Non‐Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models
Deep learning can accurately represent sub‐grid‐scale convective processes in climate models, learning from high resolution simulations. However, deep learning methods usually lack interpretability due to large internal dimensionality, resulting in reduced trustworthiness in these methods. Here, we...
Uložené v:
| Vydané v: | Journal of advances in modeling earth systems Ročník 14; číslo 8; s. e2022MS003130 - n/a |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
John Wiley & Sons, Inc
01.08.2022
American Geophysical Union (AGU) |
| Predmet: | |
| ISSN: | 1942-2466, 1942-2466 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!