Loss of Gut Microbiota Alters Immune System Composition and Cripples Postinfarction Cardiac Repair
The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role o...
Saved in:
| Published in: | Circulation (New York, N.Y.) Vol. 139; no. 5; p. 647 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
29.01.2019
|
| Subjects: | |
| ISSN: | 1524-4539, 1524-4539 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role of the gut microbiota in the context of MI remains to be fully elucidated.
To investigate the effects of gut microbiota on cardiac repair after MI, C57BL/6J mice were treated with antibiotics 7 days before MI to deplete mouse gut microbiota. Flow cytometry was applied to examine the changes in immune cell composition in the heart. 16S rDNA sequencing was conducted as a readout for changes in gut microbial composition. Short-chain fatty acid (SCFA) species altered after antibiotic treatment were identified by high-performance liquid chromatography. Fecal reconstitution, transplantation of monocytes, or dietary SCFA or Lactobacillus probiotic supplementation was conducted to evaluate the cardioprotective effects of microbiota on the mice after MI.
Antibiotic-treated mice displayed drastic, dose-dependent mortality after MI. We observed an association between the gut microbiota depletion and significant reductions in the proportion of myeloid cells and SCFAs, more specifically acetate, butyrate, and propionate. Infiltration of CX3CR1+ monocytes to the peri-infarct zone after MI was also reduced, suggesting impairment of repair after MI. Accordingly, the physiological status and survival of mice were significantly improved after fecal reconstitution, transplantation of monocytes, or dietary SCFA supplementation. MI was associated with a reorganization of the gut microbial community such as a reduction in Lactobacillus. Supplementing antibiotic-treated mice with a Lactobacillus probiotic before MI restored myeloid cell proportions, yielded cardioprotective effects, and shifted the balance of SCFAs toward propionate.
Gut microbiota-derived SCFAs play an important role in maintaining host immune composition and repair capacity after MI. This suggests that manipulation of these elements may provide opportunities to modulate pathological outcome after MI and indeed human health and disease as a whole. |
|---|---|
| AbstractList | The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role of the gut microbiota in the context of MI remains to be fully elucidated.BACKGROUNDThe impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role of the gut microbiota in the context of MI remains to be fully elucidated.To investigate the effects of gut microbiota on cardiac repair after MI, C57BL/6J mice were treated with antibiotics 7 days before MI to deplete mouse gut microbiota. Flow cytometry was applied to examine the changes in immune cell composition in the heart. 16S rDNA sequencing was conducted as a readout for changes in gut microbial composition. Short-chain fatty acid (SCFA) species altered after antibiotic treatment were identified by high-performance liquid chromatography. Fecal reconstitution, transplantation of monocytes, or dietary SCFA or Lactobacillus probiotic supplementation was conducted to evaluate the cardioprotective effects of microbiota on the mice after MI.METHODSTo investigate the effects of gut microbiota on cardiac repair after MI, C57BL/6J mice were treated with antibiotics 7 days before MI to deplete mouse gut microbiota. Flow cytometry was applied to examine the changes in immune cell composition in the heart. 16S rDNA sequencing was conducted as a readout for changes in gut microbial composition. Short-chain fatty acid (SCFA) species altered after antibiotic treatment were identified by high-performance liquid chromatography. Fecal reconstitution, transplantation of monocytes, or dietary SCFA or Lactobacillus probiotic supplementation was conducted to evaluate the cardioprotective effects of microbiota on the mice after MI.Antibiotic-treated mice displayed drastic, dose-dependent mortality after MI. We observed an association between the gut microbiota depletion and significant reductions in the proportion of myeloid cells and SCFAs, more specifically acetate, butyrate, and propionate. Infiltration of CX3CR1+ monocytes to the peri-infarct zone after MI was also reduced, suggesting impairment of repair after MI. Accordingly, the physiological status and survival of mice were significantly improved after fecal reconstitution, transplantation of monocytes, or dietary SCFA supplementation. MI was associated with a reorganization of the gut microbial community such as a reduction in Lactobacillus. Supplementing antibiotic-treated mice with a Lactobacillus probiotic before MI restored myeloid cell proportions, yielded cardioprotective effects, and shifted the balance of SCFAs toward propionate.RESULTSAntibiotic-treated mice displayed drastic, dose-dependent mortality after MI. We observed an association between the gut microbiota depletion and significant reductions in the proportion of myeloid cells and SCFAs, more specifically acetate, butyrate, and propionate. Infiltration of CX3CR1+ monocytes to the peri-infarct zone after MI was also reduced, suggesting impairment of repair after MI. Accordingly, the physiological status and survival of mice were significantly improved after fecal reconstitution, transplantation of monocytes, or dietary SCFA supplementation. MI was associated with a reorganization of the gut microbial community such as a reduction in Lactobacillus. Supplementing antibiotic-treated mice with a Lactobacillus probiotic before MI restored myeloid cell proportions, yielded cardioprotective effects, and shifted the balance of SCFAs toward propionate.Gut microbiota-derived SCFAs play an important role in maintaining host immune composition and repair capacity after MI. This suggests that manipulation of these elements may provide opportunities to modulate pathological outcome after MI and indeed human health and disease as a whole.CONCLUSIONSGut microbiota-derived SCFAs play an important role in maintaining host immune composition and repair capacity after MI. This suggests that manipulation of these elements may provide opportunities to modulate pathological outcome after MI and indeed human health and disease as a whole. The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune system and metabolism. These areas are also crucial for the pathophysiology of and repair after myocardial infarction (MI). However, the role of the gut microbiota in the context of MI remains to be fully elucidated. To investigate the effects of gut microbiota on cardiac repair after MI, C57BL/6J mice were treated with antibiotics 7 days before MI to deplete mouse gut microbiota. Flow cytometry was applied to examine the changes in immune cell composition in the heart. 16S rDNA sequencing was conducted as a readout for changes in gut microbial composition. Short-chain fatty acid (SCFA) species altered after antibiotic treatment were identified by high-performance liquid chromatography. Fecal reconstitution, transplantation of monocytes, or dietary SCFA or Lactobacillus probiotic supplementation was conducted to evaluate the cardioprotective effects of microbiota on the mice after MI. Antibiotic-treated mice displayed drastic, dose-dependent mortality after MI. We observed an association between the gut microbiota depletion and significant reductions in the proportion of myeloid cells and SCFAs, more specifically acetate, butyrate, and propionate. Infiltration of CX3CR1+ monocytes to the peri-infarct zone after MI was also reduced, suggesting impairment of repair after MI. Accordingly, the physiological status and survival of mice were significantly improved after fecal reconstitution, transplantation of monocytes, or dietary SCFA supplementation. MI was associated with a reorganization of the gut microbial community such as a reduction in Lactobacillus. Supplementing antibiotic-treated mice with a Lactobacillus probiotic before MI restored myeloid cell proportions, yielded cardioprotective effects, and shifted the balance of SCFAs toward propionate. Gut microbiota-derived SCFAs play an important role in maintaining host immune composition and repair capacity after MI. This suggests that manipulation of these elements may provide opportunities to modulate pathological outcome after MI and indeed human health and disease as a whole. |
| Author | Lu, Hsueh-Han Chen, Li-Lun Tang, Tony W H Ruan, Shu-Chian Hsieh, Patrick C H Yen, Christopher Y T Kamp, Timothy J Rey, Federico E Kuo, Chiung-Wen Prajnamitra, Ray P Chen, Hung-Chih Chen, Chen-Yun Lin, Chen-Ju Chen, Peilin Vivas, Eugenio I Shui, Jr-Wen Chang, Cindy M Hacker, Timothy A Lin, Jen-Hao Lin, Po-Ju Hall, Alexander D |
| Author_xml | – sequence: 1 givenname: Tony W H surname: Tang fullname: Tang, Tony W H organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan – sequence: 2 givenname: Hung-Chih surname: Chen fullname: Chen, Hung-Chih organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan – sequence: 3 givenname: Chen-Yun surname: Chen fullname: Chen, Chen-Yun organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan – sequence: 4 givenname: Christopher Y T surname: Yen fullname: Yen, Christopher Y T organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan – sequence: 5 givenname: Chen-Ju surname: Lin fullname: Lin, Chen-Ju organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan – sequence: 6 givenname: Ray P surname: Prajnamitra fullname: Prajnamitra, Ray P organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan – sequence: 7 givenname: Li-Lun surname: Chen fullname: Chen, Li-Lun organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan – sequence: 8 givenname: Shu-Chian surname: Ruan fullname: Ruan, Shu-Chian organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan – sequence: 9 givenname: Jen-Hao surname: Lin fullname: Lin, Jen-Hao organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan – sequence: 10 givenname: Po-Ju surname: Lin fullname: Lin, Po-Ju organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan – sequence: 11 givenname: Hsueh-Han surname: Lu fullname: Lu, Hsueh-Han organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan – sequence: 12 givenname: Chiung-Wen surname: Kuo fullname: Kuo, Chiung-Wen organization: Research Center for Applied Sciences (C.-W.K., P.C.), Academia Sinica, Taipei, Taiwan – sequence: 13 givenname: Cindy M surname: Chang fullname: Chang, Cindy M organization: Department of Medicine (C.M.C., A.D.H., T.A.H., T.J.K., P.C.H.H.), University of Wisconsin-Madison – sequence: 14 givenname: Alexander D surname: Hall fullname: Hall, Alexander D organization: Department of Medicine (C.M.C., A.D.H., T.A.H., T.J.K., P.C.H.H.), University of Wisconsin-Madison – sequence: 15 givenname: Eugenio I surname: Vivas fullname: Vivas, Eugenio I organization: Department of Bacteriology (E.I.V., F.E.R.), University of Wisconsin-Madison – sequence: 16 givenname: Jr-Wen surname: Shui fullname: Shui, Jr-Wen organization: Institute of Biomedical Sciences (T.W.H.T., H.C.-C., C.-Y.C., C.Y.T.Y., C.-J.L., R.P.P., L.-L.C., S.-C.R., J.-H.L., P.-J.L., H.-H.L., J.-W.S., P.C.H.H.), Academia Sinica, Taipei, Taiwan – sequence: 17 givenname: Peilin surname: Chen fullname: Chen, Peilin organization: Research Center for Applied Sciences (C.-W.K., P.C.), Academia Sinica, Taipei, Taiwan – sequence: 18 givenname: Timothy A surname: Hacker fullname: Hacker, Timothy A organization: Department of Medicine (C.M.C., A.D.H., T.A.H., T.J.K., P.C.H.H.), University of Wisconsin-Madison – sequence: 19 givenname: Federico E surname: Rey fullname: Rey, Federico E organization: Department of Bacteriology (E.I.V., F.E.R.), University of Wisconsin-Madison – sequence: 20 givenname: Timothy J surname: Kamp fullname: Kamp, Timothy J organization: Stem Cell and Regenerative Medicine Center (T.J.K., P.C.H.H.), University of Wisconsin-Madison – sequence: 21 givenname: Patrick C H surname: Hsieh fullname: Hsieh, Patrick C H organization: Stem Cell and Regenerative Medicine Center (T.J.K., P.C.H.H.), University of Wisconsin-Madison |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30586712$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUF1LwzAADDJxH_oXJL750pnvpo-l6DaoTub2XNI0hUjb1KR92L-36ASf7rg7Du6WYNa5zgDwgNEaY4Gfst0hO-Xpcbd_S7fppMk1opxQfgUWmBMWMU6T2T8-B8sQPhFCgsb8Bswp4lLEmCxAmbsQoKvhZhzgq9XeldYNCqbNYHyAu7YdOwM_zmEwLcxc27tgB-s6qLoKZt72fWMCfHdhsF2tvP7xMuUrqzQ8mF5Zfwuua9UEc3fBFTi9PB-zbZTvN7sszSPNiMSRoIybuETltEMTTJkSBkueUIp5qZhKECal1rVkVcmFqFAsaMINJVRKk9CKrMDjb2_v3ddowlC0NmjTNKozbgwFma5DgkvGp-j9JTqWramK3ttW-XPx9wv5BrGyaJ0 |
| CitedBy_id | crossref_primary_10_1016_j_foodres_2020_109489 crossref_primary_10_1016_j_gendis_2025_101592 crossref_primary_10_1093_cvr_cvad023 crossref_primary_10_3389_fmicb_2021_641084 crossref_primary_10_1016_j_imlet_2023_01_007 crossref_primary_10_1111_jcmm_70406 crossref_primary_10_1016_j_cpcardiol_2024_102562 crossref_primary_10_1007_s12223_021_00926_5 crossref_primary_10_3390_microorganisms12020319 crossref_primary_10_1002_advs_202307233 crossref_primary_10_1016_j_jacc_2019_03_024 crossref_primary_10_1016_j_molmet_2020_100976 crossref_primary_10_1161_CIRCULATIONAHA_118_037384 crossref_primary_10_3389_fcvm_2021_759735 crossref_primary_10_1093_eurheartj_ehab644 crossref_primary_10_3390_nu13010228 crossref_primary_10_1007_s11427_021_2056_1 crossref_primary_10_1186_s40104_023_00974_6 crossref_primary_10_1007_s10495_024_02046_0 crossref_primary_10_1016_j_biopha_2020_110503 crossref_primary_10_3390_biomedicines10112712 crossref_primary_10_1155_2020_5394096 crossref_primary_10_3389_fimmu_2024_1321395 crossref_primary_10_5527_wjn_v13_i4_98719 crossref_primary_10_22207_JPAM_16_4_19 crossref_primary_10_3390_bioengineering9120798 crossref_primary_10_1007_s00395_025_01134_9 crossref_primary_10_1093_eurheartj_ehz942 crossref_primary_10_1016_j_aaf_2025_01_006 crossref_primary_10_1016_j_yjmcc_2020_09_006 crossref_primary_10_3389_fcvm_2022_900381 crossref_primary_10_1016_j_phrs_2020_104752 crossref_primary_10_1371_journal_pone_0291022 crossref_primary_10_1016_j_archger_2024_105639 crossref_primary_10_3390_ijms252212465 crossref_primary_10_3390_molecules30071634 crossref_primary_10_3389_fcimb_2021_687827 crossref_primary_10_1016_j_lfs_2025_123606 crossref_primary_10_2147_JIR_S337031 crossref_primary_10_3390_metabo13060760 crossref_primary_10_1093_cvr_cvae128 crossref_primary_10_1093_cvr_cvae248 crossref_primary_10_1186_s12967_024_05232_5 crossref_primary_10_3390_ijms241713294 crossref_primary_10_3389_fimmu_2024_1460282 crossref_primary_10_1016_j_clnu_2024_09_045 crossref_primary_10_1016_j_neubiorev_2025_106177 crossref_primary_10_1097_CP9_0000000000000126 crossref_primary_10_1016_j_jacc_2023_02_045 crossref_primary_10_3389_fcvm_2024_1333005 crossref_primary_10_1007_s13668_025_00679_4 crossref_primary_10_1016_j_trsl_2022_06_003 crossref_primary_10_1097_CM9_0000000000002206 crossref_primary_10_1016_j_trsl_2020_08_007 crossref_primary_10_1186_s40168_022_01390_0 crossref_primary_10_1186_s42523_021_00113_4 crossref_primary_10_1016_j_vph_2025_107522 crossref_primary_10_3389_fnut_2021_693412 crossref_primary_10_3389_fcvm_2025_1604962 crossref_primary_10_1186_s12872_022_02508_w crossref_primary_10_3389_fcvm_2022_915102 crossref_primary_10_3389_fcimb_2024_1371543 crossref_primary_10_1080_87559129_2024_2437410 crossref_primary_10_1038_s44161_024_00446_8 crossref_primary_10_1002_cpt_1637 crossref_primary_10_1002_cph4_70024 crossref_primary_10_1016_j_heliyon_2024_e25995 crossref_primary_10_1111_bph_70131 crossref_primary_10_1161_ATVBAHA_119_313414 crossref_primary_10_7555_JBR_39_20250036 crossref_primary_10_1016_j_jep_2023_116529 crossref_primary_10_1161_HYPERTENSIONAHA_120_14473 crossref_primary_10_3389_fcimb_2025_1537576 crossref_primary_10_1038_s41579_020_0433_9 crossref_primary_10_1111_jcmm_14164 crossref_primary_10_1016_j_arr_2020_101141 crossref_primary_10_1002_advs_202417827 crossref_primary_10_1007_s11274_022_03469_0 crossref_primary_10_1038_s41581_022_00654_0 crossref_primary_10_1096_fj_202300184R crossref_primary_10_1007_s11010_023_04683_6 crossref_primary_10_1186_s12951_024_02935_1 crossref_primary_10_1002_ehf2_14991 crossref_primary_10_1038_s44161_023_00270_6 crossref_primary_10_1016_j_arr_2024_102196 crossref_primary_10_1016_j_mib_2019_09_007 crossref_primary_10_1016_j_chom_2023_07_008 crossref_primary_10_1038_s41467_023_43167_5 crossref_primary_10_3389_fcimb_2023_1191936 crossref_primary_10_1016_j_cellsig_2020_109828 crossref_primary_10_1016_j_lfs_2023_121947 crossref_primary_10_1002_imt2_220 crossref_primary_10_1093_eurheartj_ehad367 crossref_primary_10_1111_1440_1681_13727 crossref_primary_10_1016_j_jnutbio_2023_109370 crossref_primary_10_2147_IDR_S390582 crossref_primary_10_1128_spectrum_02302_24 crossref_primary_10_1016_j_jare_2024_10_017 crossref_primary_10_3389_fcvm_2025_1625299 crossref_primary_10_1038_s41467_025_58107_8 crossref_primary_10_3390_ijms21144929 crossref_primary_10_1093_ckj_sfad303 crossref_primary_10_3390_jpm11111113 crossref_primary_10_1007_s00467_025_06780_8 crossref_primary_10_1016_j_isci_2025_113247 crossref_primary_10_1016_j_yjmcc_2020_12_001 crossref_primary_10_1016_j_biopha_2024_116567 crossref_primary_10_1007_s42399_020_00436_4 crossref_primary_10_3390_foods11182863 crossref_primary_10_1007_s00063_023_00993_1 crossref_primary_10_1016_j_healun_2022_12_009 crossref_primary_10_1002_cti2_70029 crossref_primary_10_1186_s40168_021_01157_z crossref_primary_10_1161_CIRCULATIONAHA_120_052671 crossref_primary_10_1186_s40168_022_01271_6 crossref_primary_10_1007_s11427_023_2595_5 crossref_primary_10_1016_j_jhep_2024_08_008 crossref_primary_10_20900_immunometab20210004 crossref_primary_10_34067_KID_0006792020 crossref_primary_10_1080_19490976_2024_2361490 crossref_primary_10_3390_nu14214650 crossref_primary_10_1007_s10741_025_10546_7 crossref_primary_10_2147_DDDT_S404479 crossref_primary_10_1016_j_phrs_2022_106570 crossref_primary_10_2217_rme_2022_0209 crossref_primary_10_3389_fcvm_2022_949859 crossref_primary_10_3390_cancers13040782 crossref_primary_10_1016_j_isci_2023_108556 crossref_primary_10_1155_2019_5164298 crossref_primary_10_1016_j_micpath_2023_105984 crossref_primary_10_1093_intimm_dxad002 crossref_primary_10_1097_FJC_0000000000001387 crossref_primary_10_1007_s12275_024_00164_7 crossref_primary_10_1177_0310057X20903732 crossref_primary_10_1007_s12012_024_09928_4 crossref_primary_10_1016_j_tjnut_2024_02_011 crossref_primary_10_1002_ptr_8005 crossref_primary_10_1016_j_clnu_2021_01_031 crossref_primary_10_1097_CM9_0000000000000330 crossref_primary_10_1007_s13668_024_00564_6 crossref_primary_10_3389_fphar_2020_01265 crossref_primary_10_3390_ijerph21020237 crossref_primary_10_1371_journal_pone_0289364 crossref_primary_10_1016_j_jhazmat_2021_125239 crossref_primary_10_1038_s41536_024_00378_8 crossref_primary_10_1111_apha_14193 crossref_primary_10_1097_FJC_0000000000001273 crossref_primary_10_1186_s13063_023_07443_5 crossref_primary_10_1016_j_biomaterials_2022_121807 crossref_primary_10_1016_j_phymed_2023_154885 crossref_primary_10_1016_j_ijbiomac_2021_07_008 crossref_primary_10_1242_dmm_049742 crossref_primary_10_3390_biomedicines11061588 crossref_primary_10_1152_ajpheart_00291_2025 crossref_primary_10_3233_JAD_220313 crossref_primary_10_1016_j_ejphar_2022_175355 crossref_primary_10_1016_j_bja_2022_01_012 crossref_primary_10_1016_j_scitotenv_2020_141030 crossref_primary_10_1016_j_apsb_2024_10_010 crossref_primary_10_3390_nu15030607 crossref_primary_10_18632_aging_206279 crossref_primary_10_1161_CIRCHEARTFAILURE_124_012524 crossref_primary_10_1016_j_biopha_2023_116079 crossref_primary_10_1186_s12933_024_02217_y crossref_primary_10_1186_s12967_024_05425_y crossref_primary_10_3389_fmicb_2023_1140498 crossref_primary_10_1039_D1FO02040D crossref_primary_10_1016_j_ebiom_2020_102649 crossref_primary_10_1038_s41467_024_52398_z crossref_primary_10_3389_fcimb_2022_1059349 crossref_primary_10_1161_HYPERTENSIONAHA_119_11786 crossref_primary_10_1038_s41598_021_98986_7 crossref_primary_10_1016_j_mvr_2021_104235 crossref_primary_10_3390_ijms21228729 crossref_primary_10_1016_j_biopha_2024_117319 crossref_primary_10_1161_ATVBAHA_124_321201 crossref_primary_10_1161_CIRCRESAHA_125_325516 crossref_primary_10_1161_CIRCRESAHA_125_325637 crossref_primary_10_1007_s11906_020_01046_0 crossref_primary_10_1007_s11154_025_09971_8 crossref_primary_10_3389_fphar_2025_1581413 crossref_primary_10_3389_fimmu_2025_1538384 crossref_primary_10_1161_CIRCRESAHA_120_316242 crossref_primary_10_3390_ijms26052242 crossref_primary_10_1016_j_bbadis_2023_166664 crossref_primary_10_1016_j_expneurol_2023_114351 crossref_primary_10_1093_cvr_cvaa137 crossref_primary_10_1016_j_chemosphere_2022_135324 crossref_primary_10_1016_j_intimp_2022_109618 crossref_primary_10_1111_febs_16319 crossref_primary_10_1007_s11684_024_1055_9 crossref_primary_10_1371_journal_ppat_1011683 crossref_primary_10_1016_j_prmcm_2025_100659 crossref_primary_10_1186_s40168_021_01046_5 crossref_primary_10_3389_fbioe_2022_935415 crossref_primary_10_1161_CIRCHEARTFAILURE_120_008220 crossref_primary_10_1371_journal_ppat_1013069 crossref_primary_10_3390_ani15142108 crossref_primary_10_1016_j_exger_2024_112409 crossref_primary_10_3389_fmicb_2023_1202768 crossref_primary_10_3389_fcvm_2021_718674 crossref_primary_10_1128_spectrum_01053_21 crossref_primary_10_1155_2020_8815349 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1161/CIRCULATIONAHA.118.035235 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1524-4539 |
| ExternalDocumentID | 30586712 |
| Genre | Journal Article |
| GroupedDBID | --- .-D .3C .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPMR ABQRW ABVCZ ABXVJ ABZAD ACDDN ACEWG ACGFO ACGFS ACIJW ACILI ACLDA ACOAL ACRKK ACWDW ACWRI ACXJB ACXNZ ADBBV ADCYY ADGGA ADHPY AE3 AE6 AEBDS AENEX AFCHL AFDTB AFEXH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW ASPBG AVWKF AWKKM AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C45 CS3 DIK DIWNM DU5 E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 K-A K-F K8S KD2 KMI KQ8 L-C L7B N9A NPM N~7 N~B O9- OAG OAH OBH OCB ODA ODMTH OGEVE OHH OHYEH OJAPA OK1 OL1 OLB OLG OLH OLU OLV OLW OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RHF RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W2D W3M W8F WH7 WOQ WOW X3V X3W XXN XYM YFH YOC YSK YYM YZZ ZFV ZY1 ~H1 7X8 AAFWJ ABPXF ABXYN ABZZY ACDOF ACZKN ADKSD ADSXY AFBFQ AFMBP AFNMH AHQVU AOQMC |
| ID | FETCH-LOGICAL-c4281-6345e7b0b235c2134a6e18593315ba4a9012bccf84db566d076395e32388e93d2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 247 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=00003017-201901290-00011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-4539 |
| IngestDate | Mon Sep 08 11:51:48 EDT 2025 Wed Feb 19 02:32:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | microbiota myeloid cells myocardial infarction Lactobacillus |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4281-6345e7b0b235c2134a6e18593315ba4a9012bccf84db566d076395e32388e93d2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 30586712 |
| PQID | 2161065845 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2161065845 pubmed_primary_30586712 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-Jan-29 20190129 |
| PublicationDateYYYYMMDD | 2019-01-29 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-Jan-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Circulation (New York, N.Y.) |
| PublicationTitleAlternate | Circulation |
| PublicationYear | 2019 |
| SSID | ssj0006375 |
| Score | 2.663533 |
| Snippet | The impact of gut microbiota on the regulation of host physiology has recently garnered considerable attention, particularly in key areas such as the immune... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 647 |
| Title | Loss of Gut Microbiota Alters Immune System Composition and Cripples Postinfarction Cardiac Repair |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30586712 https://www.proquest.com/docview/2161065845 |
| Volume | 139 |
| WOSCitedRecordID | wos00003017-201901290-00011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7USvHio_VRX2xBvK3NY_M6SQnWFtpSxEpvZbO7gYKmtWkF_72zm5RePAhectiQEGZnv_l2Z_INwJ1goRSJTKmlfJcyDMiUB4xTFgg7CFJLSVOb89YPhsNwMolG5YFbXpZVbjDRALWcC31G3nKQmphw6T0uPqnuGqWzq2ULjV2ouEhldElXMNmqhfuuEdrFEMUo89yoCk0DEr7dinsv8bhfCM522zgWPmhl0LLr269M00ScztF_v_UYDkuuSdqFc5zAjspqUG9nuM_--Cb3xFR_mmP1GlQHZZK9DkkfAyeZp-R5vSKDWaHUtOKkrRPrOenpP0oUKaTOicaTsu6L8EySGEFo8a5yorsAo_fiOjL3YuOJgiDh57PlKYw7T69xl5atGKjA_YlNfZd5KkisBC0ktAgc95WtpdJc20s448gqnESINGQyQYIoLYStyFMuEoJQRa50zmAvm2fqAkggLIEjTKX4mjQSnHsJk0xY0pLoOU4DmhujTtHVdf6CZ2q-zqdbszbgvJiZ6aLQ5JgibGmlPufyD09fwQHSHl0mRp3oGiopLnR1A_viazXLl7fGh_A6HA1-ACQI0A8 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+of+Gut+Microbiota+Alters+Immune+System+Composition+and+Cripples+Postinfarction+Cardiac+Repair&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Tang%2C+Tony+W+H&rft.au=Chen%2C+Hung-Chih&rft.au=Chen%2C+Chen-Yun&rft.au=Yen%2C+Christopher+Y+T&rft.date=2019-01-29&rft.eissn=1524-4539&rft.volume=139&rft.issue=5&rft.spage=647&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.118.035235&rft_id=info%3Apmid%2F30586712&rft_id=info%3Apmid%2F30586712&rft.externalDocID=30586712 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-4539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-4539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-4539&client=summon |