2
IEDL.DBID 7X8
ISICitedReferencesCount 247
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=00003017-201901290-00011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-4539
IngestDate Mon Sep 08 11:51:48 EDT 2025
Wed Feb 19 02:32:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords microbiota
myeloid cells
myocardial infarction
Lactobacillus
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4281-6345e7b0b235c2134a6e18593315ba4a9012bccf84db566d076395e32388e93d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30586712
PQID 2161065845
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2161065845
pubmed_primary_30586712
PublicationCentury 2000
PublicationDate 2019-Jan-29
20190129
PublicationDateYYYYMMDD 2019-01-29
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-Jan-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2019
SSID ssj0006375
Score 2.6634874
Snippet The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 647
Title Loss of Gut Microbiota Alters Immune System Composition and Cripples Postinfarction Cardiac Repair
URI https://www.ncbi.nlm.nih.gov/pubmed/30586712
https://www.proquest.com/docview/2161065845
Volume 139
WOSCitedRecordID wos00003017-201901290-00011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JasMwEB26EXrplu4LKpTe1DiWbEWnEkyXQBJKaUpuQZJlCLROGieF_n1HskMvPRR68cHGYOTRmzeL3gBcCcaES29QrWJFOdOCyoBlNNY2M8j3tfSyi69d0e-3hkP5VCXciqqtcomJHqjTiXE58kaI1MS7y-h2-kHd1ChXXa1GaKzCOkMq41q6xPBHLTxmXmgXXRSnPGKyBpceJOJmI-k8J4NuKTj72MZ7rRunDFpNffuVaXqPc7_932_dga2Ka5J2aRy7sGLzPai3c4yz37_INfHdnz6tvge1XlVkr4PuouMkk4w8LOakNy6VmuaKtF1hvSAdd6LEklLqnDg8qfq-iMpTkiAITd9sQdwUYLRe3Ef-WeIt0RAk_Go824fB_d1L8kirUQzUYHzSpDHjkRU60LhCxonAqdg2nVQaa0ZacYWsItTGZC2eaiSIaYCwJSPLkBC0rGRpeABr-SS3R0BCxa2Sijs5deRigRYi5kZgoKxkmFp5DJfLRR2hqbv6hcrtZFGMfpb1GA7LPzOalpocI4Qtp9QXnvzh7VPYRNrj2sRoKM9gPcONbs9hw3zOx8XswtsQXvtPvW8eys7N
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+Gut+Microbiota+Alters+Immune+System+Composition+and+Cripples+Postinfarction+Cardiac+Repair&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Tang%2C+Tony+W+H&rft.au=Chen%2C+Hung-Chih&rft.au=Chen%2C+Chen-Yun&rft.au=Yen%2C+Christopher+Y+T&rft.date=2019-01-29&rft.eissn=1524-4539&rft.volume=139&rft.issue=5&rft.spage=647&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.118.035235&rft_id=info%3Apmid%2F30586712&rft_id=info%3Apmid%2F30586712&rft.externalDocID=30586712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-4539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-4539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-4539&client=summon